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Abstract: Time domain nuclear magnetic resonance (TD–NMR) has been widely applied in plant
science in the last four decades. Several TD–NMR instruments and methods have been developed
for laboratory, green-house, and field studies. This mini-review focuses on the recent TD–NMR pulse
sequences applied in plant science. One of the sequences measures the transverse relaxation time (T2)
with minimal sample heating, using a lower refocusing flip angle and consequently lower specific
absorption rate than that of conventional CPMG. Other sequences are based on a continuous wave
free precession (CWFP) regime used to enhance the signal-to-noise ratio, to measure longitudinal (T1)
and transverse relaxation time in a single shot experiment, and as alternative 2D pulse sequences to
obtain T1–T2 and diffusion-T1 correlation maps. This review also presents some applications of these
sequences in plant science.

Keywords: time domain NMR; Carr-Purcell-Meiboom-Gill (CPMG); CWFP; relaxation measurement:
pulse sequence

1. Introduction

The fast and non-invasive methods to determine oil content in oilseeds were the first
applications of time domain nuclear magnetic resonance (TD–NMR) in plant science, and
they have since been used in germplasm evaluation and plant breeding programs [1]. The
analyses of oilseeds, with low moisture content, are performed by measuring the intensity
of free induction decay (FID) after a radiofrequency (rf) pulse. The measurements are
performed at 50 µs to avoid interference of solid components (proteins, carbohydrates).
Spin-echo sequence has been used to measure moisture and oil content. The oil content is
calculated by the echo intensity at 7 ms and the moisture content by the difference between
the FID (at 50 µs) and echo intensities [2].

Pulse sequences to measure longitudinal (T1) and transverse (T2) relaxation times, the
self-diffusion coefficient (D), and flow [3] have been used in plant science for approximately
four decades. Saturation-recovery (SR) or inversion-recovery (IR) sequences measure
T1 [4], the Carr-Purcell-Meiboom-Gill (CPMG) sequence measures T2 [5], while pulse field
gradient (PFG) sequences measure diffusion or flow [6–9].

Two-dimension (2D) experiments are also used in plant science to reduce peak overlap
and obtain correlation between relaxation times (T1–T2) and between diffusion and T2
(T2–D) [3,10–13]. The 2D T1–T2 measurements are performed combining sequences to
measure T1 (SR or IR), followed by the CPMG sequence, called SR–CPMG and IR–CPMG
sequences, respectively. T2–D measurements are conducted with CPMG preceded by
pulses gradient spin echo sequence (PGSG–CPMG) [11].

In the lasts two decades, one-dimensional (1D) and two-dimension (2D) pulses se-
quences have been proposed for TD–NMR [3,12–15]. This mini-review focuses on se-
quences, such as CPMG with low refocusing pulses, which minimize the sample-heating
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problem, and 1D and 2D sequences based on a special regime of steady state free precession,
known as continuous wave free precession (CWFP).

2. One-Dimensional (1D) Pulse Sequences
2.1. CPMG with Low Refocusing Pulses

Most TD–NMR studies in plants are based on the measurement of T2 relaxation time
obtained by the CPMG pulse sequence, which consists of a π/2 pulse in the x axis followed
by time (τ) and a train of refocusing π pulses in the y axis separated by time 2τ (Figure 1
using θ = π ) [5]. The CPMG pulse sequence is very robust with negligible dependence on
pulse imperfections and magnetic field inhomogeneity; in addition, a single scan provides
the full relaxation decay [5,10,16].
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Figure 1. Diagram for the CPMG pulse sequence (θ = π) and for the CPMG with a low flip refocusing
pulse (θ ≤ π).

The CPMG signals have been used to study plants in laboratories, greenhouses, and in
the field [17–22]. Normally, the CPMG decay is measured for 5T2 to obtain suitable discrete
or continuous fitting. Since T1 and T2 are similar in low field TD–NMR spectrometers,
the scans can be performed without signal saturation, even with a recycle delay (RD) of a
few milliseconds. This procedure is important to being able to carry out experiments in
short measuring times for static samples or in moving samples on a conveyor belt. When
RD is in the order of milliseconds, the π pulses are applied almost continuously, which
can cause probe and power amplifier overheating [17]. In some cases, mainly for living
tissues, a continuous high power rf pulse train may exceed the specific absorption rate
(SAR), which can damage the sample by excessive heating and also lead to erroneous T2
values. The sample heating problem is a critical issue, for example, for oilseeds, as T2 varies
exponentially with temperature [19,23].

