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In real life situation, it is often difficult to judge the relative importance of different parameters 
being considered for evaluating some alternatives. In the context of fuzzy sets, it is a situation 
where it is difficult to define precise membership grades for attribute values. Here we require more 
generalized type of fuzzy sets which have a greater representational power than ordinary fuzzy 
sets. For this purpose we use “interval type-2 trapezoidal fuzzy preference relations (IT2TrFPRs)” 
in this article as a generalization of fuzzy preference relations and consider the environment 
discussed above, where there is no information on priority weights. A collective decision matrix 
will be constructed on the basis of hybrid averages using weighted averaging and signed distance 
based OWA operation. Then a least deviation model will be employed in order to determine the 
priority weight vectors. Finally, the alternatives will be ranked on the basis of weighted normalized 
signed distance of each alternative from the ideal solution. Moreover, a real life example of 
location selection is illustrated to elaborate the effectiveness of the proposed scheme.

1. Introduction

In real life, the decision making often becomes difficult due to the uncertainty and vagueness associated with certain situations. 
The typical two valued logic often fails to tackle such situations due to improper modelling or lack of appropriate representational 
power to model the situation. Particularly, it is the case when a decision varies from person to person, like out of a set of houses 
one wants to select a house which is usually dependent on the person’s choice as per his/her compatibility. The concept of fuzzy sets 
proposed by Zadeh [1] in 1965 is considered as a paradigmatic change in dealing with uncertain and ambiguous decision making 
problems. Fuzzy set is considered as the generalization of the classical sets with members and non-members as the special cases 
of totally compatible or non-compatible with the concept represented by the fuzzy set. Zadeh [2] further extended this concept to 
linguistic variables thereby dealing the real life situations in a more effective way of qualitative reasoning instead of quantifying the 
objects which is often not possible.
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The idea of fuzzy sets has further been extended to interval-valued fuzzy sets by [3–5]. Different authors in [6,17,7,18] have 
employed these extended fuzzy sets in uncertain situations where it is not possible to precisely identify the membership degree of 
an element of the universe of discourse. The idea of fuzzy sets is still under-developing stage and further generalizations are in 
process, like one of the three dimensional extensions of fuzzy sets is the type-2 fuzzy sets and its restriction to interval type-2 fuzzy 
sets introduced by Medel [8], which is currently in extensive use for many real life decision making problems as can be seen in 
[9,10,12,13,11,14]. An extension of fuzzy sets involves the idea of intuitionistic fuzzy sets by Atannasov [15], which considers not 
only the compatibility of an element of universe of discourse to the concept represented by the fuzzy set but also the deviation from 
the concept. Xu [9,16] defined the aggregation operations Choquet integrals for intuitionistic fuzzy sets.

Nowadays, the process of group decision making is extensively making use of different type of fuzzy preference relations where 
the alternatives are assessed on the basis on their preference degrees on the other alternatives. In [19–24], authors have employed 
different types of fuzzy preference relations for group decision making. Here we present a group decision making approach based 
on “interval type-2 trapezoidal preference relations” IT2TrFPRs which has a better representational power than the existing fuzzy 
preference relations. Also the hybrid averaging operator used in the proposed scheme considers not only the individual weight-age 
of the decision makers but also the ordered positions based on closeness to the ideal solution, which makes this approach more 
authentic than the existing techniques for combining the individual opinions into a collective opinion. Moreover, the technique has 
the capability of dealing with situations where there is no information on the priority weights. The following sections describe how 
the article is structured. The ideas of IVFSs and IT2TrFNs are briefly reviewed in Section 2. The signed distance between IT2TrFNs 
is defined in Section 3, and numerous properties are discussed. Section 4 presents a GDM problem using IT2TrFN data. In addition, 
this section develops a deviation model for group decision analysis based on signed distances. Section 5 describes the algorithm. 
Section 6 uses a selection problem to demonstrate and discuss the suggested strategy. In addition, this section compares the method’s 
applicability to other methods. Lastly, the whole study is concluded in Section 7.

2. Preliminaries

Some related definitions are briefly reviewed in the following section.

Definition 2.1. [3] A non-empty set X with the mapping Z : X ⟶ {[𝑥, 𝑦]|𝑥 ≤ 𝑦,𝑥, 𝑦 ∈ [0,1]}; is known as IVFS in the universal set 
X. Each IVFS on X is represented as IVFS(X).

Definition 2.2. [3] If 𝑍 ∈ 𝐼𝑇 2𝐹𝑆(𝑋), assume 𝑍(𝑥) = [𝑍𝐿̄(𝑥), 𝑍𝑈̄ (𝑥)], where 0 ≤𝑍𝐿̄ ≤𝑍𝑈̄ ≤ 1 where 𝑥 ∈𝑋 then the ordinary FS 
𝑍𝐿̄ where 𝑍𝐿̄ : X ⟶ [0,1] is known as ‘lower FS of Z’ and ordinary FS 𝑍𝑈̄ where 𝑍𝑈̄ : X ⟶ [0,1] is known as ‘upper FS of Z’

Definition 2.3. [10] Assume that 𝑍𝑈̄ and 𝑍𝐿̄ are both generalized trapezoidal fuzzy numbers, the relative heights of 𝑍𝑈̄ and 𝑍𝐿̄
are ℎ𝑍

𝑈̄
and ℎ𝑍

𝐿̄
, and ℎ𝑍

𝑈̄
, ℎ𝑍
𝐿̄
∈ [0, 1], an IT2TrFN Z is represented as below:

𝑍 = [𝑍𝐿̄,𝑍𝑈̄ ] = [(𝑧𝐿̄1 , 𝑧
𝐿̄
2 , 𝑧

𝐿̄
3 , 𝑧

𝐿̄
4 ;ℎ

𝑍

𝐿̄
), (𝑧𝑈̄1 , 𝑧

𝑈̄
2 , 𝑧

𝑈̄
3 , 𝑧

𝑈̄
4 ;ℎ

𝑍

𝑈̄
)]

where 0 ≤ 𝑧𝐿̄1 ≤ 𝑧𝐿̄2 ≤ 𝑧𝐿̄3 ≤ 𝑧𝐿̄4 ≤ 1, 0 ≤ 𝑧𝑈̄1 ≤ 𝑧𝑈̄2 ≤ 𝑧𝑈̄3 ≤ 𝑧𝑈̄4 ≤ 1, 𝑧𝑈̄1 ≤ 𝑧𝐿̄1 , 𝑧𝐿̄4 ≤ 𝑧𝑈̄4 , 0 ≤ ℎ𝑍
𝐿̄
≤ ℎ𝑍

𝑈̄
≤ 1, and ‘lower membership function 

(LMF)’ 𝑍𝐿̄ and the ‘upper membership function (UMF)’ 𝑍𝑈̄ of Z are represented as:

𝑍𝐿̄(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(𝑥−𝑧𝐿̄1 )ℎ
𝐴

𝐿̄

𝑧𝐿̄2 −𝑧
𝐿̄
1
, 𝑧𝐿̄1 ≤ 𝑥 ≤ 𝑧𝐿̄2

ℎ𝑍
𝐿̄
, 𝑧𝐿̄2 ≤ 𝑥 ≤ 𝑧𝐿̄3

(𝑧𝐿̄4 −𝑥)ℎ
𝑍

𝐿̄

𝑧𝐿̄4 −𝑧
𝐿̄
3
, 𝑧𝐿̄3 ≤ 𝑥 ≤ 𝑧𝐿̄4

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑍𝑈̄ (𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(𝑥−𝑧𝑈̄1 )ℎ𝑍
𝑈̄

𝑧𝑈̄2 −𝑧𝑈̄1
, 𝑧𝑈̄1 ≤ 𝑥 ≤ 𝑧𝑈̄2

ℎ𝑍
𝑈̄
, 𝑧𝑈̄2 ≤ 𝑥 ≤ 𝑧𝑈̄3

(𝑧𝑈̄4 −𝑥)ℎ𝑍
𝑈̄

𝑧𝑈̄4 −𝑧𝑈̄3
, 𝑧𝑈̄3 ≤ 𝑥 ≤ 𝑧𝑈̄4

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The operations described on IT2TrFNs [25,26] are defined as below:

1. Addition:

𝑍̄ ⊕ 𝐵̄ = [(𝑧̄𝐿̄1 + 𝑏̄𝐿̄1 , 𝑧̄
𝐿̄
2 + 𝑏̄𝐿̄2 , 𝑧̄

𝐿̄
3 + 𝑏̄𝐿̄3 , 𝑧̄

𝐿̄
4 + 𝑏̄𝐿̄4 ; 𝑚𝑖𝑛(ℎ

𝐿̄
𝑍
, ℎ𝐿̄
𝐵
)), (𝑧̄𝑈̄1 + 𝑏̄𝑈̄1 , 𝑧̄

𝑈̄
2 + 𝑏̄𝑈̄2 , 𝑧̄

𝑈̄
3 + 𝑏̄𝑈̄3 , 𝑧̄

𝑈̄
4 + 𝑏̄𝑈̄4 ; 𝑚𝑖𝑛(ℎ

𝑈̄
𝑍
, ℎ𝑈̄
𝐵
)]

2. Subtraction:
2

𝑍̄ ⊖ 𝐵̄ = [(𝑧̄𝐿̄1 − 𝑏̄𝐿̄1 , 𝑧̄
𝐿̄
2 − 𝑏̄𝐿̄2 , 𝑧̄

𝐿̄
3 − 𝑏̄𝐿̄3 , 𝑧̄

𝐿̄
4 − 𝑏̄𝐿̄4 ; 𝑚𝑖𝑛(ℎ

𝐿̄
𝑍
, ℎ𝐿̄
𝐵
)), (𝑧̄𝑈̄1 − 𝑏̄𝑈̄1 , 𝑧̄

𝑈̄
2 − 𝑏̄𝑈̄2 , 𝑧̄

𝑈̄
3 − 𝑏̄𝑈̄3 , 𝑧̄

𝑈̄
4 − 𝑏̄𝑈̄4 ; 𝑚𝑖𝑛(ℎ

𝑈̄
𝑍
, ℎ𝑈̄
𝐵
)]
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3. Multiplication:

𝑍̄ ⊗ 𝐵̄ = [(𝑧̄𝐿̄1 × 𝑏̄𝐿̄1 , 𝑧̄
𝐿̄
2 × 𝑏̄𝐿̄2 , 𝑧̄

𝐿̄
3 × 𝑏̄𝐿̄3 , 𝑧̄

𝐿̄
4 × 𝑏̄𝐿̄4 ; 𝑚𝑖𝑛(ℎ

𝐿̄
𝑍
, ℎ𝐿̄
𝐵
)), (𝑧̄𝑈̄1 × 𝑏̄𝑈̄1 , 𝑧̄

𝑈̄
2 × 𝑏̄𝑈̄2 , 𝑧̄

𝑈̄
3 × 𝑏̄𝑈̄3 , 𝑧̄

𝑈̄
4 × 𝑏̄𝑈̄4 ; 𝑚𝑖𝑛(ℎ

𝑈̄
𝑍
, ℎ𝑈̄
𝐵
)]

