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Abstract 

Single nucleotide variants (SNVs) near TMEM106B have been associated with risk of 

frontotemporal lobar dementia with TDP pathology (FTLD-TDP) but the causal variant at this 

locus has not yet been isolated. The initial leading FTLD-TDP genome-wide association study 

(GWAS) hit at this locus, rs1990622, is intergenic and is in linkage disequilibrium (LD) with a 

TMEM106B coding SNV, rs3173615. We developed a long-read sequencing (LRS) dataset of 

407 individuals in order to identify structural variants associated with neurodegenerative 

disorders. We identified a prevalent 322 base pair deletion on the TMEM106B 3’ untranslated 

region (UTR) that was in perfect linkage with rs1990622 and near-perfect linkage with 

rs3173615 (genotype discordance in two of 274 individuals who had LRS and short-read next-

generation sequencing). In Alzheimer’s Disease Sequencing Project (ADSP) participants, this 

deletion was in greater LD with rs1990622 (R2=0.920916, D’=0.963472) than with rs3173615 

(R2=0.883776, D’=0.963575). rs1990622 and rs3173615 are less closely linked (R2=0.7403, 

D’=0.9915) in African populations. Among African ancestry individuals in the ADSP, the deletion 

is in even greater LD with rs1990622 (R2=0.936841, D’=0.976782) than with rs3173615 

(R2=0.764242, D’=0.974406). Querying publicly available genetic datasets with associated 

mRNA expression and protein levels, we confirmed that rs1990622 is consistently a protein 

quantitative trait locus but not an expression quantitative trait locus, consistent with a causal 

variant present on the TMEM106B 3’UTR. In summary, the TMEM106B 3’ UTR deletion is a 

large genetic variant on the TMEM106B transcript that is in higher LD with the leading GWAS hit 

rs1990622 than rs3173615 and may mediate the protective effect of this locus in 

neurodegenerative disease. 
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Introduction 

Next-generation sequencing (NGS) has enabled genome-wide identification of single nucleotide 

variants (SNVs) associated with heritable diseases ranging from cancer to neurodegeneration. 

Variants identified as disease risk-modulating in genome-wide association studies (GWAS) of 

NGS data are frequently intergenic or intronic; such GWAS hits may be the causal variant 

themselves or may be in linkage with a nearby genetic feature that is the true disease risk-

modifying variant. 

 

Structural variants (SVs) – which include large insertions, deletions, duplications, and other 

genomic features greater than 50 base pair (bp) in length – are a source of genetic diversity 

whose impact on protein function is often readily interpretable due to their large size. SVs are 

presently challenging to identify with NGS. Whereas the 150 bp read length used by most NGS 

approaches is able to obtain high coverage of SNVs and some small insertions and deletions, 

SVs that exceed this read length are principally detected in NGS data by analyzing paired and 

split-read evidence as well as changes in sequencing depth1–3. Emerging long-read sequencing 

(LRS) technology utilizes reads of greater than 10 kilobases (kb), enabling large SVs to be 

directly sequenced and properly aligned to the genome4. LRS greatly improves on SV discovery 

over short-read NGS approaches and is able to identify more than twice as many SVs as 

ensemble methods operating on short-read NGS data; up to 83% of insertions identified by LRS 

are not detected by NGS algorithms5. 

 

We carried out LRS and SV calling for participants enrolled in the Stanford Alzheimer’s Disease 

Research Center (ADRC) and/or the Stanford Aging and Memory Study (SAMS)6. After filtering 

for variants overlapping genes involved in Alzheimer’s Disease (AD) and neurological function, 

we identified a highly prevalent SV on TMEM106B. A set of SNVs on and near TMEM106B 

have been associated with a strong protective effect in neurodegenerative diseases including 
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frontotemporal lobar dementia with TAR DNA-binding protein pathology (FTLD-TDP) and 

Alzheimer’s Disease (AD) (though the effect size in AD is considerably smaller)7. We pursued 

the possibility that SVs on TMEM106B may mediate the protective effect of this locus. 

