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Abstract

Efforts to emulate the formidable information processing capabilities of the brain through neuromorphic engineering have
been bolstered by recent progress in the fabrication of nonlinear, nanoscale circuit elements that exhibit synapse-like
operational characteristics. However, conventional fabrication techniques are unable to efficiently generate structures with
the highly complex interconnectivity found in biological neuronal networks. Here we demonstrate the physical realization
of a self-assembled neuromorphic device which implements basic concepts of systems neuroscience through a hardware-
based platform comprised of over a billion interconnected atomic-switch inorganic synapses embedded in a complex
network of silver nanowires. Observations of network activation and passive harmonic generation demonstrate a collective
response to input stimulus in agreement with recent theoretical predictions. Further, emergent behaviors unique to the
complex network of atomic switches and akin to brain function are observed, namely spatially distributed memory,
recurrent dynamics and the activation of feedforward subnetworks. These devices display the functional characteristics
required for implementing unconventional, biologically and neurally inspired computational methodologies in a synthetic
experimental system.
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Introduction

The human brain is the most powerful information processor

known to man. Although the activity of individual neurons occurs

orders of magnitude slower (ms) than the clock speeds of modern

microprocessors (ns), the human brain can greatly outperform

CMOS computers in a variety of tasks such as image recognition,

especially in extracting semantic content from limited or distorted

information, when images are presented at drastically reduced

resolutions [1–4]. These capabilities are thought to be the result of

both serial and parallel interactions across a hierarchy of brain

regions in a complex, recurrent network, where connections

between neurons often lead to feedback loops [5–7]. Recent

research in systems neuroscience has developed models to explain

this combination of rapid and complex processing which view the

brain as a large network containing many recurrent loops with

both excitatory and inhibitory connections, within which feedfor-

ward sub-networks are embedded for fast signal propagation

[6,8,9].

In the brain, these excitatory/inhibitory connections between

neurons, known as synapses, are nonlinear electroionic junctions

whose conductivity changes in response to electrical and chemical

signals. The relative timing of signals arriving from either side of

the synaptic terminals, as well as larger-scale spatiotemporal

patterns of network activity during these events, strongly influence

the resultant change in synaptic strength, or plasticity [10,11], a

property postulated as the mechanistic basis for memory and

learning [12]. Recently, nanoscale electroionic circuit elements

known as atomic switches [13] have been shown to exhibit input-

dependent memory behaviors similar to short-term plasticity and

long-term potentiation in neuronal synapses, where the time

constant for conductance decay to the high resistance OFF state

depends on the strength and timing of applied voltage pulses [14].

This tendency to equilibrate produces short- and long-term

memory behaviors that enable atomic switches to function as

‘‘inorganic synapses’’ [15].

We present a detailed analysis regarding the consequences of

coupling many atomic switches together in a highly interconnect-

ed, recurrent structure to create an operational neuromorphic

device that self-assembles into a functional state. The motivation

for building complex network-based computing devices extends

beyond an interest in understanding and emulating brain function.

Alongside efforts to reduce the dimensions of circuit elements

while increasing their integration, the wiring of interconnects has

become the limiting factor in both design and performance of

electronic devices [16]. Wire delays are significantly slower than

transistor switching speeds, producing a situation where more logic

gates can be fabricated on a chip than are able to communicate in

one processor cycle [17]. This communication bottleneck can be

addressed theoretically through the use of different network

topologies, varying the number and type of interconnections.
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Complex nanowire networks are relatively simple to fabricate

using self-assembly and would therefore be ideal wiring architec-

tures, provided that they are useful.