To minimize instrumental or sample-heating problems, T2 measurements have shown
accuracy using CPMG with a low refocusing flip angle (LRFA–CPMG) (Figure 1 using
θ << π), which may lower rf power by up to one order of magnitude [16]. In LRFA–CPMG,
T2 accuracy depends on experimental parameters, such as τ value and magnetic field
inhomogeneity. Figure 2 shows the experimental CPMG decay using π, 3π/2, π/2, and
π/4 refocusing pulses, for a soybean oil sample, using two τ values in two magnetic fields
with different field homogeneity. Figure 2A,B show CPMG signals for a signal with 15 Hz
line width and τ values of 0.1 (A) and 0.4 ms (B). Figure 2C,D show CPMG signals for a
signal with 100 Hz line width and τ values of 0.1 ms (Figure 2C) and 0.4 ms (Figure 2D).
These results show that for a quite homogeneous magnet, a very low refocusing pulse
with short τ values gives a signal with the same intensity and T2 values as that of classical
CPMG with π pulses. Signal intensity decays for longer τ values and magnetic field
inhomogeneity; however, T2 values are still rather accurate [16].
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CPMG sequence. As B1∼P1/2, where P is the rf power and B1 the amplitude of the mag-
netic field of the applied pulse, the LRFA–CPMG with π/2 pulses reduced to one quarter 
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Figure 2. Experimental CPMG signals using refocusing angle pulse of π, 3π/4, π/2, and π/4 for
soybean oil in different homogeneities (∆ν = 15 Hz (A,B) and 100 Hz (C,D)), τ = 0.1 ms (left) and
0.4 ms (right). Adapted from publication [16]. Copyright (2011), with permission from Elsevier.

Figure 3A shows CPMG decays of a castor bean seed (oil signal) obtained with the
CPMG pulse sequence with π (red line) and π/2 (black line) refocusing pulses. These
experiments were performed in a Minispec instrument (Bruker 20 MHz for 1H) using
τ = 0.5 ms. Figure 3B shows the continuous T2 distribution of Figure 3A signals, obtained
by inverse Laplace transform (ILT) [24]. These figures show that LRFA–CPMG, with
π/2 refocusing pulses, shows identical T2 values when compared with those of the standard
CPMG sequence. As B1∼P1/2, where P is the rf power and B1 the amplitude of the magnetic
field of the applied pulse, the LRFA–CPMG with π/2 pulses reduced to one quarter of the
energy deposited in the sample [16] and also obtained similar T2 results to those obtained
by the conventional CPMG method (Figure 3).
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Figure 4 shows the high correlation (r = 0.98) between T2 obtained by LRFA–CPMG
performed with a π/2 refocusing flip angle with T2 measured by conventional CPMG for
oil seeds of 30 plant species [16].

 

Figure 4. Correlation between T2 values obtained with the CPMG and LRFA–CPMG methods using
π/2 as a refocusing and different oilseed species; r = 0.98. Adapted from Publication [16]. Copyright
(2011) with permission from Elsevier.

2.2. Continuous Wave Free Precession (CWFP) Sequences
2.2.1. Quantitative Analyses

Continuous wave free precession (CWFP) is a special regime of the steady-state free
precession (SSFP) condition [24–30]. The CWFP sequence consists of an equally spaced rf
pulse train separated by a time interval (Tp) shorter than T2 [25] and shorter than T2* [26,27]
(Figure 5). Ernest and Anderson described the analytical solution for SSFP/CWFP regimes
and this can be found elsewhere [28–30].
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Figure 6 shows the numerical simulations of the real SSFP/CWFP signals using Block
equations [31], T1 = 150 ms, T2 = 50 ms, T2* = 0.5 ms, and different time between pulses,
Tp values, and offset frequencies. The standard SSFP regime (Figure 6A) is obtained when
a train of rf pulses (gray vertical lines) with the same phase, separated by a time interval
(Tp =1.45 ms), is shorter than T2 and longer than T2*, that is, T2 > Tp > T2*. In this condition,
FID (blue arrows) and echo (red arrows) signals, dephased in π (180◦), are observed
immediately after a π/2 pulse and before the next π/2 pulse, respectively [26,27,32].
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The CWFP regime is obtained when Tp is shorter than T2 and T2* (T2 >> Tp < T2*). In
the CWFP regime (Figure 6B,C) FID and echo signals are overlapped and the interaction is
constructive (B) or destructive (C), depending on the precession angle ψ = $0Tp ($0 is the
frequency offset from resonance), flip angle θ, and T1 and T2 relaxation times according
to Equation (1). For Tp = 0.3 ms, θ = π/2, and ψ = (2n+1)π = 8.333 kHz, the interaction
is constructive, yielding a CWFP signal with maximum amplitude (Figure 6B). However,
when θ = π/2 and ψ = 2nπ = 6.666 kHz, FID and echo interaction is destructive and a
minimal signal is observed (Figure 6C) [28].

|MSS| =
M0|sinθ|

√
2− 2cosψ

(1 + cosθ)(1− cosψ) + (1− cosθ)2T1/T2

)
(1)

