
Articles
eClinicalMedicine
2024;71: 102566

Published Online xxx

https://doi.org/10.
1016/j.eclinm.2024.
102566
Development and validation of an artificial intelligence-based
model for detecting urothelial carcinoma using urine cytology
images: a multicentre, diagnostic study with prospective
validation
Shaoxu Wu,a,b,c,i Runnan Shen,a,i Guibin Hong,a,i Yun Luo,d,i Huan Wan,e,i Jiahao Feng,f ,i Zeshi Chen,a Fan Jiang,a Yun Wang,a Chengxiao Liao,a

Xiaoyang Li,d Bohao Liu,d Xiaowei Huang,f Kai Liu,f Ping Qin,g Yahui Wang,h Ye Xie,a Nengtai Ouyang,e Jian Huang,a,b,c and Tianxin Lina,b,c,∗

aDepartment of Urology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
bGuangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint
Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
cGuangdong Provincial Clinical Research Centre for Urological Diseases, Guangzhou, China
dDepartment of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
eDepartment of Pathology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
fCellsVision Medical Technology Services Co., Ltd., Guangzhou, China
gDepartment of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
hDepartment of Urology, The Shen-Shan Central Hospital, Shanwei, China

Summary
Background Urine cytology is an important non-invasive examination for urothelial carcinoma (UC) diagnosis and
follow-up. We aimed to explore whether artificial intelligence (AI) can enhance the sensitivity of urine cytology
and help avoid unnecessary endoscopy.

Methods In this multicentre diagnostic study, consecutive patients who underwent liquid-based urine cytology
examinations at four hospitals in China were included for model development and validation. Patients who declined
surgery and lacked associated histopathology results, those diagnosed with rare subtype tumours of the urinary tract,
or had low-quality images were excluded from the study. All liquid-based cytology slides were scanned into whole-
slide images (WSIs) at 40 × magnification and the WSI-labels were derived from the corresponding histopathology
results. The Precision Urine Cytology AI Solution (PUCAS) was composed of three distinct stages (patch extraction,
features extraction, and classification diagnosis) and was trained to identify important WSI features associated with
UC diagnosis. The diagnostic sensitivity was mainly used to validate the performance of PUCAS in retrospective
and prospective validation cohorts. This study is registered with the ChiCTR, ChiCTR2300073192.

Findings Between January 1, 2018 and October 31, 2022, 2641 patients were retrospectively recruited in the training
cohort, and 2335 in retrospective validation cohorts; 400 eligible patients were enrolled in the prospective validation
cohort between July 7, 2023 and September 15, 2023. The sensitivity of PUCAS ranged from 0.922 (95% CI:
0.811–0.978) to 1.000 (0.782–1.000) in retrospective validation cohorts, and was 0.896 (0.837–0.939) in prospective
validation cohort. The PUCAS model also exhibited a good performance in detecting malignancy within atypical
urothelial cells cases, with a sensitivity of over 0.84. In the recurrence detection scenario, PUCAS could reduce 57.5%
of endoscopy use with a negative predictive value of 96.4%.

Interpretation PUCAS may help to improve the sensitivity of urine cytology, reduce misdiagnoses of UC, avoid
unnecessary endoscopy, and reduce the clinical burden in resource-limited areas. The further validation in other
countries is needed.
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Research in context

Evidence before this study
A PubMed search was performed for relevant articles
published in any language from the database inception to
December 30 2023, using the following search string:
“(“artificial intelligence” OR “deep learning” OR “machine
learning”) AND (“urine” OR “voided urine” OR “cytology” OR
“urine cytology”) AND (“urothelial carcinoma” OR “bladder
carcinoma” OR “bladder cancer” OR “upper tract urothelial
carcinoma”)”. We systematically reviewed the 44 search
results and identified 14 relevant original articles. 13 studies
primarily applied artificial intelligence (AI) to assist urine
cytology for the diagnosis of urothelial carcinoma (UC),
whereas one study focused on predicting recurrence. Among
the 13 diagnostic studies, eight mainly used AI to automate
the Paris System for Reporting Urinary Cytology at the whole
slide image level. Five studies evaluated the diagnostic
performance of AI models using UC histopathology results as
the gold standard, with the goal of enhancing the sensitivity
of urine cytology. However, the above studies had limited
clinical impact due to small-sized samples with a narrow
range of inclusion of UC subtypes, and three of them were
single-centre studies. Furthermore, the performance of the AI
model in the atypical urine cell (AUC) subgroup or different
clinical scenarios was not evaluated. And prospective
validation was also lacked.

Added value of this study
We developed and validated a model called the Precision
Urine Cytology AI Solution (PUCAS) in a large, multi-centre

observation cohort—which incorporated a wide range of UC
types and more comprehensive clinical characteristics—using
histopathology as the gold standard. Utilising a multistage
framework and the weighted output from multiple models,
PUCAS achieved favourable diagnostic performance in both
retrospective and prospective validation cohorts. In patients
with AUC, PUCAS presented satisfying sensitivity (>0.8). In
upper-tract UC, pTa and low-grade, minimal (<1.5 cm),
residual, and recurrent tumours subgroups (residual and
recurrent tumours subgroups included diagnosis of papillary
urothelial neoplasm of low malignant potential, low-grade,
and high-grade UC), PUCAS achieved a substantial
improvement in sensitivity compared to cytology (increased
sensitivity by 24.2% to 49.0%) and fluorescence in situ
hybridisation (FISH) (increased sensitivity by 12.6% to 33.5%).
In the recurrence detection scenario, PUCAS could reduce the
use of endoscopy by 57.5% with a negative predictive value of
96.4%.