Previously we reported an operational regime near the ‘‘edge of

chaos’’ in similar network devices, as characterized by power law

scaling of temporal metastability, avalanche dynamics and

criticality [18] reminiscent of electrical activity in biological neural

systems [19,20]. In such a state, the system is highly correlated and

theoretically achieves maximum efficiency of information transfer

while retaining a fading memory of prior states. These results

indicate a potential capacity for efficient information processing,

thereby surmounting problems associated with wire delays and

interconnect structures. The distributed nature of the atomic

switch array’s dynamics makes it a candidate platform for efficient

kernel design in the emerging field of ‘‘Reservoir Computation’’

(RC) [21]. The fact that RC does not require subtle control of

internal network dynamics and is therefore simpler to execute,

makes it an appealing route to begin using neuromorphic devices

to perform computational tasks. Complex network architectures

generated through self-assembly of functional nanoscale elements,

like those described here, offer the benefits of scalability and ease

of fabrication combined with control of distributed nonlinear

dynamics that may represent the architectural basis of a new

computational paradigm.

Results

Atomic switch network devices were characterized using a range

of potentiostatic inputs, including constant and ramped DC as well

as sinusoidal AC signals. These complex atomic switch networks

are shown to exhibit various nonlinear behaviors, depending on

the magnitude and timing of both present and prior input signals.

Behaviors include both weak (continuous I–V loop hysteresis) and

strong (discrete threshold switching) memristance as well as

nonlinear frequency response (higher harmonic generation) and

persistent fluctuations in conductivity under constant bias (recur-

rent connectivity); results which were found to agree with a recent

theoretical study of current flow in memristor networks [22].

Operation of the device using pulsed voltage stimulation produced

network-specific emergent behaviors, as spatially localized con-

ductive channels akin to feedforward subnetworks were formed

within the embedding recurrent network. While there are

significant differences between these atomic switch networks and

biological neural networks (NNs), we demonstrate the physical

implementation of high-level NN features in an inorganic

structure, including bottom-up self-assembly that is reminiscent

of neuronal growth in the brain [23], nonlinear input-dependent

conductance response which strongly resembles the function of

biological synapses [11,12], and emergent properties considered

fundamental to brain function - recurrent dynamics which gives

rise to large persistent, correlated network responses and the

activation of feedforward subnetworks [8,9,24–27].

Atomic switches, complex networks and neuromorphic
hardware

Previous reports on the synapse-like properties of single atomic

switches have demonstrated features similar to short-term plastic-

ity and long-term potentiation, where applied bias voltage

produced a junction conductance dependent on the history of

stimulation (pulse frequency, length) [14]. Individual atomic

switches exhibit time-dependent nonlinear conductance due to

several related mechanisms: (1) bias induced Ag+ migration, (2)

electrochemical redox reactions involving Ag+/Ag0 to produce

metallic filaments, and (3) an associated non-equilibrium a/b-

Ag2S phase transition [28], which all compete with thermody-

namically driven stochastic renormalization to the equilibrium

OFF state. Though atomic switches can be configured to operate

in an essentially nonvolatile manner similar to memristors—two-

terminal circuit elements whose resistance depends on the history

of charge passed through them [29]—their volatility indicates that

they are more properly classified as ‘‘memristive systems’’ [30,31].

These mechanisms collectively produce the memristive switch-

ing and synaptic memory functions exhibited by a single atomic

switch. Specifically, ‘weak’ memristance resulting from redistribu-

tion of Ag+ dopant cations across the insulator leads to ‘strong’

memristance characterized by abrupt switching through metallic

filaments formed once the Ag+ cations reach the cathode and are

reduced to metallic silver [13]. TEM studies have shown that the

metallic silver filaments formed during switching are surrounded

by a sheath of b-Ag2S, a conductive phase of silver sulfide

normally unstable below 170uC [28], possessing a body-centered

cubic structure with sulfide anions forming channels in which

silver cations are delocalized, highly mobile and dynamically

correlated [32,33]. This non-equilibrium phase transition is

attributed to a relaxation of strain induced by lattice mismatch

between Ag0 and a-Ag2S, the electrically insulating room

temperature phase [34]. In the absence of applied bias,

thermodynamic pressures return the Ag2S to its room-T a-phase,

which drives the dissolution of the Ago filaments and turns the

atomic switch OFF at a rate dependent on the history of applied

bias, producing the observed memory effects.