4. Division:

𝑍̄ ⊘ 𝐵̄ = [(
𝑧̄𝐿̄1
𝑏̄𝐿̄4
, 
𝑧̄𝐿̄2
𝑏̄𝐿̄3
, 
𝑧̄𝐿̄3
𝑏̄𝐿̄2
, 
𝑧̄𝐿̄4
𝑏̄𝐿̄1

; 𝑚𝑖𝑛(ℎ𝐿̄
𝑍
, ℎ𝐿̄
𝐵
)), (

𝑧̄𝑈̄1
𝑏̄𝑈̄4
, 
𝑧̄𝑈̄2
𝑏̄𝑈̄3
, 
𝑧̄𝑈̄3
𝑏̄𝑈̄2
, 
𝑧̄𝑈̄4
𝑏̄𝑈̄1

; 𝑚𝑖𝑛(ℎ𝑈̄
𝑍
, ℎ𝑈̄
𝐵
)]

5. Multiplication by a number (r≠0):

𝑟.𝑍 =𝑍.𝑟 = [(𝑟 × 𝑧̄𝐿̄1 , 𝑟 × 𝑧̄
𝐿̄
2 , 𝑟 × 𝑧̄

𝐿̄
3 , 𝑟 × 𝑧̄

𝐿̄
4 , ℎ

𝐿̄
𝑍
), (𝑟 × 𝑧̄𝑈̄1 , 𝑟 × 𝑧̄

𝑈̄
2 , 𝑟 × 𝑧̄

𝑈̄
3 , 𝑟 × 𝑧̄

𝑈̄
4 , ℎ

𝑈̄
𝑍
)] if 𝑟 > 0

[(𝑟 × 𝑧̄𝐿̄4 , 𝑟 × 𝑧̄
𝐿̄
3 , 𝑟 × 𝑧̄

𝐿̄
2 , 𝑟 × 𝑧̄

𝐿̄
1 , ℎ

𝐿̄
𝑍
), (𝑟 × 𝑧̄𝑈̄4 , 𝑟 × 𝑧̄

𝑈̄
3 , 𝑟 × 𝑧̄

𝑈̄
2 , 𝑟 × 𝑧̄

𝑈̄
1 , ℎ

𝑈̄
𝑍
)] if 𝑟 < 0

6. Division by a number (r≠0):

𝑍

𝑟
= [(

𝑧̄𝐿̄1
𝑟
, 
𝑧̄𝐿̄2
𝑟
, 
𝑧̄𝐿̄3
𝑟
, 
𝑧̄𝐿̄4
𝑟
, ℎ𝐿̄
𝑍
), (
𝑧̄𝑈̄1
𝑟
, 
𝑧̄𝑈̄2
𝑟
, 
𝑧̄𝑈̄3
𝑟
, 
𝑧̄𝑈̄4
𝑟
, ℎ𝑈̄
𝑍
)] if 𝑟 > 0

[(
𝑧̄𝐿̄4
𝑟
, 
𝑧̄𝐿̄3
𝑟
, 
𝑧̄𝐿̄2
𝑟
, 
𝑧̄𝐿̄1
𝑟
, ℎ𝐿̄
𝑍
), (
𝑧̄𝑈̄4
𝑟
, 
𝑧̄𝑈̄3
𝑟
, 
𝑧̄𝑈̄2
𝑟
, 
𝑧̄𝑈̄1
𝑟
, ℎ𝑈̄
𝑍
)] if 𝑟 < 0

Definition 2.4. [27] Let 𝑍 = (𝑧ij)n×n be the real valued matrix if 𝑧ij ∈ [0, 1], and

𝑧ij + 𝑧ji = 1, 𝑧ii = 0.5,∀𝑖, 𝑗 ∈𝑁

then Z is FPR, where 𝑧ij denotes the strength of preference for alternative 𝑧i over alternative 𝑧j.

We propose the idea of IT2TrFPRs in the following section, which is inspired by FPRs, to accurately express basic uncertain 
decision making information.

Definition 2.5. [30] let a finite collection X of the alternatives where 𝑋 =
{
𝑥1, 𝑥2, ..., 𝑥n

}
, an IT2TrFPR Ẑ on X is characterized

by one matrix 𝑍̂ = (𝑍̂𝑖𝑗 )𝑛×𝑛 ⊂ 𝑋 ×𝑋, where 𝑍̂𝑖𝑗 = [(𝑧𝐿̄
𝑖𝑗(1), 𝑧

𝐿̄
𝑖𝑗(2), 𝑧

𝐿̄
𝑖𝑗(3), 𝑧

𝐿̄
𝑖𝑗(4); ℎ

𝐿̄
𝑖𝑗
), (𝑧𝑈̄

𝑖𝑗(1), 𝑧
𝑈̄
𝑖𝑗(2), 𝑧

𝑈̄
𝑖𝑗(3), 𝑧

𝑈̄
𝑖𝑗(4); ℎ

𝑈̄
𝑖𝑗
)] is an interval type two 

trapezoidal fuzzy numbers (IT2TrFNs) which represent the strength of preference of alternative 𝑥𝑖 over 𝑥𝑗 . The following conditions 
must be satisfied:

𝑧𝐿̄
𝑖𝑖(𝑡) = 𝑧

𝑈̄
𝑖𝑖(𝑡) = ℎ

𝑈̄
𝑖𝑖
= ℎ𝑈̄

𝑖𝑖
= 0.5

𝑧𝐿̄
𝑖𝑗(𝑡) + 𝑧

𝐿̄
𝑗𝑖(5−𝑡) = 1, 𝑧𝑈̄

𝑖𝑗(𝑡) + 𝑧
𝑈̄
𝑗𝑖(5−𝑡) = 1, ℎ𝐿̄

𝑖𝑗
+ ℎ𝑈̄

𝑗𝑖
= 1, (1)

where 0 ≤ 𝑧𝐿̄
𝑖𝑗(1) ≤ 𝑧

𝐿̄
𝑖𝑗(2) ≤ 𝑧

𝐿̄
𝑖𝑗(3) ≤ 𝑧

𝐿̄
𝑖𝑗(4) ≤ 1, 0 ≤ 𝑧𝑈̄

𝑖𝑗(1) ≤ 𝑧
𝑈̄
𝑖𝑗(2) ≤ 𝑧

𝑈̄
𝑖𝑗(3) ≤ 𝑧

𝑈̄
𝑖𝑗(4) ≤ 1, 𝑧𝑈̄

𝑖𝑗(1) ≤ 𝑧
𝐿̄
𝑖𝑗(1), 𝑎

𝐿̄
𝑖𝑗(4) ≤ 𝑧

𝑈̄
𝑖𝑗(4), 0 ≤ ℎ

𝐿̄
𝑖𝑗
≤ ℎ𝑈̄

𝑖𝑗
≤ 1.

3. A signed based distance approach

The scheme proposed here involves the signed distance of each alternative from the ideal solution which is considered to be 
ordinary value of 𝑥 = 1 as the attribute values considered here all lie in the unit interval [0, 1]. Signed distance is used to calculate the 
preference order of the values for aggregation based on OWA operator and also the final ranking of alternatives is also done based 
on their signed distances. The motivating idea to determine the SBD of an IT2TrFN from at x = 1 on the y-axis, which is proposed 
by Chen [10], is as follows;

Proposition 1. Suppose Z be an IT2TrFN defined on X and 𝑍 = [𝑍𝐿̄, 𝑍𝑈̄ ] = [(𝑧𝐿̄1 , 𝑧
𝐿̄
2 , 𝑧

𝐿̄
3 , 𝑧

𝐿̄
4 ; ℎ

𝑍

𝐿̄
), (𝑧𝑈̄1 , 𝑧

𝑈̄
2 , 𝑧

𝑈̄
3 , 𝑧

𝑈̄
4 ; ℎ

𝑍

𝑈̄
)]. The SBD of 𝑍𝐿̄

and 𝑍𝐿̄ from 11 is given below;

𝑑(𝑍𝐿̄,11) =
1
4 ((𝑧

𝐿̄
1 + 𝑧𝐿̄2 + 𝑧𝐿̄3 + 𝑧𝐿̄4 − 4)

𝑑(𝑍𝑈̄ ,11) =
1
4 ((𝑧

𝑈̄
1 + 𝑧𝑈̄2 + 𝑧𝑈̄3 + 𝑧𝑈̄4 − 4).

Property 1. Suppose Z be an IT2TrFN defined on X and 𝑍 = [𝑍𝐿̄, 𝑍𝑈̄ ] = [(𝑧𝐿̄1 , 𝑧
𝐿̄
2 , 𝑧

𝐿̄
3 , 𝑧

𝐿̄
4 ; ℎ

𝑍

𝐿̄
), (𝑧𝑈̄1 , 𝑧

𝑈̄
2 , 𝑧

𝑈̄
3 , 𝑧

𝑈̄
4 ; ℎ

𝑍

𝑈̄
)]. If both 𝑍𝐿̄ and 

𝑍𝑈̄ are interval type 2 ordinary numbers then numerical value of the SBD in Proposition 1 is similar to hamming distance in the middle of 
comparable ordinary number (𝑧𝐿̄ and 𝑧𝑈̄ ) and 11.

Property 2. Suppose Z be an IT2TrFN defined on X and 𝑍 = [𝑍𝐿̄, 𝑍𝑈̄ ]. 𝑍𝐿̄ is placed at 11 iff 𝑑(𝑍𝐿̄, 11) = 0. 𝑍𝐿̄ and 𝑍𝑈̄ both are placed 
at 11 iff 𝑑(𝑍𝑈̄ , 11) = 0.

Proposition 2. Suppose Z be an IT2TrFN defined on X and 𝑍 = [𝑍𝐿̄, 𝑍𝑈̄ ] = [(𝑧𝐿̄1 , 𝑧
𝐿̄
2 , 𝑧

𝐿̄
3 , 𝑧

𝐿̄
4 ; ℎ

𝑍

𝐿̄
), (𝑧𝑈̄1 , 𝑧

𝑈̄
2 , 𝑧

𝑈̄
3 , 𝑧

𝑈̄
4 ; ℎ

𝑍

𝑈̄
)], where 0 < ℎ𝑍

𝐿̄
≤

ℎ𝑍
𝑈̄
≤ 1. The SBD from 11 is given below;

𝑑(𝑍, 11) =
1
8

[
𝑧𝐿̄1 + 𝑧𝐿̄2 + 𝑧𝐿̄3 + 𝑧𝐿̄4 + 4𝑧𝑈̄1 + 2𝑧𝑈̄2 + 2𝑧𝑈̄3 + 4𝑧𝑈̄4 + 3(𝑧𝑈̄2 + 𝑧𝑈̄3 − 𝑧𝑈̄1 − 𝑧𝑈̄4 )

ℎ𝐿̄
𝑍

ℎ𝑈̄
𝑍

− 16
]
, and when 0 < ℎ𝑍

𝐿̄
= ℎ𝑍

𝑈̄
≤ 1, then

1
[
𝐿̄ 𝐿̄ 𝐿̄ 𝐿̄ 𝑈̄ 𝑈̄ 𝑈̄ 𝑈̄

]

3

𝑑(𝑍, 11) = 8 𝑧1 + 𝑧2 + 𝑧3 + 𝑧4 + 𝑧1 + 5𝑧2 + 5𝑧3 + 𝑧4 − 16 .
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Property 3. Suppose Z be an IT2TrFN defined on X and 𝑍 = [(𝑧𝐿̄1 , 𝑧
𝐿̄
2 , 𝑧

𝐿̄
3 , 𝑧

𝐿̄
4 ; ℎ

𝑍

𝐿̄
), (𝑧𝑈̄1 , 𝑧

𝑈̄
2 , 𝑧

𝑈̄
3 , 𝑧

𝑈̄
4 ; ℎ

𝑍

𝑈̄
)]. Z is placed at 11 iff 𝑑(𝑍, 11) = 0, 

where 𝑧𝐿̄1 = 𝑧𝐿̄2 = 𝑧𝐿̄3 = 𝑧𝐿̄4 = 𝑧𝑈̄1 = 𝑧𝑈̄2 = 𝑧𝑈̄3 = 𝑧𝑈̄4 = 1.