Implications of all the available evidence
The use of PUCAS in clinical settings may help to improve the
sensitivity of urine cytology, reduce misdiagnoses of UC, and
avoid unnecessary endoscopy. PUCAS can serve as a
supplementary tool or an alternative to FISH, as it offers
higher sensitivity and can be evaluated using a cloud-based
system. In clinical practice, its automatability also aids
cytopathologists in minimising repetitive and time-
consuming tasks.
Introduction
Urothelial carcinoma (UC) is one of the most common
malignancies of the urinary system.1,2 Upper tract uro-
thelial carcinoma (UTUC), comprising tumours in the
pyelocalyceal cavities and ureter, constitutes 5%–10% of
all UCs.3 UCs have a high tendency to recur, with sig-
nificant variations in prognosis across diverse tumour
grades. Early diagnosis and regular monitoring play
pivotal roles in improving the prognosis of patients with
UC.4 Presently, in clinical practice, the histopathological
reports from endoscopy with biopsy is considered the
gold standard for diagnosing UC,2,3 and regular endo-
scopic examinations are frequently required for detec-
tion of recurrence. Per recommendations, a high-risk
tumour patient should undergo at least 15 endoscopic
examinations over a 5-year period. However, endoscopy
is invasive, costly, and often associated with discomfort.
And in secondary resection scenario, it is still hard to
detect residual tumour. Consequently, there is an
urgent need to develop non-invasive, effective, and
economical methods for the detection of UCs. The
presently available non-invasive tools, including urine
cytology, fluorescence in situ hybridisation (FISH),
urine methylation assay, and Cxbladder, do not
completely meet the clinical requirements.5,6

Urine cytology plays a crucial role in the clinical
management of UC; it is convenient to use, non-
invasive, cost-effective, and highly specific.2,3,7 The
main limitations of urine cytology are as follows: po-
tential inability to capture atypical or malignant cells and
the challenge of reconciling between the cytological and
histological findings8,9; low sensitivity, particularly for
the detection of low-grade or early-stage UC5,10; exami-
nation of cytology slides under a microscope is a re-
petitive and time-consuming task for cytopathologists;
and final diagnosis relies heavily on the cytopathologist’s
experience, with poor inter-observer reproducibility.11,12

Although the Paris System for Reporting Urinary
www.thelancet.com Vol 71 May, 2024
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Cytology (TPS) is used to standardise diagnostic
criteria,13,14 the reporting rate of atypical urothelial cells
(AUC) remains high. The clinical implications of the
AUC remain unclear, which causes significant confu-
sion for urologists and introduces additional procedures
for patients. Additional robust methods are needed to
improve the diagnostic approach for urine cytology,
improve diagnostic sensitivity, and identify patients who
may not require endoscopy.

Over the past decade, artificial intelligence (AI) has
advanced rapidly in the field of image diagnosis.15 AI has
been reported to match or outperform human experts in
numerous medical scenarios, owing to its strength in
image texture analysis.16–18 Regarding cytopathology, AI
has been applied for the identification of lesion cells in
cervical and oesophageal cancers and has achieved
promising performance.19,20 However, the use of AI-
based detection of UC with urine cytology remains
limited. Most similar studies have focused on auto-
mating TPS reports and simulating the diagnostic pro-
cess of cytopathologists.21,22 In addition to TPS, five
previous studies assessed the diagnostic performance of
AI models using histopathology as the gold
standard.8–10,23,24 However, the above AI models had
limited clinical impact due to their restriction to single-
centre,8,9,24 small-scale samples with a narrower range of
UC types inclusion (i.e., didn’t include UTUC10,23,24 or
papillary urothelial neoplasm of low malignant potential
[PUNLMP]), and also the suboptimal sensitivity.9,10,23,24

Furthermore, the above studies did not evaluate the
performance of the AI model in the AUC subgroup and
in different clinical scenarios (i.e., recurrence detection).
And prospective validation was also lacked.

In this study, we aimed to develop and validate an AI-
based model called “Precision Urine Cytology AI Solu-
tion (PUCAS)” with multi-stage framework algorithms
in a large, multi-centre observation cohort and incor-
porate a wide range of UC types and comprehensive
clinical characteristics, using histopathology as the gold
standard. Prospective validation and subgroup analyses
were also conducted to explore its clinical applicability
and robustness.
Methods
Study design and participants
In this multicentre observational study, patients who
underwent liquid-based voided urine cytology exami-
nations in four hospitals in China were included for
model development and validation (Fig. 1). The retro-
spective cohort was collected from January 1, 2018 to
October 31, 2022, which included Sun Yat-sen Me-
morial Hospital of Sun Yat-Sen University (SYSMH,
January 1, 2018 to October 31, 2022), the Third Affili-
ated Hospital of Sun Yat-Sen University (SYUTH,
January 1, 2019 to October 31, 2022), the Third Affili-
ated Hospital of Guangzhou Medical University
www.thelancet.com Vol 71 May, 2024
(GMUTH, March 1, 2021 to October 31, 2022), and
Shen-Shan Central Hospital (SSCH, December 1, 2021
to October 31, 2022). The slides in the prospective
cohort were collected from July 7, 2023 to September
15, 2023, which included SYSMH and SSCH. The
following patients were excluded: those who declined
UC-associated surgery and without histopathology re-
ports despite radiology or urine cytology indicating the
need for it; and those with rare subtypes of tumours of
the urinary tract, such as squamous cell carcinoma and
adenocarcinoma, because urinary cytology and TPS
primarily detect urothelial carcinoma.13 The collection
process of golden standard and AI prediction in pro-
spective trial was designed to be independent and
blinded to each other. The prospective observational
study was registered with ChiCTR2300073192. And the
detailed process of prospective validation trial is shown
in Appendix (p 2).

The requirements for informed consent for both
retrospective and prospective studies were waived
because of the observational design; however, each
participant had provided written informed assent for the
Collection and Application of Clinical Sample and
Medical Data certified. This study was approved by the
ethics committee of all participating hospitals.