 

The protective association of TMEM106B SNVs in FTLD-TDP was first described in a 2010 

GWAS of FTLD-TDP cases and controls that identified three significant SNVs (rs1990622, 

rs6966915, rs1020004) in high linkage disequilibrium (LD) with one another, all on or near 

TMEM106B8. For the leading SNV, rs1990622, the major allele (rs1990622_A) was risk-

increasing in FTLD-TDP (odds ratio (OR)=1.64) while the minor allele (rs1990622_G) was 

protective (OR=0.61). The minor allele of rs1990622 is quite common across populations in 

gnomAD9 (allele frequency (AF)=0.4989) and has been associated with increased plasma levels 

of progranulin (GRN) in controls, suggesting that TMEM106B variants may protect against 

FTLD-TDP by rescuing GRN haploinsufficiency10,11. In the latest, largest AD GWAS a 

TMEM106B SNV (rs13237518, chr7:12229967, minor/major allele A/C) is found to be protective 

(OR=0.96)7, though less so than rs1990622 in FTLD-TDP. In LDpair12, rs13237518 is in LD with 

rs1990622 (R2= 0.8779, D’=0.9409). 

 

The mechanism by which variants at the TMEM106B locus affect FTLD-TDP risk remains 

unclear. The genome-wide significant TMEM106B SNVs identified in Van Deerlin et al. are 

either intronic or intergenic. The only coding SNV in high LD with rs1990622 is the missense 

variant rs3173615, which results in a p.T185S amino acid change in exon 6 of TMEM106B. An 

in vitro study found that overexpression of TMEM106B S185 in HeLa cells resulted in a smaller 

increase in TMEM106B protein levels than overexpression of WT TMEM106B, indicating that 

rs3173615 may hasten protein degradation13. However, an in vivo study using a GRN-/- mouse 

model homozygous for TMEM106B S186 (the conserved residue in mice) did not observe a 

change in TMEM106B protein levels relative to wild-type, nor amelioration of microgliosis or the 
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pathological lysosomal phenotype14. In addition, an FTLD-TDP GWAS evaluating both 

rs1990622 and rs3173615 found that rs1990622 was the most significant SNV at the 

TMEM106B locus following meta-analysis15. Thus, the evidence for rs3173615 as the causative 

variant on TMEM106B remains mixed. 

 

In this study, we developed and queried a large LRS dataset and identified an SV on 

TMEM106B that may be the protective variant at the TMEM106B locus in FTLD and AD. 

 

Methods 

 

Study participants 

Study protocols were approved by the Stanford University Institutional Review Board. The 

Stanford Alzheimer’s Disease Research Center (ADRC) is a cohort of healthy older controls and 

patients with AD and related neurological disorders (n=274 with LRS and NGS, ages 36-93, 145 

F, 129 M, healthy controls = 133, mild cognitive impairment cases = 47, AD cases = 22, other 

diagnosis = 72). All participants underwent a history and neurological exam, cognitive testing, 

and blood draw. Most participants also underwent brain imaging including MRI and amyloid PET 

scanning. Roughly 1/3 of participants also provided cerebrospinal fluid (CSF). Diagnoses were 

determined in a consensus conference meeting comprised of neurologists and 

neuropsychologists using standard clinical criteria for AD, MCI, and related disorders such as 

Parkinson’s disease and Lewy body disease.  

  

The Stanford Aging and Memory Study (SAMS) is a cohort of cognitively unimpaired older 

individuals (n=133 with LRS, ages 60-88, 73 F, 60 M). SAMS eligibility criteria include normal or 

corrected vision and hearing, native English speaking, no neurologic or psychiatric disease 

history, Clinical Dementia Rating score of zero, and normal performance on standardized 
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neuropsychological testing. Participants underwent CSF and plasma collection and brain 

imaging including MRI and amyloid PET. Unimpaired cognitive status was confirmed in a 

consensus conference meeting comprised of neurologists and neuropsychologists using 

standard clinical criteria. 

 

Long-read sequencing, alignment and SV calling 

High molecular weight DNA was extracted from primary blood mononuclear cells (PBMC’s) that 

had been stored at -80C using a Puregene kit (Qiagen, Germany). DNA was sheared using a G-

tube (Covaris LLC, Massachusetts). Sequencing libraries were prepared using Nanopore LSK-

110 and sequenced on the PromethION48 (Oxford Nanopore Technologies, United Kingdom). 

An average of 50.4 gigabases were sequenced per sample, with a read length N50 of 18 kb. 

Sequencing data were base called using Guppy (High Accuracy, version 6.3), and aligned to 

HG38 using Minimap216. Structural variants were called using Sniffles217 in population mode. 

Variants with start position overlapping TMEM106B were extracted. 