Property 4. Suppose M, N and O are three IT2TrFNs defined on X, where 𝑀 = [(𝑚𝐿̄1 , 𝑚
𝐿̄
2 , 𝑚

𝐿̄
3 , 𝑚

𝐿̄
4 ; ℎ

𝑀

𝐿̄
), (𝑚𝑈̄1 , 𝑚

𝑈̄
2 , 𝑚

𝑈̄
3 , 𝑚

𝑈̄
4 ; ℎ

𝑀

𝑈̄
)], 𝑁 =

[(𝑛𝐿̄1 , 𝑛
𝐿̄
2 , 𝑛

𝐿̄
3 , 𝑛

𝐿̄
4 ; ℎ

𝑁

𝐿̄
), (𝑛𝑈̄1 , 𝑛

𝑈̄
2 , 𝑛

𝑈̄
3 , 𝑛

𝑈̄
4 ; ℎ

𝑁

𝑈̄
)] and 𝑂 = [(1, 1, 1, 1; 1)(1, 1, 1, 1; 1)]. The IT2TrFNs M is near to IT2TrFNs O then N iff 𝑑(𝑀, 11)

> 𝑑(𝑁, 11).

Definition 3.1. [10] Let 𝑍1 and 𝑍2 be two IT2TrFNs on X. By concept of “greater is superior”, ranking of 𝑍1 and 𝑍2 according to 
signed based distance 𝑑(𝑍1, 11) and 𝑑(𝑍2, 11) is defined as below:

(1) 𝑑(𝑍1, 11) > 𝑑(𝑍2, 11) iff 𝑍1 > 𝑍2.

(2) 𝑑(𝑍1, 11) < 𝑑(𝑍2, 11) iff 𝑍1 < 𝑍2.

(3) 𝑑(𝑍1, 11) = 𝑑(𝑍1, 11) iff 𝑍1 =𝑍2.

4. GDM technique based on IT2TrFNs and incomplete weights

Firstly, this part defines a decision setting for GDM issues based on IT2TrFNs. This part then introduces a unified method for 
constructing a collective decision matrix with aggregating evaluative opinions of various decision-makers. For combining IT2TrFN 
data, an average hybrid technique is also suggested as an accumulating technique addressing the comparative understanding of 
degrees and the significance of decision-makers.

Next, this segment describes a valuable technique using an incorporated programming model to access the weights. In the end, a 
ranking procedure is offered in this segment, centered on a signed based distance approach and established for GDM; in addition, a 
proper algorithm is settled to solve a GDM problem within the perspective of IT2TrFNs.

4.1. Collective decision environment based on IT2TrFNs

Let 𝑍 =
{
𝑧1, 𝑧2, ..., 𝑧t

}
be the alternative set which contain of t non-inferior decision alternatives. Every alternative is estimated 

on each alternative, and the evaluation is stated as an IT2TrFNs. To attain a ranking of every alternative found on the full evaluation 
of alternatives, GDM can also pick out the most favored alternative from Z.

Let 𝑆 =
{
𝑆1, 𝑆2, ..., 𝑆q

}
be the decision maker’s set engaged in the decision-taking process. As said above, the ratings of alternative 

assessment on different alternatives are indicated as IT2TrFNs. For ease, it is proposed that the DMs use the IT2TrFPRs (𝑍1 , 𝑍2, 𝑍3, 
𝑍4) to define the rating of alternatives over different alternatives.

By applying 𝑍1, 𝑍2, 𝑍3 and 𝑍4, every DM constructs positive IT2TrFNs to estimate alternatives for every alternative according 
to their judgments and experience. Assume an alternative value 𝑍𝑞

𝑖𝑗
= [𝑍𝑞𝐿̄

𝑖𝑗
, 𝑍𝑞𝑈̄

𝑖𝑗
] where q = 1, 2,..., Q is given by the mth DMs. 

The alternative value as IT2TrFNs estimates the alternatives 𝑍𝑖 w.r.t the alternative 𝑍𝑗 . 𝑍
𝑞𝐿̄

𝑖𝑗
represents the lower extreme and 𝑍𝑞𝑈̄

𝑖𝑗

represents the upper extreme of IT2TrFNs 𝑍𝑞
𝑖𝑗

. Observe that,

𝑍
𝑞𝐿̄

𝑖𝑗
= (𝑧𝑞𝐿̄1𝑖𝑗 , 𝑧

𝑞𝐿̄

2𝑖𝑗 , 𝑧
𝑞𝐿̄

3𝑖𝑗 , 𝑧
𝑞𝐿̄

4𝑖𝑗 ; ℎ
𝑞𝐿̄

𝑍𝑖𝑗
), 𝑍𝑞𝑈̄

𝑖𝑗
= (𝑧𝑞𝑈̄1𝑖𝑗 , 𝑧

𝑞𝑈̄

2𝑖𝑗 , 𝑧
𝑞𝑈̄

3𝑖𝑗 , 𝑧
𝑞𝑈̄

4𝑖𝑗 ;ℎ
𝑞𝑈̄

𝑍𝑖𝑗
) and 𝑍𝑞𝐿̄

𝑖𝑗
⊂ 𝑍

𝑞𝑈̄

𝑖𝑗

4.2. To collect decision matrix through hybrid average

Building an aggregation procedure to collect all the separate decision thinking to denote the general opinion is the main problem 
for evaluating the decision. To attain the evaluation of alternatives w.r.t. every alternative, by the motivation of XU [28], this research 
established a newly ‘Hybrid Average’ (HA) operation. This HA operation is used to accumulate IT2TrFNs data and make a collective 
decision matrix on signed-based distance ordered weighted average (OWA) operation.

4.2.1. Signed based distance OWA operation for aggregation technique

As different DMs have their own different opinions or individual expected ratings to every alternative for every alternative, it’s 
vital to attain a group consent work that accumulates those ratings to develop an ordinary opinion. This research determines a 
technique to collect the different suggestions using signed-based distance OWA operation. It’s a reordering procedure that reorders 
the whole opinions in descending order and weighting them. Corresponding to Proposition 2, the signed based distance of IT2TrFNs 
𝑍
𝑞

𝑖𝑗
= [(𝑧𝑞𝐿̄1𝑖𝑗 , 𝑧

𝑞𝐿̄

2𝑖𝑗 , 𝑧
𝑞𝐿̄

3𝑖𝑗 , 𝑧
𝑞𝐿̄

4𝑖𝑗 ; ℎ
𝑞𝐿̄

𝑍𝑖𝑗
), (𝑧𝑞𝑈̄1𝑖𝑗 , 𝑧

𝑞𝑈̄

2𝑖𝑗 , 𝑧
𝑞𝑈̄

3𝑖𝑗 , 𝑧
𝑞𝑈̄

4𝑖𝑗 ;ℎ
𝑞𝑈̄

𝑍𝑖𝑗
)] from 11 is calculated below:

𝑑(𝑍𝑞
𝑖𝑗
,11) =

1
8

[
𝑧
𝑞𝐿̄

1𝑖𝑗 + 𝑧
𝑞𝐿̄

2𝑖𝑗 + 𝑧
𝑞𝐿̄

3𝑖𝑗 + 𝑧
𝑞𝐿̄

4𝑖𝑗 + 4𝑧𝑞𝑈̄1𝑖𝑗 + 2𝑧𝑞𝑈̄2𝑖𝑗 + 2𝑧𝑞𝑈̄3𝑖𝑗 + 4𝑧𝑞𝑈̄4𝑖𝑗 + 3(𝑧𝑞𝑈̄2𝑖𝑗 + 𝑧
𝑞𝑈̄

3𝑖𝑗 − 𝑧
𝑞𝑈̄

1𝑖𝑗 − 𝑧
𝑞𝑈̄

4𝑖𝑗 )
ℎ
𝑞𝐿̄

𝑍𝑖𝑗

ℎ
𝑞𝑈̄

𝑍𝑖𝑗

− 16
]

(2)

Assume a more excellent value of 𝑑(𝑍𝑞
𝑖𝑗
, 11), because 𝑍𝑞

𝑖𝑗
and 11 are nearer in values. Hence the SBD signifies a valuable means 
4

of evaluating the IT2TrFN values.
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One significant problem in OWA operation is establishing its related weights. A process established by Xu [29] was implemented 
to arise a weighting vector, that process is known as the normal distribution process. This process can minimalize the effect of partial 
arguments on averaging outcomes by allocating the small weights and then form the outcomes more realistic. Assume that the mean 
is 𝜇𝑞 of the set of 1,2,3,..., Q and the standard deviation is 𝜈𝑞 of the set 1,2,3,..., Q., i.e.:

𝜇𝑄 = 1
𝑄

⋅
𝑄(1 +𝑄)

2
= 1 +𝑄

2
(3)

𝜈𝑄 =

√√√√√ 1
𝑄

𝑄∑
𝑞=1

(𝑞 − 𝜇𝑄)2 (4)

the OWA weight is represented as below according to normal distribution based on the equations (3) and (4):

𝜍𝑞 =
𝑒−

(𝑞−𝜇𝑄)2

2⋅𝜈𝑄2∑𝑄
𝑞=1𝑒

− (𝑞−𝜇𝑄)2

2⋅𝜈𝑄2

, 𝑞 = 1,2, ...,𝑄, (5)

where 
∑𝑄
𝑞=1 𝜍𝑞 = 1 and 𝜍𝑞 ∈ [0,1]

Definition 4.1. Assume the set of decision makers 𝑆 =
{
𝑆1, 𝑆2, ..., 𝑆q

}
. Consider an IT2TrFN 𝑍𝑞

𝑖𝑗
= [(𝑧𝑞𝐿̄1𝑖𝑗 , 𝑧

𝑞𝐿̄

2𝑖𝑗 , 𝑧
𝑞𝐿̄

3𝑖𝑗 , 𝑧
𝑞𝐿̄

4𝑖𝑗 ; ℎ
𝑞𝐿̄

𝑍𝑖𝑗
), (𝑧𝑞𝑈̄1𝑖𝑗 , 

𝑧
𝑞𝑈̄

2𝑖𝑗 , 𝑧
𝑞𝑈̄

3𝑖𝑗 ,𝑧
𝑞𝑈̄

4𝑖𝑗 ;ℎ
𝑞𝑈̄

𝑍𝑖𝑗
)] represent the ranking of alternative 𝑍𝑖 ∈ Z w.r.t alternatives 𝑍𝑗 offered by the DMs 𝑆𝑞 . The signed based distance 