A great deal of effort has been put towards building biologically

inspired computational hardware [35–42], though matching the

complexity of the brain in a usable electronic device presents an

exceedingly difficult engineering challenge. Fabrication require-

ments force design concessions, such as approximating the

complex, recurrent connectivity between neurons by a simpler

network geometry. The amenability of crossbar structures to

conventional fabrication techniques has led to their use in

neuromorphic hardware, with pre- and post-synaptic CMOS

neurons connected by memristive elements at the crosspoints [43].

This is an ideal hardware implementation of a 3-layer neural

network model [44], where input and output neurons are

connected by a synaptic ‘‘hidden layer’’ of variable strength, and

is also a promising platform for building dense, fast solid-state

memory devices [45]. However, the structural simplicity of the

crossbar architecture is both a strength, enabling independent

control of each synaptic element, and a weakness, since the well-

defined grid lacks complex structures with the recurrent connec-

tions believed to be essential to brain function [6,25]. While it is

possible to program these features into a software model

implemented on neuromorphic hardware, the physical existence

of these complex structures may be essential to successfully

generate the requisite spatiotemporal interactions between multi-

ple signals simultaneously traveling through the network [11,46].

Device fabrication and characterization
Based on the view that recurrent connectivity is essential to

brain-like function, we have built, characterized and operated

devices using massively interconnected (109 junctions/cm2 ac-

cording to analysis of SEM images), silver nanowire networks

functionalized with interfacial Ag|Ag2S|Ag atomic switches.

These nanowire networks were prepared through self-assembly

without pre-patterning of the network topology using the

electroless deposition of Ag from Cu inside the SU-8 reaction

well of an I/O device platform [18,47]. Specifically, spontaneous

oxidization of metallic copper through reaction with dilute

aqueous solutions of AgNO3 produces a metallic silver structures
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with variable morphologies depending on the concentration of Ag+

and distribution of Cu [48–50]. Dendritic silver nanowires with

minimum feature sizes ,100 nm seen in Figure 1b were produced

by using lithographically patterned Cu posts shown in the inset of

Figure 1a. Control over the size and distribution of Cu seeds

increased device yield by ensuring the formation of conductive

pathways between the Pt device I/O electrodes as seen in

Figure 1b. Ag|Ag2S|Ag interfaces were formed spontaneously

within the network during gas phase sulfurization [51]. Following

optimization of fabrication protocols, a total of 96 networks were

used for the device characterization described below.

Theoretical analysis of current flow in memristor networks

during bias voltage sweeps indicated the possibility of a phase

transition in device behavior from ‘weak’ to ‘strong’ memristive

regimes [22]. Initial voltage sweeps of these network devices

(Figure 2a and S1) typically demonstrated smooth, pinched

hysteresis loops characteristic of weakly memristive systems

followed by an abrupt, nearly discontinuous jump to a distinct,

high conductance ON state occurs at an activation bias voltage

(Va). This behavior represents activation of the network and is

shown as an illustrative example of a network device undergoing a

behavioral phase transition similar to the bias-driven forming step

required to activate single resistive switches. Following network

activation, devices subjected to repeated bias sweeping generally

exhibit robust, strong memristive behavior, typified by hard

switching (inset). Robust switching over 10,000 cycles was

demonstrated at an operational threshold voltage (Vt) of reduced

magnitude (Figure S2) as compared to the formation bias voltage,

a general phenomenon in resistive switches [52]. While the specific

magnitude of Va and Vt differ significantly between devices due to

inherent variability in the solution-phase methods used to fabricate

them, the qualitative transition from weak to strong memristive

behavior was observed regularly, consistent with theoretical

predictions [22].

Similar to the electroforming step usually required to activate

single atomic switches and memristors [52], the observed

transition from weak to strong memristive behavior is assigned

to two related mechanisms. In poorly conducting regions

comprised mainly of Ag2S, anodic silver dissolves into and travels

across the electrically insulating sulfide as Ag+, decreasing

resistance and producing a weakly memristive effect. In regions

of higher Ag+ dopant concentrations, mobile cations reach the

cathode and are reduced to Ag0, creating metallic filaments across

the insulator that cause an abrupt change to an ON state with a

sharp increase in conductance at Vt associated with the

electrochemical process of filament formation. At the network

level, the bias-induced creation of additional memristive junctions

and filament formation across existing ones combine to produce

the theoretically predicted transition of network I–V behavior to a

strongly memristive phase (schematically illustrated in Figure 2b–

d) as the proportion of switching elements in the network exceeds

the percolation threshold (50%) [22]. Having undergone this

transition, the continuously swept network operates as a hard

switching memristor shown in Figure 2a (inset). All further data

presented was acquired from devices following activation.