Procedures
All liquid-based cytology slides, stained using the
Papanicolaou method, were obtained from the pathol-
ogy department’s archive and subsequently scanned
into whole-slide images (WSIs) at 40 × magnification.
The preparatory technique method for slides making is
shown in Appendix (p 2). To enhance and validate the
robustness of the PUCAS, five types of scanners were
adopted, and the details are shown in Appendix (p 3).
We excluded low-quality slides owing to low cell
numbers (less than 20), extreme fading, and low-
resolution WSIs caused by poor scanning quality.

The baseline characteristics of the study participants,
including demographic information, clinical symptoms
and scenarios, and histopathological results, were
extracted from the medical record archives of the four
participating hospitals. Race/ethnicity data were not
collected. WSI-level labels were derived from histo-
pathological reports. Positive cases were defined as
‘patients with confirmed UCs based on histopatholog-
ical reports of endoscopic biopsy, transurethral resection
of bladder tumour (TURBT), radical cystectomy, or
radical nephroureterectomy’. Negative cases included
patients with negative histopathological results or
negative radiological or endoscopic findings. All nega-
tive cases were followed-up for a 3-month period to
avoid misdiagnosis. For development of PUCAS,
initially in retrospective cohort, positive cases that had
negative for high-grade urothelial carcinoma (NHGUC)
cytology were extracted separately. This group was
defined as the ‘discordant cohort’, aiming to investigate
3
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Retrospective Cohort
（1 January 2018 - 31 October 2022)

 
5651 patients had urine cytology collected in 

four hospitals and had data collected

   
       

    
  

 
     

     
   

  
   

  
  
  

5260 patients had urine cytology collected in 
four hospitals and had data collected

(Pathology Positive: 31.8%)

    
 

       
 

   

1849 patients used for training 
models

 
 ( Pathology Positive: 27.2%)

792 patients used for 
parameter 

optimization
 
 

 (Pathology Positive: 27.1%)

132 patients excluded
 

Low cell numbers or extremely 
faded or low-resolution of WSIs

259 patients excluded
 

160 patients lacked UC associated 
histopathology results

 
99  patients were diagnosed as rare 
histology tumours in urinary tract

5392 patients had urine cytology collected in 
four hospitals and had data collected

 
Discordant Cohort 

 (N = 284)
 

284 UC patients who had NHGUC 
cytology result 

(Pathology Positive: 100%)
 

This cohort aims to investigate whethter 
AI can assist in identifying atypical 

urothelial cells or high-grade urothelial 
carcinoma that may be missed by 

pathologists, and correctly identify UC 
without classic cytology features. 

 

Development and Validation of an Artificial Intelligence Model for 
Urothelial Carcinoma Detection via Urine Cytology

Prospective Validation Cohort  
(N = 400)

 
400 patients from SYSMH and SSCH 

used for prospective validation 
(Pathology Positive: 38.5%)

 
 
 

SYSMH: 363 patients 
(Pathology Positive: 38.6%)

SSCH: 37 patients
(Pathology Positive: 37.8%)

Prospective Cohort
(7 July 2023 - 15 September 2023)

 
426 patients had urine cytology collected in 

two hospitals and had data collected

405 patients had urine cytology collected in 
two hospitals and had data collected

21 patients excluded
 

15 patients lacked UC associated 
histopathology results

 
6  patients were diagnosed as rare 
histology tumours in urinary tract

5 patients excluded
 

Low cell numbers or extremely 
faded or low-resolution of WSIs

(Pathology Positive: 34.7%)
SSCH: 147 patients

(Pathology Positive: 11.8%)
GMUTH: 127 patients

(Pathology Positive: 32.0%)
SYUTH: 929 patients

and SSCH used for external validation
1203 patients from SYUTH, GMUTH

(Pathology Positive: 27.1%)
used for internal validation

         1132 patients from SYSMH
                     (N = 2335)

Retrospective Validation Cohort

(Pathology Positive: 27.2%)

2641 patients from SYSMH used for training

                (N = 2641)
            Training Cohort

Fig. 1: Flowchart of the study. WSIs, whole-slide images; UC, urothelial carcinoma; SYSMH, Sun Yat-sen Memorial Hospital of Sun Yat-sen
University; SYUTH, Third Affiliated Hospital of Sun Yat-sen University; GMUTH, Third Affiliated Hospital of Guangzhou Medical University;
SSCH, Central Hospital of Shen Shan; NHGUC, negative for high-grade urothelial carcinoma; AI, artificial intelligence.
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whether PUCAS could assist in identifying suspicious
cells missed by cytopathologists and correctly identify
UC without classic cytology features. In the remaining
cases of retrospective cohort, patients from the SYSMH
were stratified in a 7:3 ratio by sex, slide staining year,
and positive rate, and then divided into a ‘training
cohort’ and an ‘internal validation cohort’. Similarly,
patients from the training cohort were stratified into
‘model training’ and ‘parameter optimisation cohorts’ in
a 7:3 ratio. Patients from SYUTH, GMUTH, and SSCH
of retrospective cohort were assigned to three indepen-
dent ‘external validation cohorts’. The whole prospective
cohort was defined as ‘prospective validation cohort’.

For model training, we obtained cell-level annota-
tions from two expert cytopathologists, each with >15
years of experience in urine cytology diagnosis; they
carefully reviewed and labelled urothelial cells into
normal, atypical, or malignant categories following the
established diagnostic criteria for TPS.13 Additionally,
other cell types present in urine, such as glandular and
squamous cells, were annotated. Uncertain cells iden-
tified by the cytopathologists and degenerated cells
were annotated as ‘others’ (The representative exam-
ples are shown in Appendix p 18). Finally, 119,131 cells
were annotated in the training cohort. For WSI-level
cytology diagnosis in both training and validation co-
horts, we applied a central review from a consensus to
guarantee objectivity. The primary diagnosis was
consensus-based and determined through the collabo-
rative assessment of two expert cytopathologists. If
intra-variability existed, another expert cytopathologist
(>20 years of experience) was invited to give a final
decision. High-grade urothelial carcinoma (HGUC) or
suspected HGUC was defined as cytology-positive,
whereas AUC and NHGUC were defined as cytology-
negative for UC.