OWA operator on the Q IT2TrFNs with the related weight vector is described by:

Ż𝑖𝑗 = HA(Z̃1
𝑖𝑗
, Z̃2
𝑖𝑗
, ..., Z̃𝑄

𝑖𝑗
) = (𝜍1 ⋅ Z̃

𝜚(1)
𝑖𝑗

)⊕ (𝜍2 ⋅ Z̃
𝜚(2)
𝑖𝑗

)⊕ ... ⊕ (𝜍𝑄 ⋅ Z̃𝜚(𝑄)
𝑖𝑗

)

=
[( 𝑄∑

𝑞=1
(𝜍𝑞 × z̃𝜚(𝑞)𝐿̄1𝑖𝑗 ),

𝑄∑
𝑞=1

(𝜍𝑞 × z̃𝜚(𝑞)𝐿̄2𝑖𝑗 ),
𝑄∑
𝑞=1

(𝜍𝑞 × z̃𝜚(𝑞)𝐿̄3𝑖𝑗 ),
𝑀∑
𝑞=1

(𝜍𝑞 × z̃𝜚(𝑞)𝐿̄4𝑖𝑗 );min
𝑞
(ℎ𝜚(𝑞)𝐿̄

Z̃𝑖𝑗

)
,

( 𝑄∑
𝑞=1

(𝜍𝑞 × z̃𝜚(𝑞)𝑈̄1𝑖𝑗 ),
𝑄∑
𝑞=1

(𝜍𝑞 × z̃𝜚(𝑞)𝑈̄2𝑖𝑗 ),
𝑄∑
𝑞=1

(𝜍𝑞 × z̃𝜚(𝑞)𝑈̄3𝑖𝑗 ),
𝑄∑
𝑞=1

(𝜍𝑞 × z̃𝜚(𝑞)𝑈̄4𝑖𝑗 );min
𝑞
(ℎ𝜚(𝑞)𝑈̄

Z̃𝑖𝑗
)
)]

where (𝜚(1), 𝜚(2), ..., 𝜚(𝑄)) describes the permutation of (1, 2, ...𝑄) such that d(𝑍
𝜚(𝑞−1)
𝑖𝑗

, 11) ≥ d(𝑍
𝜚(𝑞)
𝑖𝑗
, 11) ∀q.

Indicate ż𝐿̄1𝑖𝑗= 
∑𝑄
𝑞=1(𝜍𝑞 ×z̃𝜚(𝑞)𝐿̄1𝑖𝑗 ), ż𝐿̄2𝑖𝑗= 

∑𝑄
𝑞=1(𝜍𝑞 ×z̃𝜚(𝑞)𝐿̄2𝑖𝑗 ), ż𝐿̄3𝑖𝑗= 

∑𝑄
𝑞=1(𝜍𝑞 ×z̃𝜚(𝑞)𝐿̄3𝑖𝑗 ), ż𝐿̄4𝑖𝑗= 

∑𝑄
𝑞=1(𝜍𝑞 ×z̃𝜚(𝑞)𝐿̄4𝑖𝑗 ), ż𝑈̄1𝑖𝑗= 

∑𝑄
𝑞=1(𝜍𝑞 ×z̃𝜚(𝑞)𝑈̄1𝑖𝑗 ), 

ż𝑈̄2𝑖𝑗= 
∑𝑄
𝑞=1(𝜍𝑞 × z̃𝜚(𝑞)𝑈̄2𝑖𝑗 ), ż𝑈̄3𝑖𝑗= 

∑𝑄
𝑞=1(𝜍𝑞 × z̃𝜚(𝑞)𝑈̄3𝑖𝑗 ), ż𝑈̄4𝑖𝑗= 

∑𝑄
𝑞=1(𝜍𝑚 × z̃𝜚(𝑞)𝑈̄4𝑖𝑗 ), ℎ𝐿̄

Ż𝑖𝑗
= ℎ𝜚(𝑞)𝐿̄

Z̃𝑖𝑗
, ℎ𝑈̄

Ż𝑖𝑗
= ℎ𝜚(𝑞)𝑈̄

Z̃𝑖𝑗
.

The OWA estimation based on signed distance of alternative 𝑍𝑖 over alternative 𝑍𝑗 is as follows:

Ż𝑖𝑗 = [Ż𝐿̄
𝑖𝑗
, Ż𝑈̄
𝑖𝑗
] = [(ż𝐿̄1𝑖𝑗 , ż

𝐿̄
2𝑖𝑗 , ż

𝐿̄
3𝑖𝑗 , ż

𝐿̄
4𝑖𝑗 ; ℎ

𝐿̄

Ż𝑖𝑗
), (ż𝑈̄1𝑖𝑗 , ż

𝑈̄
2𝑖𝑗 , ż

𝑈̄
3𝑖𝑗 , ż

𝑈̄
4𝑖𝑗 ; ℎ

𝑈̄

Ż𝑖𝑗
)]

where

0 ≤ ż𝐿̄1𝑖𝑗 ≤ ż𝐿̄2𝑖𝑗 ≤ ż𝐿̄3𝑖𝑗 ≤ ż𝐿̄4𝑖𝑗 ≤ 1,

0 ≤ ż𝑈̄1𝑖𝑗 ≤ ż𝑈̄2𝑖𝑗 ≤ ż𝑈̄3𝑖𝑗 ≤ ż𝑈̄4𝑖𝑗 ≤ 1,

0 ≤ ℎ𝑈̄
Ż𝑖𝑗

≤ ℎ𝑈̄
Ż𝑖𝑗

≤ 1,

ż𝑈̄1𝑖𝑗 ≤ ż𝐿̄1𝑖𝑗 , ż
𝐿̄
4𝑖𝑗 ≤ ż𝑈̄4𝑖𝑗 , and Ż𝐿̄

𝑖𝑗
⊂ Ż𝑈̄

𝑖𝑗
.

The collected decision matrix Ḟ is presented as follows:

Ḟ =

⎡⎢⎢⎢⎢⎣

[Ż𝑈̄11, Ż
𝐿̄
11] [Ż𝑈̄12, Ż

𝐿̄
12] ⋯ [Ż𝑈̄1𝑛, Ż

𝐿̄
1𝑛]

[Ż𝑈̄21, Ż
𝐿̄
21] [Ż𝑈̄22, Ż

𝐿̄
22] ⋯ [Ż𝑈̄2𝑛, Ż

𝐿̄
2𝑛]

⋮ ⋮ ⋱ ⋮
[Ż𝑈̄
𝑚1, Ż

𝐿̄
𝑚1] [Ż𝑈̄

𝑚2, Ż
𝐿̄
𝑚2] ⋯ [Ż𝑈̄

𝑚𝑛
, Ż𝐿̄
𝑚𝑛
]

⎤⎥⎥⎥⎥⎦
(6)

4.3. Collective decision matrix normalization

We can normalize the collective information about the values of alternatives. The suggested normalization procedure is given 
5

below:
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Let Ż∗
𝑗
=max𝑖 Ż𝑈̄1𝑖𝑗 and Ż−

𝑗
=min𝑖 Ż𝐿̄4𝑖𝑗 , the converted conclusion of Ż𝑖𝑗 is attained as:

Z̈𝑖𝑗 = [Z̈𝐿̄ij , Z̈
𝑈̄
𝑖𝑗
] = [(z̈𝐿̄1ij, z̈

𝐿̄
2𝑖𝑗 , z̈

𝐿̄
3𝑖𝑗 , z̈

𝐿̄
4ij;ℎ

𝐿̄

Z̈𝑖𝑗
), (z̈𝑈̄1𝑖𝑗 , z̈

𝑈̄
2𝑖𝑗 , z̈

𝑈̄
3ij, z̈

𝑈̄
4𝑖𝑗 ;ℎ

𝑈̄

Z̈𝑖𝑗
)]

=

⎧⎪⎪⎨⎪⎪⎩

[(
Ż𝐿̄1𝑖𝑗
Ż+
𝑗

,
Ż𝐿̄2𝑖𝑗
Ż+
𝑗

,
Ż𝐿̄3𝑖𝑗
Ż+
𝑗

,
Ż𝐿̄4𝑖𝑗
Ż+
𝑗

;ℎ𝐿̄
Ż𝑖𝑗

)
,

(
Ż𝑈̄1𝑖𝑗
Ż+
𝑗

,
Ż𝑈̄2𝑖𝑗
Ż+
𝑗

,
Ż𝑈̄3𝑖𝑗
Ż+
𝑗

,
Ż𝑈̄4𝑖𝑗
Ż+
𝑗

;ℎ𝑈̄
Ż𝑖𝑗

)]
if Z is admissible[(

Ż−
𝑗

Ż𝐿̄4𝑖𝑗
,
Ż−
𝑗

Ż𝐿̄3𝑖𝑗
,
Ż−
𝑗

Ż𝐿̄2𝑖𝑗
,
Ż−
𝑗

Ż𝐿̄1𝑖𝑗
;ℎ𝐿̄

Ż𝑖𝑗

)
,

(
Ż−
𝑗

Ż𝑈̄4𝑖𝑗
,
Ż−
𝑗

Ż𝑈̄3𝑖𝑗
,
Ż−
𝑗

Ż𝑈̄2𝑖𝑗
,
Ż−
𝑗

Ż𝑈̄1𝑖𝑗
;ℎ𝑈̄

Ż𝑖𝑗

)]
if Z is inadmissible

(7)

collective decision matrix F̈ after normalization is presented as below:

F̈ =

⎡⎢⎢⎢⎢⎣

[Z̈𝐿̄11, Z̈
𝑈̄
11] [Z̈𝐿̄12, Z̈

𝑈̄
12] ⋯ [Z̈𝐿̄1𝑛, Z̈

𝑈̄
1𝑛]

[Z̈𝐿̄21, Z̈
𝑈̄
21] [Z̈𝐿̄22, Z̈

𝑈̄
22] ⋯ [Z̈𝐿̄2𝑛, Z̈

𝑈̄
2𝑛]

⋮ ⋮ ⋱ ⋮
[Z̈𝐿̄
𝑚1, Z̈

𝑈̄
𝑚1] [Z̈𝐿̄

𝑚2, Z̈
𝑈̄
𝑚2] ⋯ [Z̈𝐿̄

𝑚𝑛
, Z̈𝑈̄
𝑚𝑛
]

⎤⎥⎥⎥⎥⎦
(8)

4.4. An optimization model

For finding the weights of normalized matrix we will use a least deviation model [19] in this section. The suggested model is 
presented as below:

min
𝑛∑
𝑖=1

𝑛∑
𝑗=1

4∑
𝑘=1

(𝑎𝑖𝑗𝑘 − 0.5 − 𝑙𝑜𝑔(81)𝜋𝑖𝑘 + 𝑙𝑜𝑔(81)𝜋𝑗(5−𝑘))2

[mdl1] 𝑠.𝑡

⎧⎪⎪⎨⎪⎪⎩

0 ≤
∑𝑛
𝑖=1 𝜋𝑖1 ≤ 1,∑𝑛

𝑖=1 𝜋𝑖4 ≥ 1,
0 ≤ 𝜋𝑖1 ≤ 𝜋𝑖2 ≤ 𝜋𝑖3 ≤ 𝜋𝑖4 ≤ 1,
𝑖 = 1,2,3, ....𝑛

(9)

𝜋 = (𝜋1,𝜋2,....,𝜋𝑛) be the set of weights.