Network-specific properties
While weak and strong memristive behavior can be exhibited by

single resistive switches, the most interesting features of this

complex atomic switch device are its network-specific properties.

In order to confirm that the entire network was involved in

processing the input signals, devices were imaged using an IR

camera with 20 mK sensitivity to track Joule heating from current

flow during slow bias sweeps. The IR images revealed power

dissipation occurring across the network, indicating that the phase

change in network I–V behavior was not attributable to the

formation of a single maximum conductivity pathway of switches

arranged in series between the active electrodes [18]. The

distribution of activity indicates that the observed I–V character-

istics are due to the sum of parallel current flow, meaning that

network structure and connectivity are actively influencing device

function.

As recent theoretical models predict passive generation of

second harmonics in both singular memristors and in random

networks, the distribution of switch function throughout the

network was examined through analysis of the device’s frequency

response [22,53]. Simulation of current flow in memristor

networks indicate that 2nd harmonic generation will occur under

an applied sinusoidal voltage in networks whose percentage of

hard switching junctions exceeds the percolation threshold [22].

Further, the relative magnitude of higher harmonics is predicted to

increase with the relative number of hard switching junctions.

Following activation, device response to a 10 Hz sinusoidal voltage

signal varying in strength from 250 mV to 4 V shows a large

increase in higher frequency components after functionalization

(Figure 3b). The proportion of higher harmonics generated

increases with signal amplitude (Figure 3c), with the largest

increase occurring between 250 and 500 mV. A larger degree of

higher harmonic generation is consistent with an increased

number of memristive junctions operating in the hard switching

regime above Vt (,0.5 V). Both the distributed power dissipation

[18] and harmonic generation are characteristic of activity

distributed throughout the network.

Having characterized atomic switch operation in an intercon-

nected complex network, we examined the device for emergent

behaviors specific to its brain-like recurrent structure. Structurally,

the atomic switch network is recurrent in the sense that there exist

pathways such that electrical signals produced at one junction may

lead to (delayed) feedback at the same junction. Here we present

experimental evidence of spatially distributed and correlated

network dynamics, which are attributed to such recurrent

connectivity. These recurrent dynamics are presented as an

emergent property of the atomic switch network.

Applying a constant 1 V DC bias (Figure 4a) produced

persistent, bidirectional fluctuations—both increases and decreas-

es—in network conductivity of large magnitudes (,20–150%)

over a range of time scales (seconds-hours). In the absence of

recurrent structures within the network, the filamentary mecha-

Figure 1. Device Fabrication. (a) SEM image of complex Ag
networks (scale bar = 10 mm) produced by reaction of aqueous AgNO3

(50 mM) with (inset) lithographically patterned Cu seed posts (scale
bar = 1 mm). (b) High resolution image of the functionalized Ag network
at the device electrode interface (Pt) showing wire widths ranging from
100 nm to 3 mm (average ,1 mm) and lengths extending from a few
microns to almost a millimeter (scale bar = 700 nm).
doi:10.1371/journal.pone.0042772.g001
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nism of an atomic switch implies that conductivity would increase

monotonically under constant DC bias. The applied voltage leads

to the thickening of filaments until the potential drop across the

junctions is insufficient to reduce more silver cations [13].

However, large bidirectional fluctuations (DI greater than 100%

on the scale of hours) in the current response persisted for several

days under constant applied voltage, demonstrating that the

complex network connectivity inherently resists localized positive

feedback that would lead to the serial formation of a single,

dominant high conductivity pathway between electrodes. Rather,

recurrent loops in the network create complex couplings between

switches, resulting in network dynamics that do not converge to a

steady state even under constant bias. A single switch turning ON

does not simply lead to an increased potential drop across the next

junction in a serial chain, but redistributes voltage across many

recurrent connections that can ultimately produce a net decrease

in network conductivity. This behavior represents a network-scale

analog of defect-defect interactions that have been observed to

produce current fluctuations in metal nanobridges [54]. The

nanoscale switch filaments couple these interactions with electro-

chemical redox processes, leading to significant changes in the

conductivity state of the entire network.