The magnitude of the CWFP signal (|Mss|) is constant (dashed red line on top of
the CWFP signal in Figure 6B) and for ψ = (2n+1)π, it is dependent on M0, T1, and T2
according to Equation (2). Equation (2) also shows that (|Mss|) is not dependent only on
T1, as observed in conventional NMR sequences, but on T1/T2. For example, when T1 = T2
(|Mss|) = 0.5M0.

|MSS| =
M0

1 + T1/T2
(2)

Therefore, in the CWFP sequence, the pulse interval can be as short as possible
(Tp < T2*), which allows the acquisition of thousands of scans per second [26,27]. Conse-
quently, the CWFP sequence is used to enhance the signal-to-noise ratio (SNR) for more than
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one order of magnitude in the TD–NMR, without increasing the experimental time [26,27].
The CWFP signal also shows linear correlation with concentration for a sample with similar
T1/T2, allowing fast quantitative measurements [27]. The CWFP sequence has been used
to measure oil content in seeds with low oil content, such as peas and maize, without
increasing measuring time [26,33].

The CWFP sequence is also used to determine the oil content in seeds moving at
13 cm/s on a conveyor belt. In this experiment, each seed gives a signal where the intensity
is proportional to the oil content. Therefore, it is a high-throughput method to determine
oil content in more than 20,000 seeds per hour [33].

2.2.2. CWFP Sequence to Measure T1 and T2 in a Single Experiment

The CWFP sequence can also be used to measure both relaxation times (T1 and T2)
in a single shot sequence [15,26,27,32,34]. These measurements require acquiring the
amplitude of the NMR signal from the first pulse to the CWFP regime, using θ = π/2 and
ψ = (2n+1)π (Figure 7). After the first π/2 pulse, the signal magnitude is at a maximum
and is proportional to M0. After the following pulses, the signal oscillates in a transient
period depending on T2* (Figure 7, dark gray region). When oscillation stops, the signal
reaches a quasi-stationary state (QSS), indicated by a red arrow in Figure 7. From the QSS,
the signal decays to the CWFP regime with a time constant T* that depends on θ and on
relaxation times, according to Equation (3).

T∗ =
2T1T2

T1(1− cosθ) + T2(1 + cosθ)
(3)
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For θ= π/2, Equation (3) becomes Equation (4) [32].

T∗ =
2T1T2

T1 + T2
(4)

Equations (2) and (4) can be rearranged to Equations (5) and (6), respectively, to
determine T1 and T2 using values of T*, |Mss|, and M0, of a single CWFP experiment
(Figure 7).

T1 =
T∗/2
|Mss|/M0

(5)
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T2 =
T∗/2

1− |Mss|/M0
(6)

The CWFP sequence results in signals with the highest variation in T* amplitude or
the highest dynamic range (DR) for samples with T1 >> T2. On the other hand, DR is
minimal when T1~T2, which makes it difficult to determine T* in low SNR signals. To
overcome this situation, a second CWPF sequence was developed to measure T1 and T2
for samples with T1~T2 [35]. This sequence has a π/2 pulse separated by a Tp/2 before
the CWFP pulse train (φ = x) (Figure 8). It is a Carr–Purcell sequence with π/2 refocusing
pulses and it is named CP–CWFP [35]. Recently, the use of a π phase alternation, on the
CWFP loop of pulses (φ = −x), has been proposed (Figure 8) [15]. This sequence, known as
CP–CWFPx−x, has been the best CWFP sequence due to its highest DR for both conditions
T1~T2 and T1 > T2 and the signal can also be measured on resonance (ψ = 0) [15].
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2.2.3. CWFP Sequence to Measure T1 in a Single Shot Experiment

CWFP sequences have also been used to measure T1 in a single shot experiment [14].
According to Equation (3), T*, of the CWFP signal, can be used to measure T1, when very
low flip angles are used. To obtain the maximum DR, the CWFP–T1 sequence (Figure 9)
starts with a π pulse, which inverts the magnetization, and it is followed by a train of low
flip angle pulses [14].
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Figure 10 shows that the single shot CWFP–T1 signal (θ~π/20) has a profile similar
to the IR experiment (square symbols) [14]. The low SNR in the CWFP–T1 signal is due
to the small flip angles in the pulse sequence. However, the SNR of the CWFP–T1 signals
can be enhanced using post-acquisition digital filters, such as Savistky–Golay or wavelet
filters [36]. Figure 10 shows that the CWFP–T1 signal has similar results to those obtained
with the standard IR method; however, in a shorter measuring time [14].
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3. Two-Dimensional Methods Using the CWFP–T1 Sequence

Two-dimension (2D) experiments are used in TD–NMR to reduce peak overlap and
obtain a correlation between relaxation times (T1–T2) [37–39] and between diffusion and
T2 (D–T2) [40,41]. Most 2D sequences use the CPMG (T2) to detect the direct dimension
(Figure 11A) signal, which is modulated by T1, T2, or D sequences.