 

Short-read next-generation sequencing 

TMEM106B SNV genotypes were determined from short-read NGS performed at either the 

Beijing Genomics Institute (BGI) in Shenzhen, China or as part of the Stanford Extreme 

Phenotypes in Alzheimer’s Disease project with sequencing performed at the Uniformed 

Services University of the Health Sciences (USUHS) on an Illumina HiSeq platform. Among the 

274 ADRC participants, 29 participants were sequenced via USUHS and 245 via BGI. The 

Genome Analysis Toolkit (GATK) workflow Germline short variant discovery was used to map 

genome sequencing data to the reference genome (GRCh38) and to produce high-confidence 

variant calls using joint-calling18. 

 

3’ UTR deletion dose curation 
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The genotypes of rs1990622, rs3173615, and the 3’ UTR deletion were extracted for 

participants for whom whole genome LRS and NGS were available. Participants with discordant 

doses of the three variants in LRS – where the dose of any of the three variants differed from 

any other – were identified for manual curation. For these participants, LRS genome alignments 

were visualized in IGV19 and the dose of the TMEM106B 3’ UTR deletion was determined by the 

following criteria: (1) the dose was set to 0 if no reads contained the deletion, (2) the dose was 

set to 1 if at least one but not all reads contained the deletion, and (3) the dose was set to 2 if all 

reads contained the deletion. 

 

Alzheimer’s Disease Sequencing Project (ADSP) LD analysis 

ADSP R3 SNVs and Biograph20 SV calls were downloaded from NIAGADS 

(https://dss.niagads.org/datasets/ng00067/#data-releases). SNVs were subset to rs3173615 

(7:12229791:C:G) and rs1990622 (7:12244161:A:G) using Plink 1.921. The TMEM106B 3’ UTR 

deletion (chr7:12242077; SVLEN=-322; SVTYPE=DEL) was identified in Biograph SV calls. 

Samples present in both SV and SNV data were identified, VCF files for both datasets were 

subset to these samples, and the files were concatenated using bcftools22. LD was computed 

using Plink 1.9 with the --r2 dprime flag. 

 

To identify African ancestry individuals in the ADSP, ancestries of all ADSP individuals were 

determined using SNPWeights v223 using reference populations from the 1000 Genomes 

Consortium24. Individuals with greater than 75% African ancestry were classified as African 

ancestry. 

 

eQTL and pQTL analysis 

All expression quantitative trait locus (eQTL) effect sizes and p-values were queried for 

rs1990622 from summary statistics (Sieberts meta-analysis25, CommonMind Consortium26, 
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GTEx27, Wingo28, MetaBrain29, eQTLGen30). Protein quantitative trait locus (pQTL) effect sizes 

and p-values for ARIC31, DECODE32, Wingo, and Banner33 were also queried for rs1990622 

from summary statistics. See Data Availability Statement for direct links to summary statistics 

queried. For ROSMAP brain areas BA9, BA6, and BA37, processed TMT quantitated protein 

abundance data from Synapse projects syn25006657 and syn2580853 were used to calculate 

effect size and p-values using a multiple linear regression in R. The lm function was used to fit a 

linear regression model to combine AMP-AD WGS and SNP array data for rs1990622 against 

proteomics data, covarying out the first three genetic principal components, APOE status, and 

diagnosis. The same linear model was computed for MSBB BA36 using processed TMT 

proteomics data from Synapse project syn25006647. See Data Availability Statement for direct 

links to raw protein abundance data used from Synapse. 

 

Results 

We carried out whole genome LRS and SV calling for 407 participants enrolled in the Stanford 

ADRC and/or SAMS. Two unique SVs overlapping TMEM106B were identified, as summarized 

in Figure 1a. One SV, a 322 base pair (bp) deletion located in the 3’ untranslated region (UTR) 

of TMEM106B, is highly prevalent with AF=0.4568 in our LRS dataset, comparable to the AF in 

gnomAD of rs1990622 (AF=0.4989) and rs3173615 (AF=0.4902). The TMEM106B 3’ UTR 

deletion was detected in both LRS and NGS (Figure 1b). The second SV was much less 

prevalent (AF=0.1096) than rs1990622 and rs3173615. We linked LRS data to high coverage 

NGS data for 274 Stanford ADRC participants in order to evaluate the LD between the 3’ UTR 

deletion, rs1990622 and rs3173615. The TMEM106B 3’ UTR deletion was in perfect 

concordance with rs1990622 and was concordant with rs3173615 in all but two individuals. 