The architecture of PUCAS was composed of three
distinct stages, as depicted in the Appendix (p 19). In the
initial stage, high-resolution WSIs, consisting of
50,000 × 50,000 pixels, were divided into numerous
non-overlapping patches using a sliding window
approach. This preprocessing was performed to facili-
tate efficient training and validation of the models on
the graphics processing unit. The crop size was set to
1024 × 1024 pixels, corresponding to a spatial resolution
of 0.25 μm per pixel (40 × ), ensuring optimal compat-
ibility with subsequent operations.

Subsequently, individual patches extracted from the
WSIs were subjected to patch-level feature extraction.
Three distinct feature extraction models (YOLOv7,25

EfficientNet,26 and ConvNeXt-B27) were integrated and
trained to identify atypical or malignant cells and to
extract crucial features. Upon completion of this stage,
all features extracted from both the atypical cells and the
www.thelancet.com Vol 71 May, 2024
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patch as a whole were integrated to generate a
comprehensive and informative patch result.

In the final stage, all patch results generated from the
same WSI were merged to form WSI-level feature maps
that served as the input for the diagnosis stage. This
stage comprised three distinct models, namely, the
attention bi-directional long short-term memory,28

Transformer,29 and Top-N Feature model30 (Appendix
p 3), which independently predicted the confidence of
each class. The combination of these diverse models
afforded a more in-depth analysis of complex WSI-level
feature maps and provided a comprehensive and robust
diagnosis. The final confidence of each class was
determined by averaging the confidence scores derived
from each WSI-level feature extraction model with the
appropriate weighting. More details about the network
training process, including data balance, data augmen-
tation methods, loss function setting, and associated
training equipment, are provided in the Appendix (pp
3–5, 20–21).

We employed retrospective and prospective valida-
tion cohorts for performance validation of the PUCAS,
and a discordant cohort to assess the model’s general-
isability. Subgroup analyses were performed in retro-
spective validation cohort and discordant cohort
separately. First, we evaluated the diagnostic efficacy of
PUCAS across diverse clinical subgroups defined by
factors such as centre, AUC cytology results, age, sex,
haematuria, and smoking. Furthermore, we examined
its effectiveness in various clinical scenarios including
routine screening, secondary resection, and recurrence
detection monitoring (including diagnosis of PUNLMP,
low-grade, and high-grade UC in each scenario). Addi-
tionally, we tested the diagnostic sensitivity of different
tumour subgroups, including UTUC, tumour grade,
stage, number, and size to evaluate its robustness. In
the discordant cohort, suspicious cells annotated by
PUCAS were also reviewed by a centre review. At last, a
multi-modal model was built with PUCAS and clinical
factors to investigate whether PUCAS could be further
improved. Logistic regression model was conducted.
The method and flowchart of building multi-modal
model are shown in Appendix (pp 5, 22).

Outcomes
Sensitivity of PUCAS was determined as the primary
endpoint in this study. Other diagnostic performances
of PUCAS, including area under the receiver operation
characteristic curve (AUROC), specificity, accuracy,
positive predictive value (PPV), and negative predictive
value (NPV) were determined as the secondary end-
points. The performance of PUCAS was primarily
compared with cytology and FISH in subgroup analyses.

Statistical analysis
All statistical analyses and data visualisation were con-
ducted using R software (version 4.2.0) and Prism 9
www.thelancet.com Vol 71 May, 2024
(GraphPad Software). Receiver operating characteristic
(ROC) curves were used to assess the discriminatory
ability of the PUCAS prediction score (pROC package).
Comparison of the two ROCs was based on the Delong
test.31 The optimal positive cut-off value of the PUCAS
was investigated using the ROC curve to achieve the
highest Youden index in the internal validation cohort.
The clinical utilities of the different subgroups were
visualised using decision clinical analysis curves (rmda
package). Performance indices, including sensitivity,
specificity, accuracy, PPV, and NPV, with their 95%
confidence intervals (CI), were calculated using the epiR
package. The McNemar’s test was employed to assess
the discrepancy in sensitivity, specificity, and NPV be-
tween various diagnostic methods. Net reclassification
improvement (NRI) and integrated discrimination
improvement (IDI) were used to assess the improved
predictive ability of PUCAS compared to those of
cytology and FISH. Logistic regression model was built
based on rms package. All analyses were prespecified.
Two-sided P values less than 0.050 were considered
statistically significant.

Role of the funding source
The funders of the study had no role in the study design,
data collection, data analysis, data interpretation, or
writing of the report. All authors reviewed the manu-
script, approved the submitted version, had full access to
all the data reported in the study, and had final re-
sponsibility for the decision to submit for publication.
Results
Between January 1, 2018, and October 31, 2022, 5651
patients were retrospectively recruited in the retrospec-
tive cohort; 426 patients were enrolled in the prospective
study between July 7, 2023 and September 15, 2023
(Fig. 1). 391 (6.9%) of retrospective cohort and 26 (6.1%)
of prospective cohort were excluded according to the
pre-defined exclusion criteria.