Figure 2. Network Activation - memristive behavior. (a) Representative example of initial bias sweeps (0–5 V sweep at 1 V/s) applied to a
pristine device which steadily activate higher percentages of atomic switches, resulting in increased current. After 11 sweeps, the device resistance
decreases from ,10 MV to ,500 V. Subsequent 61.5 V bipolar sweeps result in repeatable pinched hysteresis behavior (inset: ROFF = 25 kV,
RON = 800 V), and bistable switching. (b–d) Schematic representation of the mechanism producing the I–V characteristics shown in (a). The network
initially consists of weakly memristive junctions and ohmic contacts (b). Continued application of unipolar bias voltage (c) drives the dissolution of
silver into silver sulfide, increasing the number of memristive elements, while cation migration across extant memristive junctions leads to filament
formation and the onset of hard switching behavior. (d) After the proportion of strong memristors exceeds the percolation threshold (r.0.5), the
network functions reliably in the hard switching regime.
doi:10.1371/journal.pone.0042772.g002

Figure 3. Frequency Response – distributed conductance. (a) Amplitude spectrum from a Fourier transform of a control device’s response to a
2 V, 10 Hz sinusoidal input signal compared to (b) that of a functionalized device which shows enhanced overtones of the input signal with respect
to (a). (c) Plot of 2nd and 3rd harmonic generation in current response as a function of bias voltage in both functional (black) and control (gray)
networks. Harmonic magnitudes are represented as percentage of the fundamental for a 10 Hz sinusoidal input signal.
doi:10.1371/journal.pone.0042772.g003
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These fluctuations are of a magnitude significantly greater than

what can be considered noise. An internal control experiment

compared Fourier transformed current responses (Figure 4b) of the

devices to constant voltage before and after functionalization. The

formation of atomic switch junctions expands the degree of

correlation in current fluctuations, producing 1/f-like behavior

across the entire sampled range, far exceeding that of control

devices (unsulfurized silver network, grey line in Figure 4b), which

flattens to white noise and some high energy, high frequency

fluctuations attributed to arcing between neighboring wires.

Functionalization with atomic switch elements increases the

influence of past events on the present state of the network, in

accordance with their memristive characteristics [14,15,55]. This

results in an expanded degree of correlation in the measured

frequency response. Similar 1/f spectra have been observed along

with current fluctuations in other resistive switching systems,

exhibiting relative resistance changes DR/R ranging from ,0.002

for metallic filaments to an experimental and theoretical maxi-

mum of 0.5 in the semiconducting high resistance OFF state [56].

The network device of Figure 4 is operating in an intermediate

state with an average resistance of 172 kV (compared to

ROFF.10 MV) and fluctuations of DR/R,1. In order to produce

relative resistance changes of such high magnitude, switching

events within the network must be correlated. While stochastic

processes may be involved in the correlation of these fluctuations

[55,57], their magnitude and persistence is an emergent feature of

recurrent connectivity in the device architecture that has not been

observed in simpler atomic switch geometries.

Inside the generally recurrent structure of the brain’s neural

network, there is evidence for the existence of feedforward

subnetworks utilized for the fast propagation of certain signals [24].

In this device, persistent fluctuations in current under constant DC

bias are produced by the recurrent network architecture, creating

operational dynamics that resist the feedfoward activation of serial

chains of switches. However, by altering the form of the input signal,

we were able to independently operate conductance channels

between different pairs of electrodes within the same device. The

application of a single, large voltage pulse (63 V, 1 s) selectively

switched connections between electrode pairs ON and OFF

(Figure 5a) with a RON/ROFF ratio greater than 30. In the example

shown, the conductive paths between the two channels overlap

spatially, yet are switched independently, indicating that local sub-

regions of the network can transition to distinct operational modes

despite being embedded within a highly interconnected, largely

metallic structure. This is analogous to the presence of feedforward

subnetworks within the recurrent architecture of the cortex. Single

pulses of sufficient magnitude overwhelm the recurrent dynamics and

induce feedforward activation of local sub-regions along a path

connecting the involved pair of electrodes without significantly

altering the conductivity of other spatially intertwined channels

within the same nanowire network.