4.5. Signed distances based unified programming model

Assuming the comparative significance values of different alternatives, the weighted normalization value of 𝑍𝑖𝑗 is calculated as 
below:

𝑍̄𝑖𝑗 = 𝜋𝑖𝑗 .𝑍̈𝑖𝑗 = [(𝜋𝐿̄
𝑖𝑗
.z̈𝐿̄1𝑖𝑗 , 𝜋

𝐿̄
𝑖𝑗
.z̈𝐿̄2𝑖𝑗 , 𝜋

𝐿̄
𝑖𝑗
.z̈𝐿̄3𝑖𝑗 , 𝜋

𝐿̄
𝑖𝑗
.z̈𝐿̄4𝑖𝑗 ;ℎ

𝐿̄

Z̈𝑖𝑗
), (𝜋𝑈̄

𝑖𝑗
.z̈𝑈̄1𝑖𝑗 , 𝜋

𝑈̄
𝑖𝑗
.z̈𝑈̄2𝑖𝑗 , 𝜋

𝑈̄
𝑖𝑗
.z̈𝑈̄3𝑖𝑗 , 𝜋

𝑈̄
𝑖𝑗
.z̈𝑈̄4𝑖𝑗 ;ℎ

𝑈̄

Ä𝑖𝑗
)] (10)

we can also denote as:

𝑍̄𝑖𝑗 = [𝑍̄𝐿̄
𝑖𝑗
, 𝑍̄𝑈̄
𝑖𝑗
] = [(𝑧̄𝐿̄1𝑖𝑗 , 𝑧̄

𝐿̄
2𝑖𝑗 , 𝑧̄

𝐿̄
3𝑖𝑗 , 𝑧̄

𝐿̄
4𝑖𝑗 ;ℎ

𝐿̄

𝑍̄𝑖𝑗
), (𝑧̄𝑈̄1𝑖𝑗 , 𝑧̄

𝑈̄
2𝑖𝑗 , 𝑧̄

𝑈̄
3𝑖𝑗 , 𝑧̄

𝑈̄
4𝑖𝑗 ;ℎ

𝑈̄

𝑍̄𝑖𝑗
)]

further, the normalized weighted matrix can be defined as:

F̈𝜋 =

⎡⎢⎢⎢⎢⎣

[𝐴̄𝐿̄11, 𝐴̄
𝑈̄
11] [𝐴̄𝐿̄12, 𝐴̄

𝑈̄
12] ⋯ [𝐴̄𝐿̄1𝑛, 𝐴̄

𝑈̄
1𝑛]

[𝐴̄𝐿̄21, 𝐴̄
𝑈̄
21] [𝐴̄𝐿̄22, 𝐴̄

𝑈̄
22] ⋯ [𝐴̄𝐿̄2𝑛, 𝐴̄

𝑈̄
2𝑛]

⋮ ⋮ ⋱ ⋮
[𝐴̄𝐿̄
𝑚1, 𝐴̄

𝑈̄
𝑚1] [𝐴̄𝐿̄

𝑚2, 𝐴̄
𝑈̄
𝑚2] ⋯ [𝐴̄𝐿̄

𝑚𝑛
, 𝐴̄𝑈̄
𝑚𝑛
]

⎤⎥⎥⎥⎥⎦
(11)

the SBD of every alternative from A can be computed by Proposition 2 as following;

𝑑∗𝑖 =
𝑛∑
𝑗=1
𝑑∗𝑖(𝑍̄𝑖𝑗 ,11)

=
𝑛∑
𝑗=1

1
8

[
𝑧̄𝐿̄1𝑖𝑗 + 𝑧̄

𝐿̄
2𝑖𝑗 + 𝑧̄

𝐿̄
3𝑖𝑗 + 𝑧̄

𝐿̄
4𝑖𝑗 + 4𝑧̄𝑈̄1𝑖𝑗 + 2𝑧̄𝑈̄2𝑖𝑗 + 2𝑧̄𝑈̄3𝑖𝑗 + 4𝑧̄𝑈̄4𝑖𝑗 + 3(𝑧̄𝑈̄2𝑖𝑗 + 𝑧̄

𝑈̄
3𝑖𝑗 − 𝑧̄

𝑈̄
1𝑖𝑗 − 𝑧̄

𝑈̄
4𝑖𝑗 )
ℎ𝐿̄
𝑍̄𝑖𝑗

ℎ𝑈̄
𝑍̄𝑖𝑗

− 16
]

here i = 1,2,...,q and normalized signed based distance is calculated as:

𝑑 = 1
𝑛∑
𝑑 (𝑍̄ ,1 )
6

∗𝑖 2𝑛
𝑗=1

∗𝑖 𝑖𝑗 1
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= 1
16𝑛

𝑛∑
𝑗=1

[
𝑧̄𝐿̄1𝑖𝑗 + 𝑧̄

𝐿̄
2𝑖𝑗 + 𝑧̄

𝐿̄
3𝑖𝑗 + 𝑧̄

𝐿̄
4𝑖𝑗 + 4𝑧̄𝑈̄1𝑖𝑗 + 2𝑧̄𝑈̄2𝑖𝑗 + 2𝑧̄𝑈̄3𝑖𝑗 + 4𝑧̄𝑈̄4𝑖𝑗 + 3(𝑧̄𝑈̄2𝑖𝑗 + 𝑧̄

𝑈̄
3𝑖𝑗 − 𝑧̄

𝑈̄
1𝑖𝑗 − 𝑧̄

𝑈̄
4𝑖𝑗 )
ℎ𝐿̄
𝑍̄𝑖𝑗

ℎ𝑈̄
𝑍̄𝑖𝑗

− 16
]

(12)

here i=1,2,...,q.

Signed-distance 𝑑∗𝑖 denotes the proximity of the alternative 𝑍𝑖 to the ideal solution for i=1,2,...,q (by Property 4). Using (2), 
alternatives may be ranked via their equivalent signed-based distance from the ideal solution. It shows that the alternative’s preference 
order is ranked with the aid of ascending order of 𝑑∗𝑖, and also, the best choice is the minimum value of 𝑑∗𝑖 .

5. Algorithm

The proposed group decision making approach based on IT2TrFPRs is an extension of simple fuzzy preference relations based 
approaches. Therefore it has a better representational power and has the ability to cope with the situations where it is difficult to 
identify the preference grades precisely. Also the hybrid averaging operator used in the proposed scheme considers not only the 
individual weight-age of the decision makers but also the ordered positions based on closeness to the ideal solution, which makes 
this approach more authentic than the existing techniques for combining the individual opinions into a collective opinion. Moreover, 
the technique has the capability of dealing with situations where there is no information on the priority weights. It is amongst the 
only few of the existing techniques where the aggregated opinion results in the IT2TrFPRs since it is often the case the aggregated 
opinion isn’t is the fuzzy preference relation and therefore one has to use defuzzified aggregated opinion which is obviously not 
authentic because of its restrictions. Moreover, the proposed scheme involves the signed distance based ranking approach which is 
more effective than complex existing approaches of TOPSIS, VIKOR, Grey relation projection method all of which require an extensive 
amount of computational activity for ranking the alternatives. Also the technique of hybrid averaging employed here values not only 
the individual preference of the decision maker but also the ordered position based on closeness to the ideal solution, which makes 
the results more authentic, thereby adding to the superiority of this aggregation approach on the existing aggregation techniques.

Following is a precise set of steps for the proposed technique.

Step 1: Ask the DMs to give their preference information in the form IT2TrFPRs (using equation (1)).

Step 2: Calculate the signed-based distance of the IT2TrFPRs matrix using equation (2) and reorder the signed distances in de-

scending order.

2.1: Find weight vector 𝜍 = (𝜍1,𝜍2,...,𝜍𝑚) by using OWA operation by standard distribution technique applying equation (5).

2.2: Construct a collective decision matrix 𝐹̇ by applying the HA approach. (using equation (6)).

Step 3: Normalize the constructed matrix of step 2.2 by equation (7). After that, construct a new matrix 𝐹 as discussed in equation 
(8).

Step 4: Find the weights of the normalized matrix by using model provided in equation (9).

Step 5: Calculate the weighted normalization criterion value from equation (10) and construct F𝜋 using equation (11).

Step 6: Establish normalized signed based distance of 𝑑∗𝑖 of every alternative from the ideal solution as in equation (12).

Step 7: Rank the order of each alternative by way of increasing 𝑑∗𝑖.

6. Numerical example

Consider a decision-making situation where it is needed to install a radar to monitor the air security. There are four locations 
𝑍 = {𝑍1, 𝑍2, 𝑍3, 𝑍4} under consideration out of three are the hilltops {Z1, Z3, Z4} considered as an acceptable alternative, and one 
{Z2} is within the populated region which will be considered as an inadmissible alternative. Moreover, there are three decision-makers 
S𝑚(𝑚 = 1, 2, 3) who will consider the preferences of locations in terms of interval type-2 trapezoidal fuzzy preference relations.

Step 1: Matrices based on IT2TrFPRs are constructed by the DMs.

𝑍(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

[(0.5,0.5,0.5,0.5; 0.5), (0.5,0.5,0.5,0.5; 0.5)]
[(0.4,0.5,0.7,0.8; 0.4), (0.3,0.4,0.6,0.9; 0.7)]
[(0.2,0.3,0.4,0.6; 0.3), (0.1,0.4,0.5,0.7; 0.4)]
[(0.3,0.4,0.6,0.7; 0.6), (0.2,0.3,0.5,0.8; 0.8)]

[(0.2,0.3,0.5,0.6; 0.3), (0.1,0.4,0.6,0.7; 0.6)]
(0.5,0.5,0.5,0.5; 0.5), (0.5,0.5,0.5,0.5; 0.5)
[(0.4,0.6,0.7,0.8; 0.7), (0.3,0.5,0.6,0.9; 0.8)]
[(0.5,0.6,0.7,0.8; 0.4), (0.4,0.5,0.8,0.9; 0.7)]

[(0.4,0.6,0.7,0.8; 0.6), (0.3,0.5,0.6,0.9; 0.7)]
[(0.2,0.3,0.4,0.6; 0.2), (0.1,0.4,0.5,0.7; 0.3)]
[(0.5,0.5,0.5,0.5; 0.5), (0.5,0.5,0.5,0.5; 0.5)]
[(0.3,0.5,0.6,0.8; 0.2), (0.2,0.4,0.7,0.9; 0.3)]

[(0.3,0.4,0.6,0.7; 0.2), (0.2,0.5,0.7,0.8; 0.4)]
[(0.2,0.3,0.4,0.5; 0.3), (0.1,0.2,0.5,0.6; 0.6)]
[(0.2,0.4,0.5,0.7; 0.7), (0.1,0.3,0.6,0.8; 0.8)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