Consequently, 5260 urine cytology images in retro-
spective cohort were used to develop and validate the
PUCAS. Initially, 284 images (5.4%) from patients with
positive UC histopathology and NHGUC cytology re-
sults were chosen for the discordant cohort. The
remaining images from SYSMH (3773 images, 71.7%)
were stratified into training (2641 images, 50.2%) and
internal validation cohorts (1132 images, 21.5%). The
training cohort was then stratified into model training
(1849 images, 35.2%) and parameter optimisation co-
horts (792 images, 15.1%). The remaining images from
SYUTH (929 images, 17.7%), GMUTH (127 images,
2.4%), and SSCH (147 images, 2.8%) were used as
external validation cohorts (1203 images, 22.9%). 400
urine cytology images in prospective cohort (SYSMH
[363 images, 90.8%] and SSCH [37 images, 9.3%]) were
defined as prospective validation cohort. The clinical
5
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Age

Sex

Male

Female

Haematuria

Yes

No

Smoking

Yes

No

Clinical scenario

Routine screening

Recurrence detection

Secondary resection

Cytology results

NHGUC

AUC

SHGUC

HGUC

Pathology positive

Positive

Negative

Data are n (%) or median (IQ
Guangzhou Medical Universi
carcinoma; HGUC, positive f

Table 1: Baseline characte
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characteristics of the training, validation, and discordant
cohorts are summarised in Table 1 and Appendix (pp
7–9). There were no missing data in all cohorts.

The interactive system interface of PUCAS is shown
in Appendix (p 23). The PUCAS was an integrated
model and had a higher AUROC (0.970, 95% CI:
0.958–0.981) than any individual internal structural
model within the internal validation cohort (Fig. 2A).
Based on the optimal Youden index, 0.5 was defined as
the cut-off value for binary classification. Across the
three external validation cohorts, the AUROCs of the
PUCAS ranged from 0.928 (95% CI: 0.874–0.982) to
0.963 (95% CI: 0.931–0.994) (Fig. 2B). In the prospective
validation cohort, PUCAS also got a favourable result
(AUROC: 0.917 [95% CI: 0.885–0.949], Fig. 2C). In
retrospective and prospective validation cohorts, the
sensitivities ranged from 0.896 (95% CI: 0.837–0.939) to
1.000 (95% CI: 0.782–1.000), while the NPV ranged
from 0.932 (95% CI:0.892–0.961) to 1.000 (0.964–1.000)
(Appendix p 10). Although PUCAS was mainly designed
to improve sensitivity, it also showed satisfying speci-
ficity in retrospective (varying from 0.893 [95% CI:
0.820–0.943] to 0.942 [95% CI: 0.924–0.957]) and pro-
spective validation cohorts (0.894 [95% CI: 0.849–0.930])
Retrospective cohort

SYSMH training
cohort (N = 2641)

SYSMH validation
cohort (N = 1132)

SYUTH validation
cohort (N = 929)

G
c

62.00 [53.00, 70.00] 62.00 [54.00, 70.00] 64.00 [54.00, 73.00] 5

1892 (71.6%) 814 (71.9%) 655 (70.5%) 7

749 (28.4%) 318 (28.1%) 274 (29.5%) 5

936 (35.4%) 393 (34.7%) 578 (62.2%) 3

1705 (64.6%) 739 (65.3%) 351 (37.8%) 9

446 (16.9%) 193 (17.0%) 193 (20.8%) 1

2195 (83.1%) 939 (83.0%) 736 (79.2%) 1

2065 (78.2%) 894 (79.0%) 851 (91.6%) 1

370 (14.0%) 151 (13.3%) 53 (5.7%) 1

206 (7.8%) 87 (7.7%) 25 (2.7%) 8

1551 (58.7%) 693 (61.2%) 445 (47.9%) 9

601 (22.8%) 217 (19.2%) 304 (32.7%) 2

101 (3.8%) 50 (4.4%) 76 (8.2%) 9

388 (14.7%) 172 (15.2%) 104 (11.2%) 6

718 (27.2%) 307 (27.1%) 297 (32.0%) 1

1923 (72.8%) 825 (72.9%) 632 (68.0%) 1

R). SYSMH, Sun Yat-sen Memorial Hospital of Sun Yat-sen University; SYUTH, The Third Af
ty; SSCH, The Central Hospital of Shen-Shan; NHGUC, negative for high-grade urothelial ca
or high-grade urothelial carcinoma.

ristics of the training and validation cohorts.
(the comparison of specificity with cytology and FISH is
shown in Appendix p 11). In patients with AUC cytology
result in retrospective (N = 578) and prospective vali-
dation cohort (N = 65), PUCAS showed superior
AUROC and sensitivity results compared with FISH
(Appendix p 24).

In further subgroup analyses of retrospective vali-
dation cohorts, we found that PUCAS had higher
sensitivity in older groups (age ≥ 65 years, 0.953, 95%
CI: 0.927–0.971; age < 65 years, 0.914, 95% CI:
0.874–0.945) and in women (0.949, 95% CI:
0.901–0.978; men: 0.934, 95% CI: 0.909–0.954). In pa-
tients with haematuria syndrome, PUCAS had a higher
sensitivity (0.948, 95% CI: 0.925–0.966) than in those
without haematuria (0.908, 95% CI: 0.857–0.946). For
different clinical scenarios, the sensitivity of the PUCAS
ranged from 0.934 (95% CI: 0.910–0.953) to 0.966 (95%
CI: 0.822–0.999), and the NPV ranged from 0.964 (95%
CI: 0.917–0.988) to 0.989 (95% CI: 0.943–1.000)
(Fig. 2D, Appendix p 12). It showed that PUCAS showed
varied sensitivity across different clinical factors but only
age (P = 0.041) had statistical significance. For haema-
turia, the results showed borderline positive (P = 0.054).
The heterogeneity of model performance could be
Prospective cohort

MUTH validation
ohort (N = 127)

SSCH validation
cohort (N = 147)

Prospective validation
cohort (N = 400)

7.00 [44.00, 71.00] 65.00 [58.00, 73.00] 64.00 [56.00, 70.00]

2 (56.7%) 107 (72.8%) 292 (73.0%)

5 (43.3%) 40 (27.2%) 108 (27.0%)

1 (24.4%) 83 (56.5%) 166 (41.5%)