The degree to which pulse-mode channel creation influences

overall network connectivity can be visualized in electrode

resistance cross-correlation matrices (Figure 5b). In this case, net

electrode resistance is calculated from the pair-wise resistances to

be a representative measure of the overall connectivity of a given

electrode to the network. The correlation strength (denoted by

color) represents the degree to which a pair of net electrode

resistances fluctuate in unison, interpreted as a measure of the

number of shared network sub-regions connected to both

electrodes (Supporting Information). Correlation strength increas-

es strongly between electrodes connected by an ON channel, and

decreases again when the channel is switched OFF, with a varying

degree of influence on electrodes not directly involved in the

switching. This implies that spatially central regions of the network

can be selectively associated with particular pairs of electrodes

without globally increasing the network connectivity. However,

when conductive channels exist between all four electrodes, the

overall magnitude of correlation in the network is correspondingly

large, as fluctuations are spread evenly throughout the increasingly

metallic network. This simple example of the interaction between

local and global operational characteristics is a promising indicator

of the possibility for the creation of a brain-like hierarchy of

distinct functional regions within a single network where the

functional connectivity of the network itself is both dynamic and

self-organized [58].

Discussion

Using a simple, two-step fabrication procedure combining top-

down and bottom-up fabrication techniques, we have created

functional neuromorphic devices based on a self-assembled, complex

network architecture. We describe these atomic switch networks as

neuromorphic not only in that the massively interconnected,

dendritic features observed in biological neural networks inspired

the device architecture, but also due to several important network

Figure 4. DC Response – recurrent dynamics. (a) Time traces of
current response to 1 V DC bias show large current increases and
decreases at all time scales around a mean of 5.81 mA (172 kV); shorter
time traces (ii–iii) are subsets of (i). Representative device parameters:
ROFF.10 MV, RON,20 kV, VT = 3 V during activation (b) Fourier
transforms of DC bias response for Ag control (grey) and functionalized
Ag-Ag2S (black) networks. The power spectrum of the functionalized
network displays 1/fb power law scaling (b= 1.34).
doi:10.1371/journal.pone.0042772.g004
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scale properties reported here. The devices demonstrate weak and

strong memristive behaviors, as well as higher harmonic generation,

confirming theoretical predictions on current flow through memristor

networks. Previously unreported emergent behaviors specific to the

complex architecture were observed as persistent bidirectional

fluctuations of the current in response to constant applied voltage

and the pulse-based feedforward switching ON and OFF of localized

conductance channels within the highly interconnected network.

Despite lacking the brain’s rich assortment of neurotransmitter

systems, with distinct excitatory and inhibitory neurons, the complex

network of atomic switches produces multiple behaviors from a single

basic unit through a capacity for localizing function in subnetworks

inside a structure correlated by the nonlinear memory response of

individual atomic switches. This diversity of function indicates the

device’s potential as a universal approximator of dynamical systems

[59], with possible applications in physically implementing uncon-

ventional computational strategies [21] and as an inorganic

experimental platform for the investigation of systems neuroscientific

theories of biological brain function.

Materials and Methods

Substrate Fabrication
Electrodes were patterned on the surface of a Si wafer (525 mm

thickness; p-type; 100 mm diameter; 500 nm thermal oxide) by

photolithography. A Cr/Pt (15/150 nm) bilayer was deposited

using e-beam evaporation. Subsequently, microfluidic reaction

wells were patterned from a thick layer of SU-8 (approx. 500 mm)

deposited by spin coating. The resist was UV exposed with a dose

of 1200 mJ/cm2 followed by a post-exposure bake beginning at

65uC and ramping up to 95uC before cooling to room temperature

at 1uC/min. The SU-8 was developed by immersion in PGMEA

(Propylene Glycol Methyl Ether Acetate). Fully developed wafers

were rinsed with isopropanol and hard baked at 130uC on a

hotplate in N2 atmosphere to increase SU-8 resistance to high

temperatures.