7

⎢⎣ [(0.5,0.5,0.5,0.5; 0.5), (0.5,0.5,0.5,0.5; 0.5)] ⎥⎦
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𝑍(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[(0.5,0.5,0.5,0.5; 0.5), (0.5,0.5,0.5,0.5; 0.5)]
[(0.3,0.4,0.5,0.6; 0.6), (0.2,0.3,0.4,0.7; 0.8)]
[(0.2,0.5,0.6,0.7; 0.2), (0.2,0.4,0.6,0.8; 0.3)]
[(0.1,0.3,0.6,0.8; 0.3), (0.1,0.3,0.5,0.9; 0.6)]

[(0.4,0.5,0.6,0.7; 0.2), (0.3,0.6,0.7,0.8; 0.4)]
[(0.5,0.5,0.5,0.5; 0.5), (0.5,0.5,0.5,0.5; 0.5)]
[(0.2,0.3,0.6,0.8; 0.6), (0.1,0.3,0.5,0.9; 0.7)]
[(0.3,0.4,0.6,0.7; 0.5), (0.1,0.3,0.4,0.8; 0.8)]

[(0.3,0.4,0.5,0.8; 0.7), (0.2,0.4,0.6,0.8; 0.8)]
[(0.2,0.4,0.7,0.8; 0.3), (0.1,0.5,0.7,0.9; 0.4)]
[(0.5,0.5,0.5,0.5; 0.5), (0.5,0.5,0.5,0.5; 0.5)]
[(0.3,0.5,0.6,0.7; 0.3), (0.2,0.4,0.5,0.8; 0.4)]

[(0.2,0.4,0.7,0.9; 0.4), (0.1,0.5,0.7,0.9; 0.7)]
[(0.3,0.4,0.6,0.7; 0.2), (0.2,0.6,0.7,0.9; 0.5)]
[(0.3,0.4,0.5,0.7; 0.6), (0.2,0.5,0.6,0.8; 0.7)]
[(0.5,0.5,0.5,0.5; 0.5), (0.5,0.5,0.5,0.5; 0.5)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑍(3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[(0.5,0.5,0.5,0.5; 0.5)(0.5,0.5,0.5,0.5; 0.5)]
[(0.5,0.6,0.7,0.8; 0.1)(0.2,0.4,0.5,0.9; 0.3)
[(0.2,0.3,0.5,0.7; 0.8)(0.1,0.4,0.7,0.9; 0.9)]
[(0.3,0.4,0.6,0.7; 0.4)(0.2,0.5,0.6,0.8; 0.7)]

[(0.2,0.3,0.4,0.5; 0.7)(0.1,0.5,0.6,0.8; 0.9)]
[(0.5,0.5,0.5,0.5; 0.5)(0.5,0.5,0.5,0.5; 0.5)]
[(0.4,0.5,0.6,0.8; 0.6)(0.2,0.5,0.6,0.9; 0.8)]
[(0.2,0.4,0.6,0.7; 0.2)(0.1,0.2,0.3,0.8; 0.4)]

[(0.3,0.5,0.7,0.8; 0.1)(0.1,0.3,0.6,0.9; 0.2)]
[(0.2,0.4,0.5,0.6; 0.2)(0.1,0.4,0.5,0.8; 0.4)]
[(0.5,0.5,0.5,0.5; 0.5)(0.5,0.5,0.5,0.5; 0.5)]
[(0.3,0.5,0.7,0.9; 0.1)(0.1,0.2,0.4,0.9; 0.2)]

[(0.3,0.4,0.6,0.7; 0.3)(0.2,0.4,0.5,0.8; 0.6)]
[(0.3,0.4,0.6,0.8; 0.6)(0.2,0.7,0.8,0.9; 0.8)]
[(0.1,0.3,0.5,0.7; 0.8)(0.1,0.6,0.8,0.9; 0.9)]
[(0.5,0.5,0.5,0.5; 0.5)(0.5,0.5,0.5,0.5; 0.5)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Step 2: The signed distance of above matrices using equation (2) are calculated as:

𝑑(𝑍1
13, 11) =

1
8

[
𝑧1𝐿̄113 + 𝑧

1𝐿̄
213 + 𝑧

1𝐿̄
313 + 𝑧

1𝐿̄
413 + 4𝑧1𝑈̄113 + 2𝑧1𝑈̄213 + 2𝑧1𝑈̄313 + 4𝑧1𝑈̄413 + 3(𝑧1𝑈̄213 + 𝑧

1𝑈̄
313 − 𝑧

1𝑈̄
113 − 𝑧

1𝑈̄
413)

ℎ1𝐿̄
𝑍13
ℎ1𝑈̄
𝑍13

− 16
]

= 1
8

[
0.2 + 0.3 + 0.4 + 0.6 + 4 × 0.1 + 2 × 0.4 + 2 × 0.5 + 4 × 0.7 + 3(0.4 + 0.5 − 0.1 − 0.7) 0.30.4 − 16

]
= -1.159375

same as above, we use 𝑑(Z2
13, 11)) = −1, 𝑑(Z3

13, 11) = −0.9792 As 𝑑(Z3
13, 11) > 𝑑(Z

2
13, 11) > 𝑑(Z

1
13, 11) so 𝜚(1) = 3, 𝜚(2) = 2, 𝜚(3) = 1. 

Hence, Z𝜚(1)13 =Z3
13, Z𝜚(2)13 =Z2

13, Z𝜚(3)13 =Z1
13.

Step 2.1: The OWA weight vector is 𝜍 = (𝜍1,𝜍2,𝜍3)=(0.2429, 0.5142, 0.2429).
Step 2.2: By using equation (6), collective decision matrix 𝐹̇ is constructed as:

Ż13 = HA(Z̃1
13, Z̃

2
13, Z̃

3
13) = (𝜍1 ⋅ Z̃

𝜚(1)
13 ) ⊕ (𝜍2 ⋅ Z̃𝜚(2)13 ) ⊕ (𝜍3 ⋅ Z̃

𝜚(3)
13 ) =

[(∑𝑀
𝑚=1(𝜍𝑚 × z̃𝜚(𝑚)𝐿̄113 ), 

∑𝑀
𝑚=1(𝜍𝑚 × z̃𝜚(𝑚)𝐿̄213 ),

∑𝑀
𝑚=1(𝜍𝑚 × z̃𝜚(𝑚)𝐿̄313 ),

∑𝑀
𝑚=1(𝜍𝑚 × z̃𝜚(𝑚)𝐿̄413 );min𝑚(ℎ

𝜚(𝑚)𝐿̄
Z̃13

)
,

(∑𝑀
𝑚=1(𝜍𝑚 × z̃𝜚(𝑚)𝑈̄113 ), 

∑𝑀
𝑚=1(𝜍𝑚 × z̃𝜚(𝑚)𝑈̄213 ), 

∑𝑀
𝑚=1(𝜍𝑚 × z̃𝜚(𝑚)𝑈̄313 ), 

∑𝑀
𝑚=1(𝜍𝑚 × z̃𝜚(𝑚)𝑈̄413 );min𝑚(ℎ

𝜚(𝑚)𝑈̄
Z̃13

)
)]

= [(0.2429 ×0.2 +0.5142 ×0.2 +0.2429 ×0.2, 0.2429 ×0.3 +0.5142 ×0.5 +0.2429 ×0.3, 0.2429 ×0.5 +0.5142 ×0.6 +0.2429 ×0.4, 0.2429 ×
0.7 + 0.5142 × 0.7 + 0.2429 × 0.6; min(0.8, 0.2, 0.3))(0.2429 × 0.1 + 0.5142 × 0.2 + 0.2429 × 0.1, 0.2429 × 0.4 + 0.5142 × 0.4 + 0.2429 ×
0.4, 0.2429 × 0.7 + 0.5142 × 0.6 + 0.2429 × 0.5, 0.2429 × 0.9 + 0.5142 × 0.8 + 0.2429 × 0.7; min(0.9, 0.3, 0.4)]

= [(0.2, 0.40284, 0.52713, 0.67571; 0.2)(0.15142, 0.4, 0.6, 0.8; 0.3)]
Step 3: From Table 1, we know that Ż+

1 = 0.84858, Ż−
2 = 0.1, Ż+

3 = 0.9, Ż+
4 = 0.84858. By using Table 1 and (7) construct a normal-
8

ized matrix. Here Z̈11 and Z̈12 are computed as:
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Table 1

Aggregated rating of alternatives values in 𝐹̇ .

Ż𝐿̄
𝑖𝑗

Ż𝑈̄
𝑖𝑗

Ż𝐿̄1𝑖𝑗 Ż𝐿̄2𝑖𝑗 Ż𝐿̄3𝑖𝑗 Ż𝐿̄4𝑖𝑗 ℎ𝐿̄
Ż𝑖𝑗

Ż𝑈̄1𝑖𝑗 Ż𝑈̄2𝑖𝑗 Ż𝑈̄3𝑖𝑗 Ż𝑈̄4𝑖𝑗 ℎ𝑈̄
Ż𝑖𝑗

Ż11 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Ż12 0.42713 0.52713 0.65142 0.75142 0.1 0.22429 0.37571 0.5 0.85142 0.3

Ż13 0.2 0.40284 0.52713 0.67571 0.2 0.15142 0.4 0.6 0.8 0.3

Ż14 0.25142 0.37571 0.6 0.72429 0.3 0.17571 0.34858 0.52429 0.82429 0.6

Ż21 0.24858 0.34858 0.47287 0.57287 0.2 0.14858 0.5 0.62429 0.77571 0.4

Ż22 0.5 0.5 0.5 0.5 0.5 0.5 0. 0.5 0.5 0.5

Ż23 0.35142 0.47571 0.62429 0.8 0.6 0.2 0.45142 0.57571 0.9 0.7

Ż24 0.32429 0.44858 0.62429 0.72429 0.2 0.17287 0.32429 0.47287 0.82429 0.4

Ż31 0.32429 0.47287 0.59716 0.8 0.1 0.2 0.4 0.6 0.84858 0.2

Ż32 0.2 0.34858 0.49716 0.64858 0.2 0.1 0.42429 0.54858 0.77287 0.3

Ż33 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Ż34 0.3 0.5 0.62429 0.77287 0.1 0.17571 0.35142 0.52429 0.84858 0.2

Ż41 0.27571 0.4 0.62429 0.74858 0.2 0.17571 0.47571 0.65412 0.82429 0.4

Ż42 0.27571 0.37571 0.55142 0.67571 0.2 0.17571 0.52713 0.67571 0.82713 0.5

Ż43 0.22713 0.37571 0.5 0.7 0.6 0.15142 0.47571 0.64858 0.82429 0.7

Ż44 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Table 2

Normalized decision matrix 𝐹 .