6 (75.6%) 64 (43.5%) 234 (58.5%)

6 (12.6%) 53 (36.1%) 67 (16.8%)

11 (87.4%) 94 (63.9%) 333 (83.2%)

01 (79.5%) 122 (83.0%) 275 (68.8%)

8 (14.2%) 18 (12.2%) 114 (28.4%)

(6.3%) 7 (4.8%) 11 (2.8%)

2 (72.4%) 77 (52.4%) 239 (59.8%)

0 (15.7%) 37 (25.2%) 65 (16.2%)

(7.1%) 5 (3.4%) 22 (5.5%)

(4.7%) 28 (19.0%) 74 (18.5%)

5 (11.8%) 51 (34.7%) 154 (38.5%)

12 (88.2%) 96 (65.3%) 246 (61.5%)

filiated Hospital of Sun Yat-sen University; GMUTH, The Third Affiliated Hospital of
rcinoma; AUC, atypical urothelial cells; SHGUC, suspicious for high-grade urothelial

www.thelancet.com Vol 71 May, 2024

http://www.thelancet.com


A    Retrospective Internal Validation Cohort B    Retrospective External Validation Cohorts

Subgroups
Total
Age

Gender

Haematuria

Smoking

Clinical Scenario

≥ 65

< 65

Male

Female

Yes

No

Yes

No

Routine Screening

Recurrence Detection

Secondary Resection

Positive/Total
670/2335

403/1055

267/1280

514/1648

156/687

485/1085

185/1250

198/455

472/1880

545/1968

96/240

29/127

0.5 0.6 0.7 0.8 0.9 1.0

D

0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0

Sensitivity Specificity NPV

0.5 0.6 0.7 0.8 0.9 1.0

AUROC

1 - Specificity

Se
ns

iti
vi

ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Integrated model: 0.970 (95% CI: 0.958-0.981)

Transformer: 0.934 (95% CI: 0.916-0.952)
Top-N Feature:  0.917 (95% CI: 0.898-0.937)

Attention Bi-LSTM: 0.959 (95% CI: 0.946-0.973)

1 - Specificity

Se
ns

iti
vi

ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Entire External Validation Cohorts: 0.939 (95% CI: 0.922-0.956)

SYUTH: 0.942 (95% CI: 0.923-0.961)
GMUTH:  0.963 (95% CI: 0.931-0.994)
SSCH: 0.928 (95% CI: 0.874-0.982)
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PUCAS model: 0.917 (95% CI: 0.885-0.949)
FISH:  0.833 (95% CI: 0.791-0.874)
Cytology: 0.785 (95% CI: 0.745-0.825)

Fig. 2: Performance of PUCAS in validation cohorts. (A) ROC curves of different deep learning models and integrated PUCAS in detecting UC
in SYSMH internal validation cohort. (B) ROC curves of PUCAS in detecting UC were analysed separately for each centre and collectively for the
entire external validation cohort. (C) ROC curves of PUCAS in detecting UC in prospective validation cohorts. (D) Corresponding sensitivities,
specificities, NPVs, and AUROCs in different subgroups of retrospective validation cohorts, classified by age, sex, haematuria, smoking, and
clinical scenarios. PUCAS, The Precision Urine Cytology AI Solution; ROC, receiver operating curve; UC, urothelial carcinoma; SYSMH, Sun Yat-sen
Memorial Hospital of Sun Yat-sen University; SYUTH, The Third Affiliated Hospital of Sun Yat-sen University; GMUTH, The Third Affiliated
Hospital of Guangzhou Medical University; SSCH, The Central Hospital of Shen-Shan; LSTM, long short-term memory; NPV, negative predictive
value; AUROC, area under the receiver operating characteristic curve; FISH, fluorescence in situ hybridisation; CI, confidence interval.
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explained by higher prevalence rate of UC in older and
haematuria groups, which are also high-risk groups in
clinic. The elevated prevalence rates in these subgroups
provided an abundant supply of positive samples for
model learning, which in turn yielded improved sensi-
tivity in its diagnostic capabilities. This finding un-
derscores the utility of PUCAS for UC diagnosis in older
patients and those with haematuria. The decision clin-
ical analysis curves of PUCAS in the retrospective and
prospective validation cohorts are shown in the
Appendix (pp 25–26).

To compare the performances of PUCAS, urine
cytology, and FISH, 670 patients with UC in the retro-
spective validation cohorts were included in the analysis.
The landscape of clinical characteristics and the diag-
nostic status of the three methods for PUNLMP, and
low-grade tumours are shown in Fig. 3A. In PUNLMP,
PUCAS had a higher sensitivity (68.6%) than cytology
(14.3%) and FISH (44.4%). Furthermore, in low-grade
www.thelancet.com Vol 71 May, 2024
tumours, PUCAS had a significantly higher sensitivity
(86.8%) than cytology (36.8%) and FISH (58.6%)
(Fig. 3B). In UTUC, PUCAS achieved an improvement
in sensitivity compared to cytology and FISH, regardless
of the position (Fig. 3C). Regarding the cancer stage,
PUCAS showed significantly higher sensitivity than
cytology and FISH in the Ta and T1 stages (Fig. 3D). In
pTa and low-grade (TaLG) UC, the sensitivity of PUCAS
(85.7%) was 2-fold higher than that of cytology (36.7%)
and 1.5-fold higher than that of FISH (52.2%) (Fig. 3E).
The advantage of PUCAS was consistent in single-
occurrence and minimal (<1.5 cm) tumours (Fig. 3F
and G).