Network Synthesis and Functionalization
Electroless deposition of Ag from Cu was performed by

pipetting aqueous AgNO3 (Fischer, 99.98%) at concentrations

ranging from 0.1–100 mM into microfluidic cells containing Cu

seed posts, leading to a spontaneous reaction between Ag+ and Cu.

Optimal conditions were achieved with Cu posts ranging from

0.25–4 mm in diameter at pitches of 0.5–4 mm reacted with

50 mM AgNO3, sulfurized at 130uC for 10 minutes under N2 flow

at atmospheric pressure. The silver networks self-assembled during

this processes, and were then functionalized by reaction with sulfur

(Sigma-Aldrich, 99.5%) in a Pyrex tube. The sulfur was melted in

an evaporation boat at 130uC and delivered to the substrate by N2

flow.

Measurement Apparatus
Electrical characterization of the devices was conducted using

four Pt electrodes positioned around the edges of the Ag network.

Current-voltage spectroscopy was conducted using a bipotentiostat

(Pine Instruments model AFCBP1) in conjunction with a DAQ

module (National Instruments USB 6259) at a sample rate of

10 kHz. Measurements were performed in a two-electrode

configuration. Multi-channel resistance measurements were ob-

tained using a multiplexed (National Instruments PXI 1073) SMU

(National Instruments PXI 4130). The entire I/O system was

housed in a Faraday cage and mounted on a vibration isolation

table (TMC). Devices were characterized after each stage of the

fabrication cycle. Subsequent data analyses were carried out using

MATLAB 2010b (MathWorks) and Origin 8.1 (OriginLab

Corporation).

Network Resistance Correlations
The full dataset used in Figure 5b contained resistance data

from all 6 combinations of the 4 electrodes in a device (for clarity,

only 2 combinations are shown in Figure 5a). The network

resistance of each electrode was calculated as the parallel

Figure 5. Distributed Memory Storage from Network-scale Switching. (a) The device operates as a 2-bit non-volatile memory device. The
resistance states across two channels (i–iii and ii–iv) are monitored. ON/OFF switching of each channel is induced using super-threshold pulses (3 V,
1 s in duration); the threshold voltages for each channel are ,1.5 V. The resistances are measured every 5 s with a sub-threshold 200 mV, 100 ms
pulses. (b) Although the device operates with a four state output (both channels ON, 1 ON/1 OFF, etc), the network’s internal configurations show
diverse correlated patterns, from no correlation (blue) to total correlation (yellow). The figure shows correlation coefficients of channel resistances for
all 6 pairwise electrode combinations. The correlation coefficients are calculated during each of the 4 network switching configurations; the black and
red bars (insets) show the channels that are ON in the switching state.
doi:10.1371/journal.pone.0042772.g005
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resistances to the other 3 electrodes. The dataset was parsed into

the appropriate subsets (A on and B off, etc.) and the MATLAB

function corrcoef() was used to calculate the correlation coefficients

for the different configurations.

Supporting Information

Figure S1 Device Activation. (a) Initial bias sweeps (67.5 V at

1 V/s) demonstrate weakly memristive behavior with increasing

hysteresis magnitude (70% increase in maximum ON/OFF, from

1.12 to 1.92 after 8 sweeps). (b) Bias sweeps from (a) rescaled to

include the hard switching (ON/OFF ratio of 14.3, 650% increase

from maximum weak ON/OFF) phase transition event at

Va<7.5 V.

(TIF)

Figure S2 Robust Switching. Operation of a device following

the phase transition (activation) exhibiting typical, robust pinched

hysteresis/switching. Shown device parameters: sweep

rate = 103 V/s (1 kHz), RON = 1 kV, ROFF.20 kV, Vt = 0.5 V.

(TIF)
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