Recently, it has been demonstrated that a single shot T1 method can also be used in the
direct dimension of the 2D T1–T2 TD–NMR experiment, using the CWFP–T1 sequence [13].
This sequence was denominated CPMG–CWFP–T1 and the pulse diagram is as shown in
Figure 11B. The 2D-CPMG–CWFP–T1 maps show higher resolution in the T1 dimension
than do methods that use CPMG as a direct dimension. Moreover, the CPMG–CWFP–T1
method has a shorter experimental time (up to an order of magnitude) than does IR–CPMG
for the samples with T1~T2 [13].

Figure 12 shows the T1–T2 correlation maps of the signals acquired with castor bean oil
at 40 ◦C (Figure 12A,B) and green banana at 22 ◦C (Figure 12C,D) inverted by a fast multi-
dimensional Laplace inversion (FLI) [37,38] algorithm. IR–CPMG maps were obtained
using 32 logarithmically spaced T1 recovery intervals, from 0.05 to 900 ms for the castor
bean oil sample and from 3 to 4,500 ms for the banana sample. The CPMG data were
collected using echo numbers (n-Figure 11A) equal to 2400 and 12,000 echoes for the
castor bean oil and banana, respectively. For both samples, the τ used on the CPMG
method was 0.3 ms. The T2–T1 map measured with the CPMG–CWFP–T1 sequence used
32 logarithmically spaced CPMG echoes from 2 to 2400 for the castor bean oil and from
2 to 12,000 for the banana sample. CWFP–T1 Tp was 0.3 ms, for both samples, and the
number of CWFP–T1 loops was 1500 for castor bean oil and 7500 for banana. Using these
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experimental parameters, for both samples, the CPMG–CWFP–T1 method (Figure 12A,C)
provides T1–T2 maps with higher resolution in a shorter experimental time (up to an order
of magnitude) than those produced with the IR–CPMG sequence (Figure 12B,D).
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Figure 12A shows two peaks of the castor bean oil, which were assigned to the two
distinct pools of protons on the fatty acid chain with different mobility or inhomogeneous
structural organizations [42,43]. In the CPMG–CWFP–T1 map (Figure 12A), the population
of protons with the highest mobility (T1–T2 = 0.19–0.14 s) represents 15.2%, while the signal
of the proton with the lowest mobility (T1–T2 = 0.067–0.038 s) corresponds to the greater
2D map proportion of 84.8%. The IR–CPMG map (Figure 12B) does not allow this same
quantification because of its poor resolution.

In the CPMG–CWFP–T1 map of a banana, the strongest signal (Figure 12C: T1–
T2 = 0.55–0.39 s) was assigned to water in the vacuole and corresponds to 78.1% of the
signals. The intermediary intensity signal (Figure 12C: T1–T2 = 0.19–0.14 s) is attributed
to water in the cytoplasm and corresponds to 19.3% of the signal. The 2D map of banana
obtained by the IR–CPMG method showed no separation between water signals in the
vacuole and cytoplasm. The other signals with low intensity, in IR–CPMG and CPMG–
CWFP–T1 bananas maps, can be related to water in the cell walls or inside the starch
granule [34].

The CWFP–T1 sequence was also used to obtain D–T1 correlation maps [12]. Figure 13
shows the diagram of the 2D PGSE–CWFP–T1 pulse sequence to obtain a D–T1 correlation
map. The PGSE–CWFP–T1 method shows similar results to the conventional IR–PGSE and
SR–PGSE methods; however, PGSE–CWFP–T1 provides a faster analysis and low SAR due
to the small flip angle at the CWFP–T1 method [12].
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4. Conclusions 
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Figure 14 shows the D–T1 correlation maps obtained by IR–PGSE (A) and PGSE–
CWFP–T1 (B) sequences for asparagus stems oriented parallel (in black) and perpendicular
(in red) to the pulse field gradient direction. Both maps show similar results; however,
PGSE–CWFP–T1 is much faster (up to an order of magnitude) than the IR–PGSE experi-
ment [12]. Applications of the PGSE–CWFP–T1 sequence to measure D–T1 correlation in
fruits and vegetables are showing promising results.
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4. Conclusions

The recent 1D methods based on the CWFP regime or the low-power CPMG sequence
have potential as alternatives to CPMG to enhance SNR and resolution and minimize
instrumental or sample-heating problems, especially when fast analysis protocols are
necessary for plant science studies. The new 2D pulse sequences (CPMG–CWFP–T1 and
PGSE–CWFP–T1) based on the direct detection of CWFP–T1 signals are an alternative to
obtain T2–T1 and D–T1 correlation maps, with better resolution and lower SAR than those
from the standard 2D sequences and are an important advancement in the use of TD–NMR
for plant science studies.
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