To investigate the application of PUCAS in detecting
residual tumours and monitoring the recurrence of UC,
127 (5.4%) patients in the secondary resection subgroup
and 240 (10.3%) patients in the recurrence detection
subgroup of the retrospective validation cohorts were
included in the analysis (Fig. 4A). In secondary resection
7
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Fig. 3: Sensitivity of PUCAS in the diagnosis of UC in comparison with urine cytology and FISH. (A) Distribution of PUCAS prediction
results across patients with PUNLMP, and low-grade UC with associated tumour stages and grades, and cytology and FISH results in retro-
spective validation cohorts. (B–G) Sensitivity of PUCAS, urine cytology, and FISH in indicated grades (B), UTUC (C), stage (D), early-stage (E),
number (F), and size (G) subgroups of retrospective validation cohorts. The comparison of sensitivity was assessed by McNemar test.
*P < 0.050, **P < 0.010, ***P < 0.0010. PUCAS, The Precision Urine Cytology AI Solution; UC, urothelial carcinoma; FISH, fluorescence in situ
hybridisation; AI, artificial intelligence; UTUC, upper-tract urothelial carcinoma; PUNLMP, papillary urothelial neoplasm of low malignant po-
tential; CIS, carcinoma in situ; NS, not significant.
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subgroup, PUCAS showed both higher sensitivity
(96.6%) and NPV (98.9%) compared with cytology and
FISH (Fig. 4B). PUCAS may serve as an accurate method
to detect residual tumours and help select patients for re-
TURBT. In the recurrence detection subgroup, we found
that PUCAS had higher sensitivity (94.8%) and NPV
(96.4%) than cytology and FISH (Fig. 4C). If the PUCAS-
predicted positive status was referred for endoscopic
examination, 57.5% of the endoscopies could be avoided,
with an NPV of 96.4%. Furthermore, in recurrence
detection, PUCAS showed improved sensitivity over
cytology and FISH, especially in PUNLMP (71.4% vs.
14.3% vs. 50.0%, respectively), low-grade (100.0% vs.
57.1% vs. 40.0%, respectively), stage < T2 (93.8% vs.
60.5% vs. 73.9%, respectively), and minimal tumours
(97.6% vs. 61.0% vs. 72.4%, respectively) (Fig. 4D–F). The
www.thelancet.com Vol 71 May, 2024
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Fig. 4: Performance of PUCAS in detecting residual tumours and monitoring recurrence. (A) Distribution of PUCAS prediction results across
patients in secondary resection and recurrence detection subgroups with associated pathology, tumour stages, grades, UTUC, and cytology and
FISH results in retrospective validation cohorts. (B and C) Sensitivity and NPV of PUCAS in detecting UC in secondary resection (B) and
recurrence detection (C) subgroups. (D–F) The sensitivity of PUCAS for the indicated grades (D), stages (E), and sizes (F) in recurrence detection
subgroups of retrospective validation cohorts. The comparison of sensitivity and NPV was assessed by McNemar test. *P < 0.050, **P < 0.010,
***P < 0.0010. PUCAS, the Precision Urine Cytology AI Solution; UC, urothelial carcinoma; AI, artificial intelligence; FISH, fluorescence in situ
hybridisation; UTUC, upper-tract urothelial carcinoma; PUNLMP, papillary urothelial neoplasm of low malignant potential; CIS, carcinoma in situ;
NS, not significant; NPV, negative predictive value.
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NRIs and IDIs of PUCAS compared with the other two
methods in retrospective and prospective validation co-
horts are shown in the Appendix (p 13).

In the discordant cohort, we found that PUCAS
identified 105 (37.0%) UCs correctly. With the suspi-
cious cells location function of the interactive system,
PUCAS helped cytopathologists identify 1 HGUC
(0.4%) and 15 AUCs (5.3%) missed before (Appendix p
14). The overall sensitivity of PUCAS (0.370, 95% CI:
0.313–0.429) in identifying UC in the discordant cohort
was significantly higher than that of FISH (0.148, 95%
CI: 0.100–0.207). This advantage was consistent in the
subgroup analysis, especially in PUNLMP, low-grade,
www.thelancet.com Vol 71 May, 2024
Ta, and TaLG UC (Appendix p 14). Furthermore, we
found that PUCAS helped to detect seven UCs that were
difficult to detect in the clinic, and these presented as
NHGUC, FISH negative, computed tomography (CT) or
magnetic resonance imaging (MRI) negative, and ul-
trasound negative (Appendix p 15). A hard-to-detect
example is presented in the Appendix (p 27).

To interpret the PUCAS, we visualised the predictive
results using heat maps based on cytology. Examples of
HGUC and AUC and associations with their corre-
sponding FISH and histopathology results are shown in
the Appendix (pp 28–29). There was a high consistency
between the AI-predicted areas and suspicious cells;
9
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most areas were located in the nucleus, cytoplasm, and
some background area around suspicious cells.

The coefficients of multi-modal models are shown in
Appendix (p 16). The ROC curves of multi-modal
models are shown in Appendix (p 30). The results
showed that the multi-modal model that included clin-
ical factors had improved the AUROC than PUCAS
alone in each cohort.
Discussion
Herein, we developed and validated an AI-based model
for UC detection with urine cytology using a fully
automated approach in a large cohort. Utilising a multi-
stage framework and weighted output from multiple
models, the PUCAS achieved good diagnostic perfor-
mance in retrospective and prospective validation co-
horts. In most tumour subgroup analyses, PUCAS
showed higher sensitivity than cytology or FISH.
Particularly notable were its performance in TaLG tu-
mours, minimal tumours, UTUC, residual, and recur-
rent tumours.