Z̈𝐿̄
𝑖𝑗

Z̈𝑈̄
𝑖𝑗

Z̈𝐿̄1𝑖𝑗 Z̈𝐿̄2𝑖𝑗 Z̈𝐿̄3𝑖𝑗 Z̈𝐿̄4𝑖𝑗 ℎ𝐿̄
Z̈𝑖𝑗

Z̈𝑈̄1𝑖𝑗 Z̈𝑈̄2𝑖𝑗 Z̈𝑈̄3𝑖𝑗 Z̈𝑈̄4𝑖𝑗 ℎ𝑈̄
Z̈𝑖𝑗

Z̈11 0.5892 0.5892 0.5892 0.5892 0.5 0.5892 0.5892 0.5892 0.5892 0.5

Z̈12 0.1331 0.1535 0.1897 0.2341 0.1 0.1171 0.2 0.2662 0.4459 0.3

Z̈13 0.2222 0.4476 0.5857 0.7508 0.2 0.1682 0.4444 0.6667 0.8889 0.3

Z̈14 0.2962 0.44275 0.7071 0.8535 0.3 0.2071 0.4108 0.6178 0.9714 0.6

Z̈21 0.2929 0.4108 0.5572 0.6751 0.2 0.1751 0.5892 0.7357 0.9141 0.4

Z̈22 0.2 0.2 0.2 0.2 0.5 0.2 0.2 0.2 0.2 0.5

Z̈23 0.3905 0.5286 0.69365 0.8889 0.6 0.2222 0.5016 0.6397 1 0.7

Z̈24 0.38126 0.5286 0.7357 0.8535 0.2 0.2037 0.38216 0.5572 0.9714 0.4

Z̈31 0.38215 0.5572 0.7073 94275 0.1 0.2357 0.4714 0.7071 1 0.2

Z̈32 0.1542 0.2011 0.2869 0.5 0.2 0.1294 0.1823 0.2357 1 0.3

Z̈33 0.5556 0.5556 0.5556 0.5556 0.5 0.5556 0.5556 0.5556 0.5556 0.5

Z̈34 0.3535 0.5892 0.7357 0.9108 0.1 0.2071 0.4141 0.6178 1 0.2

Z̈41 0.3249 0.4714 0.7357 0.88215 0.2 0.2071 0.5606 0.7708 0.9714 0.4

Z̈42 0.14799 0.1813 0.2662 0.3627 0.2 0.1209 0.14799 0.1897 0.5691 0.5

Z̈43 0.2524 0.41745 0.5556 0.7778 0.6 0.1682 0.5286 0.7206 0.9159 0.7

Z̈44 0.5892 0.5892 0.5892 0.5892 0.5 0.5892 0.5892 0.5892 0.5892 0.5

Z̈11 = 
[(

Ż𝐿̄111
Ż+1
, 
Ż𝐿̄211
Ż+1
, 
Ż𝐿̄311
Ż+1
, 
Ż𝐿̄411
Ż+1

; ℎ𝐿̄
Ż11

)
, 
(

Ż𝑈̄111
Ż+1
, 
Ż𝑈̄211
Ż+1
, 
Ż𝑈̄311
Ż+1
, 
Ż𝑈̄411
Ż+1

; 0.5
)]

=
[(

0.5
0.84858 , 

0.5
0.84858 , 

0.5
0.84858 , 

0.5
0.84858 ; 0.5

)
, 
(

0.5
0.84858 , 

0.5
0.84858 , 

0.5
0.84858 , 

0.5
0.84858 ; 0.5

)]
= [(0.5892, 0.5892, 0.5892, 0.5892; 0.5)(0.5892, 0.5892, 0.5892, 0.5892; 0.5)]

Z̈12 = 
[(

Ż−2
Ż𝐿̄412
, 

Ż−2
Ż𝐿̄312
, 

Ż−2
Ż𝐿̄212
, 

Ż−2
Ż𝐿̄112

; ℎ𝐿̄
Ż𝑖𝑗

)
, 
(

Ż−2
Ż𝑈̄412
, 

Ż−2
Ż𝑈̄312
, 

Ż−2
Ż𝑈̄212
, 

Ż−2
Ż𝑈̄112

; ℎ𝑈̄
Ż𝑖𝑗

)]
=
[(

0.1
0.75142 , 

0.1
0.65142 , 

0.1
0.52713 , 

0.1
0.42713 ; 0.1

)
, 
(

0.1
0.85142 , 

0.1
0.5 , 

0.1
0.37571 , 

0.1
0.22429 ; 0.3

)]
= [(0.1331, 0.1535, 0.1897, 0.2341; 0.1)(0.1171, 0.2, 0.2662, 0.4459; 0.3)]
The normalized collective decision matrix denoted by 𝐹 is constructed in Table 2.

Step 4: Weights are constructed from mdl1 using LINGO.

𝜋
̄(𝐿)
𝑖𝑗

=
⎡⎢⎢⎢⎣
0.09778976 0.1370183 0.2949429 0.4942435
0.6263346 0.6263346 0.7045276 0.8268057
0.1908924 0.2734641 0.3802469 0.6831259
0.08498323 0.09278762 0.2815136 0.5385731

⎤⎥⎥⎥⎦
𝜋
̄(𝑈 )
𝑖𝑗

=
⎡⎢⎢
0.1953395 0.1953395 0.3190868 0.5898702
0.3924413 0.5856498 0.6155769 0.7569166
0.2276497 0.2354403 0.3505917 0.7414761

⎤⎥⎥

9

⎢⎣0.1845695 0.3166867 0.4288888 0.6201069
⎥⎦
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Table 3

Normalization weighted matrix F𝜋 by using programming model.

Z̄𝐿̄
𝑖𝑗

Z̄𝑈̄
𝑖𝑗

Z̄𝐿̄1𝑖𝑗 Z̄𝐿̄2𝑖𝑗 Z̄𝐿̄3𝑖𝑗 Z̄𝐿̄4𝑖𝑗 ℎ𝐿̄
Z̄𝑖𝑗

Z̄𝑈̄1𝑖𝑗 Z̄𝑈̄2𝑖𝑗 Z̄𝑈̄3𝑖𝑗 Z̄𝑈̄4𝑖𝑗 ℎ𝑈̄
Z̄𝑖𝑗

Z̄11 0.0576 0.0576 0.0576 0.0576 0.5 0.1151 0.1151 0.1151 0.1151 0.5

Z̄12 0.0182 0.0210 0.02599 0.0321 0.1 0.0229 0.0391 0.05199 0.0871 0.3

Z̄13 0.0655 0.1320 0.1727 0.2214 0.2 0.0537 0.1418 0.2127 0.2836 0.3

Z̄14 0.1464 0.2188 0.3495 0.4218 0.3 0.1222 0.2434 0.3644 0.57299 0.6

Z̄21 0.18345 0.2573 0.34899 0.4228 0.2 0.0687 0.2312 0.2887 0.3587 0.4

Z̄22 0.1253 0.1253 0.1253 0.1253 0.5 0.1171 0.1171 0.1171 0.1171 0.5

Z̄23 0.2751 0.3724 0.4887 0.62625 0.6 0.1368 0.3087 0.3938 0.61557 0.7

Z̄24 0.3152 0.4370 0.6083 0.7057 0.2 0.1542 0.2892 0.4217 0.7353 0.4

Z̄31 0.0729 0.1064 0.1350 0.17996 0.1 0.0536 0.1073 0.16097 0.2276 0.2

Z̄32 0.0422 0.05499 0.0784 0.1367 0.2 0.0305 0.0429 0.0555 0.2354 0.3

Z̄33 0.2113 0.2113 0.2113 0.2113 0.5 0.1948 0.1948 0.1948 0.1948 0.5

Z̄34 0.2415 0.4025 0.5026 0.6222 0.1 0.1535 0.3070 0.4581 0.7415 0.2

Z̄41 0.0276 0.0401 0.0625 0.07496 0.2 0.0382 0.1035 0.1423 0.1793 0.4

Z̄42 0.0137 0.0168 0.0247 0.0336 0.2 0.0383 0.0469 0.0601 0.1802 0.5

Z̄43 0.07105 0.1175 0.1564 0.21896 0.6 0.0721 0.2267 0.3090 0.3928 0.7

Z̄44 0.3173 0.3173 0.3173 0.3173 0.5 0.3654 0.3654 0.3654 0.3654 0.5

Table 4

Signed based distances correspond-

ing to every alternative.

Alternatives 𝑑∗𝑖(𝑍̄𝑖𝑗 ,11)

Z̄1 -0.8437791406

Z̄2 -0.7057604241

Z̄3 -0.7924367969

Z̄4 -0.8127628572

Step 5: The weighted normalized value of 𝑍𝑖𝑗 can be achieved with (9), hence the weighted normalized matrix F̈𝜋 is constructed 
by (10). Take ̄̈𝑍13 = [𝑍̄𝐿̄13, 𝑍̄

𝑈̄
13] as an example:

𝑍̄13 = 𝜋13.𝑍̈13
= [(𝜋𝐿̄13 × z̈𝐿̄113, 𝜋

𝐿̄
13 × z̈𝐿̄213, 𝜋

𝐿̄
13 × z̈𝐿̄313, 𝜋

𝐿̄
13 × z̈𝐿̄413; ℎ

𝐿̄

Ä13
), (𝜋𝑈̄13 × z̈𝑈̄113, 𝜋

𝑈̄
13 × z̈𝑈̄213, 𝜋

𝑈̄
13 × z̈𝑈̄313, 𝜋

𝑈̄
13 × z̈𝑈̄413; ℎ

𝑈̄

Z̈13
)]

= [(0.2949429 × 0.2222, 0.2949429 × 0.4476, 0.2949429 × 0.5857, 0.2949429 × 0.7508; 0.2), (0.3190868 × 0.1682, 0.3190868 ×
0.4444, 0.3190868 × 0.6667, 0.3190868 × 0.8889; 0.3)]

= [(0.0655, 0.1320, 0.1727, 0.2214; 0.2)(0.0537, 0.1418, 0.2127, 0.2836; 0.3)]
Step 6: In this step, normalized signed based distances are computed using Table 3 and (12), results are shown in Table 4.

Step 7: Hence, ranking of the alternatives is: Z2 ≻ Z3 ≻ Z4 ≻ Z1. Thus Z2 is the best choice.

6.1. Comparative analysis

A comparative study is carried out to observe the consequences of the proposed technique in conjunction with those from the 
other methods. In this comparative examination, we suppose the same information as used in the above problem and use the WA 
approach that is defined as follows;

Ż𝑖𝑗 = WA(Z̃1
𝑖𝑗
, Z̃2
𝑖𝑗
, ..., Z̃𝑄

𝑖𝑗
) = (𝜐1 ⋅ Z̃1

𝑖𝑗
)⊕ (𝜐2 ⋅ Z̃2

𝑖𝑗
)⊕ ... ⊕ (𝜐𝑄 ⋅ Z̃𝑄

𝑖𝑗
)

=
[( 𝑄∑

𝑞=1
(𝜐𝑞 × z̃𝑞𝐿̄1𝑖𝑗 ),

𝑄∑
𝑞=1

(𝜐𝑞 × z̃𝑞𝐿̄2𝑖𝑗 ),
𝑄∑
𝑞=1

(𝜐𝑞 × z̃𝑞𝐿̄3𝑖𝑗 ),
𝑀∑
𝑞=1

(𝜐𝑞 × z̃𝑞𝐿̄4𝑖𝑗 );min
𝑞
(ℎ𝑞𝐿̄

Z̃𝑖𝑗

)
,

( 𝑄∑
𝑞=1

(𝜐𝑞 × z̃𝑞𝑈̄1𝑖𝑗 ),
𝑄∑
𝑞=1

(𝜐𝑞 × z̃𝑞𝑈̄2𝑖𝑗 ),
𝑄∑
𝑞=1

(𝜐𝑞 × z̃𝑞𝑈̄3𝑖𝑗 ),
𝑄∑
𝑞=1

(𝜐𝑞 × z̃𝑞𝑈̄4𝑖𝑗 );min
𝑞
(ℎ𝑞𝑈̄

Z̃𝑖𝑗
)
)] (13)

where 𝜐= {𝜐1, 𝜐2, ..., 𝜐𝑄} be the weighted vector with 𝜐𝑄 ∈ [0,1] and 
∑𝑄
𝑞=1 𝜐𝑞 = 1, here consider 𝜐= {𝜐1, 𝜐2, 𝜐3} = {0.22, 0.65, 0.13}, 

then by solving equation (13), we get Table 5.