 

The LD between the TMEM106B 3’ UTR deletion, rs1990622, and rs3173615 was established 

in a large cohort by querying the ADSP database. 16882 samples were genotyped at both 
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SNVs rs1990622 and rs3173615. The TMEM106B 3’ UTR deletion was identified in 12120 of 

16841 samples (AF=0.4977) in the Biograph SV callset provided by ADSP. The SV was in 

greater LD with rs1990622 (R2=0.920916, D’=0.963472) than with rs3173615 (R2=0.883776, 

D’=0.963575). In LDpair, rs1990622 and rs3173615 are in high LD when assessed across all 

populations (R2=0.91, D’=0.9905). However, we noted that these SNVs are not as closely linked 

in LDpair in African populations (R2=0.7403, D’=0.9915). In African ancestry individuals in 

ADSP, the TMEM106B 3’ UTR deletion was in even greater LD with rs1990622 (R2=0.936841, 

D’=0.976782) than with rs3173615 (R2=0.764242, D’=0.974406). Taken together, these data 

indicate that the TMEM106B 3’ UTR deletion is more closely associated with rs1990622 than 

rs3173615 across populations and may underlie the slightly greater significance of rs1990622 

over rs3173615 in reducing risk of FTLD-TDP. 

 

We evaluated the effect of rs1990622 on TMEM106B expression and protein levels in eQTL 

and pQTL datasets (Table 1). rs1990622 does not result in a significant effect on TMEM106B 

expression levels in seven datasets and has a significant effect in three datasets. Across eQTL 

datasets, the direction of the effect of rs1990622 varies (β<0 in two datasets, β>0 in five 

datasets). rs1990622 results in a statistically significant effect on TMEM106B protein levels in 

ten datasets and does not have a significant effect in one dataset (Wingo meta-analysis, 

p=0.1005). The effect size is negative in eight pQTL datasets and positive in three. Our 

observation of significant pQTL effects in the absence of a consistent eQTL effect is most 

consistent with a model in which the TMEM106B causative variant exerts its protective effect 

after transcription of TMEM106B. 

 

Discussion 

The TMEM106B 3’ UTR deletion is a previously unreported variant that is a potential candidate 

to mediate the protective effect of the TMEM106B locus in FTLD-TDP. At present, the 
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candidates for the causal variant at this locus are (1) the TMEM106B 3’ UTR deletion; (2) 

rs3173615, the only coding SNV in this linkage block; (3) rs1990622, the leading GWAS hit; or 

(4) another variant in this linkage block. Recent in vivo work using a mouse model demonstrated 

that homozygous TMEM106B S186 mice had no difference in level of TMEM106B protein 

relative to wild-type and that homozygous Grn-/- TMEM106BS186/S186 mice did not have 

ameliorated lysosomal proliferation or microgliosis relative to Grn-/- mice, making it less likely 

that the rs3173615 variant is causal14. Moreover, rs1990622 was found to be more significant 

than rs3173615 following meta-analysis in a recent FTLD-TDP GWAS, which would be 

unexpected if the protective effect of the rs1990622 minor allele was due to its linkage with 

rs3173615. 

 

We used publicly available expression and protein datasets to establish that the rs1990622 

minor allele typically acts as a pQTL but not as an eQTL. This suggests that the protective effect 

at the TMEM106B locus is likely mediated by a genetic variant that acts after transcription to 

reduce TMEM106B protein levels. Because intronic and intergenic variants are not incorporated 

into the processed mRNA molecule it is less likely that such variants, including rs1990622, are 

mediating the protective effect of this allele. Furthermore, the pQTL finding suggests that the 

TMEM106B locus may exert its protective effect through an effect on protein availability rather 

than changes in function due to an amino acid change, reducing the likelihood that rs3173615 is 

the causal variant. That said, the Nicholson et al. study suggested that the TMEM106B S185 

protein is less stable than wild-type in an in vitro setting and may result in reduced protein levels 

as a result13. 

 

Lastly, we found in our LRS dataset, as well as in ADSP, that the TMEM106B 3’ UTR deletion is 

in higher LD with rs1990622 than rs3173615, which is consistent with a model in which the 
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respective significance of these two SNVs is related to their linkage with the TMEM106B 3’ UTR 

deletion. 