The primary limitation of urine cytology is its low
sensitivity, which often results in the misdiagnosis of
low-grade, early-stage, and minimal tumours2; it ranges
from 0.0% to 10.0% in PUNLMP and varies from 16.0%
to 56.0% in low-grade tumours.5,32 These findings may
be because PUNLMP has similar morphological char-
acteristics as that of normal urothelial cells and it is
difficult for cells of low-grade tumours and PUNLMP to
exfoliate. Our PUCAS model enhanced the sensitivity of
urine cytology for PUNLMP and low-grade and TaLG
tumours in the validation and discordant cohorts. This
can be explained by the fact that AI can identify subtle
features by analysing extensive image data. The
enhanced sensitivity of PUCAS is beneficial for early
diagnosis and enables accurate screening of UC in both
haematuria and non-haematuria cohorts.2 Moreover,
PUCAS can serve as a warning signal when other
diagnostic methods give negative results, particularly in
cases of equivocal endoscopy results where false-
negatives for carcinoma in situ are possible.33

PUCAS also showed improved sensitivity in detect-
ing residual and recurrent tumours in secondary
resection and recurrence detection scenarios. Secondary
resection is recommended for T1 stage and incom-
pletely resected tumours, because it can increase
recurrence-free and progression-free survival.2,34 A sys-
tematic review reported a 56% risk of residual tumours
and a 10% risk of upstaging to T2 after secondary
resection of T1 bladder cancer.35 Herein, PUCAS could
accurately detect residual tumours with a high sensi-
tivity of 96.6%, and rule out blind secondary TURBT
with an NPV of 98.9%. Given the high rate of recurrence
and progression of UC, guidelines recommend repeat
endoscopy every 3, 6, or 12 months for different risk
tumours.2 However, this frequent surveillance schedule
can cause significant discomfort and impose a sub-
stantial burden on patients. PUCAS, a preferable non-
invasive tool, can accurately identify recurrent UC with
a sensitivity of 94.8%; it can prevent endoscopy use by
57.5% with an NPV of 96.4%. Compared with the
traditional diagnostic process, PUCAS can alleviate the
burden on patients while minimising the risk of
misdiagnosis.

According to guidelines, the diagnosis of UTUC re-
lies mainly on radiology, cytological examination, and
ureterorenoscopy biopsy.3 Due to anatomical con-
straints, voided urine cytology exhibits relatively limited
diagnostic effectiveness compared with upper tract
washing cytology.36 It serves as a supplementary test
when lesions are not visible on radiology or ureter-
orenoscopy; however, ureterorenoscopy can be omitted
when a clear lesion appears on a CT/MRI scan along-
side a positive urine cytology, potentially allowing for
direct radical surgery.7 Thus, the improved sensitivity of
urine cytology aids in the accurate identification of
UTUC and concurrently reduces the need for invasive
examinations. Our results showed that PUCAS had a
high sensitivity for UTUC (92.8%), which was signifi-
cantly superior to cytology (60.2%) and FISH (75.6%),
highlighting the potential for improved clinical decision-
making.

The reported malignant rate in AUC ranges from
24% to 53%; AUC can also be caused by urolithiasis,
hyperplasia, or intravesical therapy.13 This variability of
malignancy risk makes AUC a dilemma for clinicians,
resulting in a significant number of unnecessary
endoscopic examinations that offer no additional ben-
efits in haematuria investigation.37 TPS use and expert
knowledge can reduce the reporting rate of AUC;
however, in essence, it does not reduce the false-
negative results for urine cytology. Thus, an accurate
classification system for malignancy based on the AUC
is clinically valuable. Our findings show that the
sensitivity and AUROC of PUCAS exceeded those of
FISH in retrospective and prospective validation co-
horts. Based only on cytological images, PUCAS can
aid in identifying high-risk patients in the AUC sub-
group for further evaluation.

Notably, our study is the first to compare the AI
model with FISH.8–10 Per guidelines, FISH is preferred
over other diagnostic tests, such as uCyt1 or Cxbladder.
Compared to cytology, FISH can detect genetic alter-
ations, exhibit more straightforward biological inter-
pretive features, and has higher sensitivity.5 Our results
demonstrated that PUCAS had a higher sensitivity than
FISH in terms of the AUC subgroup and tumour sub-
groups, implying that PUCAS can serve as a supple-
mentary tool or an effective alternative to FISH, as it
offers higher sensitivity and can be evaluated using a
cloud-based system.

Another advantage of the model is its interpretability
and automatability. Regarding feature extraction, our
www.thelancet.com Vol 71 May, 2024
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framework employs a multi-level approach that captures
features at both the patch and cell levels. This compre-
hensive extraction process encompasses not only rela-
tive information from the background contrast, such as
size, colour, and brightness, but also fine-grained fea-
tures of the cells, including hyperchromatic, coarse
chromatin, and irregular chromatinic rims. Further-
more, our three-model design simulates the consensus
process of voting opinions of multiple experts, thereby
enhancing classification efficiency and accuracy. For
automatability, cytopathologists only need to place the
urine cytology sections into the slide scanner, and the
scanner will complete the scan and upload the WSI
images into a cloud-based system. PUCAS helps locate
atypical or malignant cells based on WSI and generates
a score for UC detection, which reduces repetitive and
time-consuming tasks for cytopathologists.

This study has some limitations. First, the usage of
PUCAS still relied on image scanning and digitization,
which is still a time-consuming and cost barriers to real-
world use. Our further goal is to integrate the model
with microscope and realize real-time diagnosis. Sec-
ond, the PUCAS was mainly built using cytological
images alone, without considering other multi-modal
data such as epidemiological factors, additional labora-
tory tests, and radiology. As a result, PUCAS cannot
fully replicate the multi-modal diagnostic process in
clinical settings, leading to increased misdiagnoses of
PUNLMP and low-grade tumours. In future studies, we
plan to build a multi-modal prediction model based on
both urine cytology and other multi-modal data, partic-
ularly radiological data, to compensate for this limita-
tion. Third, this study was mainly conducted in China
and further validation of its generalisability to other
countries and regions is necessary.

In conclusion, based on a large cohort that included
different clinical scenarios, we developed an automatic
AI model to diagnose UC with improved sensitivity.
PUCAS can help reduce misdiagnoses, avoid unnec-
essary endoscopy, and reduce the burden on both cyto-
pathologists and patients in resource-limited areas.
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