After that normalize the values of Table 5 by equation (7) and then get Table 6, and then find the weights of normalized matrix 
and then by using equation (9) we obtain a new Table 7, apply equation (12) and find the distances of alternatives as shown in 
Table 8 and rank them. Hence, the ranking of the 4 alternatives is Z2 ≻ Z3 ≻ Z4 ≻ Z1 with the best choice Z2.

The proposed group decision making approach based on IT2TrFPRs is an extension of simple fuzzy preference relations based 
10

approaches. Therefore it has a better representational power and has the ability to cope with the situations where it is difficult to 
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Table 5

Aggregated rating of alternatives values in 𝐹̇ .

Ż𝐿̄
𝑖𝑗

Ż𝑈̄
𝑖𝑗

Ż𝐿̄1𝑖𝑗 Ż𝐿̄2𝑖𝑗 Ż𝐿̄3𝑖𝑗 Ż𝐿̄4𝑖𝑗 ℎ𝐿̄
Ż𝑖𝑗

Ż𝑈̄1𝑖𝑗 Ż𝑈̄2𝑖𝑗 Ż𝑈̄3𝑖𝑗 Ż𝑈̄4𝑖𝑗 ℎ𝑈̄
Ż𝑖𝑗

Ż11 0.5 0.5 0.5 0.5 0.5 O.5 0.5 0.5 0.5 0.5

Ż12 0.384 0.448 0.57 0.67 0.1 0.222 0.335 0.457 0.77 0.3

Ż13 0.2 0.43 0.543 0.678 0.2 0.165 0.4 0.591 0.791 0.3

Ż14 0.17 0.335 0.6 0.765 0.3 0.135 0.326 0.513 0.865 0.6

Ż21 0.33 0.43 0.552 0.652 0.2 0.23 0.543 0.665 0.778 0.4

Ż22 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Ż23 0.27 0.392 0.622 0.8 0.6 0.157 0.37 0.535 0.9 0.7

Ż24 0.331 0.444 0.622 0.722 0.2 0.166 0.331 0.475 0.822 0.4

Ż31 0.322 0.457 0.57 0.8 0.1 0.209 0.409 0.6 0.835 0.2

Ż32 0.2 0.378 0.608 0.73 0.2 0.1 0.465 0.63 0.843 0.3

Ż33 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Ż34 0.3 0.5 0.613 0.748 0.1 0.187 0.374 0.531 0.835 0.2

Ż41 0.235 0.4 0.655 0.83 0.2 0.135 0.487 0.674 0.865 0.4

Ż42 0.278 0.378 0.556 0.669 0.2 0.178 0.525 0.669 0.834 0.5

Ż43 0.252 0.387 0.5 0.7 0.6 0.165 0.469 0.626 0.813 0.7

Ż44 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Table 6

Normalized decision matrix 𝐹 .

Z̈𝐿̄
𝑖𝑗

Z̈𝑈̄
𝑖𝑗

Z̈𝐿̄1𝑖𝑗 Z̈𝐿̄2𝑖𝑗 Z̈𝐿̄3𝑖𝑗 Z̈𝐿̄4𝑖𝑗 ℎ𝐿̄
Z̈𝑖𝑗

Z̈𝑈̄1𝑖𝑗 Z̈𝑈̄2𝑖𝑗 Z̈𝑈̄3𝑖𝑗 Z̈𝑈̄4𝑖𝑗 ℎ𝑈̄
Z̈𝑖𝑗

Z̈11 0.5780 0.5780 0.5780 0.5780 0.5 0.5780 0.5780 0.5780 0.5780 0.5

Z̈12 0.1492 0.1754 0.2232 0.2604 0.1 0.1299 0.2188 0.2985 0.4504 0.3

Z̈13 0.222 0.4778 0.6033 0.7533 0.2 0.1833 0.444 0.6567 0.8789 0.3

Z̈14 0.1965 0.3873 0.6936 0.8843 0.3 0.1561 0.3769 0.5931 1 0.6

Z̈21 0.3815 0.4971 0.6381 0.7537 0.2 0.2659 0.6277 0.7688 0.8994 0.4

Z̈22 0.2 0.2 0.2 0.2 0.5 0.2 0.2 0.2 0.2 0.5

Z̈23 0.3 0.435 0.6911 0.8889 0.6 0.1744 0.4111 0.5944 1 0.7

Z̈24 0.3826 0.5133 0.7191 0.8347 0.2 0.1919 0.3826 0.5491 0.9503 0.4

Z̈31 0.391 0.5283 0.6589 0.9248 0.1 0.2416 0.4728 0.6936 0.9653 0.2

Z̈32 0.1369 0.1645 0.2645 0.5 0.2 0.1186 0.1587 0.2150 1 0.3

Z̈33 0.555 0.555 0.555 0.555 0.5 0.555 0.555 0.555 0.555 0.5

Z̈34 0.3468 0.5780 0.7086 0.8647 0.1 0.2612 0.4324 0.6139 0.9653 0.2

Z̈41 0.2717 0.4624 0.7572 0.9595 0.2 0.1561 0.5630 0.7791 1 0.4

Z̈42 0.1495 0.1799 0.2645 0.3597 0.2 0.1199 0.1495 0.1905 0.5618 0.5

Z̈43 0.2913 0.4474 0.5780 0.8092 0.6 0.19075 0.5421 0.7237 0.9398 0.7

Z̈44 0.5780 0.5780 0.5780 0.5780 0.5 0.5780 0.5780 0.5780 0.5780 0.5

Table 7

Normalization weighted matrix F𝜋 by using programming model.

Z𝐿̄
𝑖𝑗

Z̄𝑈̄
𝑖𝑗

Z̄𝐿̄1𝑖𝑗 Z̄𝐿̄2𝑖𝑗 Z̄𝐿̄3𝑖𝑗 Z̄𝐿̄4𝑖𝑗 ℎ𝐿̄
Z̄𝑖𝑗

Z̄𝑈̄1𝑖𝑗 Z̄𝑈̄2𝑖𝑗 Z̄𝑈̄3𝑖𝑗 Z̄𝑈̄4𝑖𝑗 ℎ𝑈̄
Z̄𝑖𝑗

Z̄11 0.0473 0.0473 0.0473 0.0473 0.5 0.1107 0.1107 0.1107 0.1107 0.5

Z̄12 0.0236 0.0277 0.0353 0.0412 0.1 0.0249 0.0419 0.0571 0.0862 0.3

Z̄13 0.0659 0.1418 0.1790 0.2235 0.2 0.0577 0.1399 0.2069 0.2769 0.3

Z̄14 0.0908 0.1789 0.3205 0.4086 0.3 0.0915 0.2209 0.3477 0.5862 0.6

Z̄21 0.2221 0.2894 0.3715 0.4388 0.2 0.1054 0.2488 0.3048 0.3565 0.4

Z̄22 0.1164 0.1164 0.1164 0.1164 0.5 0.1158 0.1158 0.1158 0.1158 0.5

Z̄23 0.2005 0.2907 0.4619 0.5941 0.6 0.1078 0.2540 0.3673 0.6179 0.7

Z̄24 0.2896 0.3886 0.5444 0.6319 0.2 0.1441 0.2873 0.4123 0.7136 0.7

Z̄31 0.0799 0.1080 0.1347 0.1891 0.1 0.0559 0.1094 0.1605 0.2234 0.2

Z̄32 0.0357 0.0429 0.0689 0.1303 0.2 0.0297 0.0397 0.0538 0.2502 0.3

Z̄33 0.1977 0.1977 0.1977 0.1977 0.5 0.2018 0.2018 0.2018 0.2018 0.5

Z̄34 0.2138 0.3564 0.4369 0.5332 0.1 0.1909 0.3160 0.4486 0.7055 0.2

Z̄41 0.0357 0.0607 0.0995 0.1260 0.2 0.0282 0.1017 0.1407 0.1806 0.4

Z̄42 0.0229 0.0276 0.0407 0.0553 0.2 0.0399 0.0497 0.0634 0.1869 0.5

Z̄43 0.0929 0.1426 0.1843 0.2579 0.6 0.0838 0.2383 0.3197 0.4131 0.7

Z̄ 0.3171 0.3171 0.3171 0.3171 0.5 0.3653 0.3653 0.3653 0.3653 0.5
11
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Table 8

Signed based distances correspond-

ing to every alternative.

Alternatives 𝑑∗𝑖(𝑍̄𝑖𝑗 ,11)

Z̄1 -0.849890625

Z̄2 -0.7149188594

Z̄3 -0.7954242188

Z̄4 -0.80088625

identify the preference grades precisely. Also the hybrid averaging operator used in the proposed scheme considers not only the 
individual weight-age of the decision makers but also the ordered positions based on closeness to the ideal solution, which makes this 
approach more authentic than the existing techniques for combining the individual opinions into a collective opinion. Moreover, the 
technique has the capability of dealing with situations where there is no information on the priority weights. It is amongst the only few 
of the existing techniques where the aggregated opinion results in the IT2TrFPRs since it is often the case the aggregated opinion isn’t 
is the fuzzy preference relation and therefore one has to use defuzzified aggregated opinion which is obviously not authentic because 
of its restrictions. Moreover, the proposed scheme involves the signed distance based ranking approach which is more effective than 
complex existing approach of weighted aggregation which requires an extensive amount of computational activity for ranking the 
alternatives. Also the technique of hybrid averaging employed here values not only the individual preference of the decision maker 
but also the ordered position based on closeness to the ideal solution, which makes the results more authentic, thereby adding to the 
superiority of this aggregation approach on the existing weighted aggregation approach.

7. Conclusion

This research suggested an algorithmic procedure for assessing alternatives in GDM issues by which weights are unknown. This 
technique presents rating values as FPR, which can be extracted in IT2TrFNs. The HA approach can collect all individual rankings 
to set up the collective decision matrix. However, the aggregation technique utilized signed-based distance OWA operations. The 
precept of the suggested GDM approach is that the selected alternative would have to most extensive SBD from 11. Consequently, the 
SBD of a IT2TrFN from 11 turned into used as the idea of determining the concern of alternatives. A least-deviation model is suggested 
to evaluate the top-rated weights of the alternatives. Lastly, an executive technique of the suggested approach was explained by its 
request for the problem of alternatives. In precise, this research has recorded the background of IT2TrFNs in multiple groups of DMs 
environment. More specifically, a technique becomes advanced for producing an SBD method for weight assessment and decision 
evaluation.
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