 

There are several possibilities for how the TMEM106B 3’ UTR deletion could mediate a 

protective effect against FTLD-TDP pathogenesis. The pQTL evidence indicates that the minor 

allele at the TMEM106B locus decreases TMEM106B protein levels. The deletion may result in 

selective enrichment of an alternate transcript polyadenylation site, changing the 3’ UTR. Such 

a change in the 3’ UTR could disrupt protein binding, which may in turn decrease translational 

efficiency, alter the subcellular localization of the RNA, or impair protein routing to the 

endoplasmic reticulum34.  Identifying a clear-cut mechanism linking the deletion to reduced 

TMEM106B protein levels (and increased progranulin protein levels) is still required to confirm 

that this is the causal variant at the locus. 

  

In summary, we report a large, prevalent SV on TMEM106B that is in perfect LD with rs1990622 

and near-perfect LD with rs3173615 in a large LRS dataset. LRS provides a valuable tool for 

detection of large genomic variants that can aid the interpretation of GWAS results and 

elucidate the genetic drivers of disease. 
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Data Availability 

Sieberts eQTL meta-analysis: https://www.synapse.org/#!Synapse:syn17015233 

Wingo eQTL meta-analysis: https://www.synapse.org/#!Synapse:syn31826294 

GTEx eQTL summary statistics: 

http://ftp.ebi.ac.uk/pub/databases/spot/eQTL/imported/GTEx_V8/ 
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CommonMind Consortium eQTL summary statistics: 

https://www.synapse.org/#!Synapse:syn4622659 

Banner pQTL summary statistics: https://www.synapse.org/#!Synapse:syn24847777 

ARIC pQTL summary statistics: http://nilanjanchatterjeelab.org/pwas/ 

MetaBrain eQTL summary statistics: https://www.metabrain.nl 

eQTLgen eQTL summary statistics: https://www.eqtlgen.org 

DECODE pQTL summary statistics (Supplementary Tables): 

https://www.nature.com/articles/s41588-021-00978-w#MOESM4 

ROSMAP proteomics BA6 and BA37: https://www.synapse.org/#!Synapse:syn25335376 

ROSMAP proteomics BA9: https://www.synapse.org/#!Synapse:syn25006657 

Mount Sinai Brain Bank proteomics: https://www.synapse.org/#!Synapse:syn25006647 

AMP-AD WGS & SNP array: https://dss.niagads.org/sample-sets/snd10011/ 

 

The NGS and LRS genomes will be made available in a research repository after publication. 
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Figure 1. TMEM106B structural variants (a) Two structural variants were identified within 20
kilobases of TMEM106B. (b) The TMEM106B 3’ UTR deletion was detected in both next-
generation sequencing (top panel) and long-read sequencing (bottom panel). Both sequencing
modalities are displayed here for a representative cohort participant carrying one copy of the
TMEM106B 3’ UTR deletion. 
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      eQTL pQTL 

Dataset tissue sample 
size beta p-value beta p-value 

GTEX Blood 670 - 0.0000 - - 

GTEX CTX 205 - 0.0000 - - 

Mayo CER 275 0.3055 0.0001 - - 

Mayo TCX 276 0.1529 0.0542 - - 

Wingo 
DLPFC & 

PHG 
722 0.0563 0.2416 -0.0773 0.1005 

Metabrain  CTX 6601 0.0268 0.3115 - - 

eQTLGen Blood 31427 - 0.0174 - - 

CommonMin
d  

DLPFC 590 -0.0084 0.4044 - - 

Sieberts CTX 1433 0.0260 0.4803 - - 

ROSMAP   DLPFC 269 -0.0214 0.7177 0.0093 0.0117 

DECODE Blood 35371 - - -0.1106 0.0000 

Banner  DLPFC 129 - - -0.1786 0.0000 

ROSMAP  DLPFC 116 - - 0.0814 0.0000 

ROSMAP  FC (BA6) 101 - - -0.1127 0.0063 

ROSMAP FC (BA9) 310 - - -0.2594 0.0000 

MSBB  PHG 102 - - -0.3571 0.0000 

ARIC AA Plasma 1871 - - 0.3147 0.0000 

ARIC EA Plasma 7213 - - -0.2547 0.0000 

ROSMAP  
TCX 

(BA37) 
101 - - -0.1281 0.0012 

 
Table 1. Effect of rs1990622 as a TMEM106B expression quantitative trait locus (eQTL) or 
protein quantitative trait locus (pQTL). Betas are those reported by respective studies and 
thus may be on different scales given different normalization procedures for transcriptomic and 
proteomic data. 
 
Abbreviations: Cortex (CTX), cerebellum (CER), temporal cortex (TCX), DLPFC (dorsolateral 
prefrontal cortex), parahippocampal gyrus (PHG), frontal cortex (FC) 
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