
REVIEW
published: 01 May 2019

doi: 10.3389/fmolb.2019.00030

Frontiers in Molecular Biosciences | www.frontiersin.org 1 May 2019 | Volume 6 | Article 30

Edited by:

Cordula Enenkel,

University of Toronto, Canada

Reviewed by:

Youming Xie,

Wayne State University, United States

Dana Reichmann,

Hebrew University of Jerusalem, Israel

*Correspondence:

Shigeo Murata

smurata@mol.f.u-tokyo.ac.jp

Specialty section:

This article was submitted to

Protein Folding, Misfolding and

Degradation,

a section of the journal

Frontiers in Molecular Biosciences

Received: 05 February 2019

Accepted: 15 April 2019

Published: 01 May 2019

Citation:

Motosugi R and Murata S (2019)

Dynamic Regulation of Proteasome

Expression. Front. Mol. Biosci. 6:30.

doi: 10.3389/fmolb.2019.00030

Dynamic Regulation of Proteasome
Expression
Ryo Motosugi and Shigeo Murata*

Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan

The 26S proteasome is a multisubunit complex that catalyzes the degradation of

ubiquitinated proteins. The proteasome comprises 33 distinct subunits, all of which

are essential for its function and structure. Proteasomes are necessary for various

biological processes in cells; therefore, precise regulation of proteasome expression

and activity is essential for maintaining cellular health and function. Two decades of

research revealed that transcription factors such as Rpn4 and Nrf1 control expression of

proteasomes. In this review, we focus on the current understanding and recent findings

on the mechanisms underlying the regulation of proteasome expression, as well as the

translational regulation of proteasomes.
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INTRODUCTION

The ubiquitin-proteasome system (UPS) is a major protein degradation pathway present in all
eukaryotes. Substrate proteins are covalently modified by ubiquitin, recognized by ubiquitin
receptors, and degraded by the proteasome. The 26S proteasome is a large protease complex
that selectively recognizes, unfolds, and degrades ubiquitinated proteins in an ATP-dependent
manner (Baumeister et al., 1998). The 26S proteasome consists of the 20S core particle (CP)
and the 19S regulatory particle (RP) (Figure 1). The CP is a barrel-shaped complex composed of
two heptameric α-rings (α1–α7) and two β-rings (β1–β7) arranged in an α-β-β-α order. Three
catalytic subunits with protease activity (β1, β2, and β5) are contained within the β-ring. The RP
comprises six AAA+ ATPase subunits (Rpt1–Rpt6) and 13 non-ATPase subunits (Rpn1–Rpn3,
Rpn5–Rpn13, and Rpn15). The ATPase subunits form a hetero-hexameric structure that mediates
substrate unfolding, CP gate opening, and translocation of substrates into the CP. Rpn1, Rpn10,
and Rpn13, which contain a specific motif for recognition of ubiquitin or ubiquitin-like domains,
bind to ubiquitin chains (Deveraux et al., 1994; Husnjak et al., 2008; Shi et al., 2016). Rpn11
acts as a deubiquitinating enzyme that catalyzes the removal of ubiquitin chains from substrates
(Verma et al., 2002). Ubiquitin-specific protease 14 and ubiquitin carboxyl-terminal hydrolase
37 are deubiquitinating enzymes that interact with Rpn1 and Rpn13, respectively (Hamazaki
et al., 2006; Shi et al., 2016). The complex structure of the proteasome requires precise assembly
for the generation of a functional unit. The CP and RP are constructed separately with the
assistance of specific assembly chaperones. During assembly of the CP, PAC1–PAC4/Pba1-Pba4
and POMP/Ump1 assist in the formation of the α-ring and β-ring in mammals/yeast (Bai et al.,
2014). POMP/Ump1 also mediates dimerization of half-CPs to form mature CPs. Assembly of the
RP is mediated by p27/Nas2, p28/Nas6, S5b/Hsm3, and PAAF/Rpn14.
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FIGURE 1 | The architecture of the 26S proteasome. The human 26S proteasome structures obtained by cryo-electron microscopy. Because Rpn13 is not included

in the cryo-EM data, the structural data of Rpn13 obtained by solution NMR was also used. The structural data were derived from RCSB PROTEIN DATA BANK (PDB

ID: 6MSK and 5YMY).

Because the proteasome catalyzes the degradation of
many proteins associated with various biological processes,
maintaining adequate proteasome activity is essential for cellular
homeostasis. Inappropriate increases or decreases in proteasome
activity underlie various human diseases (Kumatori et al., 1990;
Chen andMadura, 2005; Rubinsztein, 2006; Tomaru et al., 2012).
Proteasome activity is decreased in autoinflammatory syndromes
and neurodegenerative diseases but increased in cancer cells. To
ensure precise modulation of proteasome activity, expression
of proteasome subunits and activity of proteasome assembly
chaperones needs to be controlled adequately. The abundance of
proteasomes or proteasome subunits is associated with specific
physiological features of cells, such as lifespan, senescence,
and pluripotency. Increased expression of Rpn4, which acts
as a transcription factor, extends the lifespan of budding yeast
(Kruegel et al., 2011). In multicellular organisms such as aging
fruit flies, overexpression of Rpn11 restores 26S proteasome
activity, resulting in lifespan extension (Tonoki et al., 2009).
Increased expression of Rpn6 extends the lifespan of nematodes
under proteotoxic stress conditions (Vilchez et al., 2012a). In
human embryonic stem cells, increased expression of Rpn6
maintains high levels of proteasome activity (Vilchez et al.,
2012b). Overexpression of β5 restores proteasome activity
in multipotent human bone marrow stromal cells, improves
the senescent phenotype, and maintains pluripotency (Lu
et al., 2014). Since these subunits are not supposed to work
outside the proteasome, it is most likely that the increase in

the proteasome activity is responsible for these effects. While
further investigations are needed to clarify how overexpression

of a single subunit recovers the proteasome activity, an
increase or decrease in proteasome expression is involved in

various biological processes. Here, we summarize the current
understanding of the molecular mechanisms underlying the
regulation of proteasome expression.

TRANSCRIPTIONAL MECHANISMS
LEADING TO CONSTITUTIVE
PROTEASOME EXPRESSION

Expression of proteasome subunits and proteasome assembly
chaperones is coordinately regulated at the transcriptional level
to maintain proteasome function. Although this regulatory
mechanism remains to be elucidated, certain transcription
factors involved in proteasome regulation were identified in
the last two decades. In budding yeast, coordinated expression
of proteasome genes is mediated by Rpn4. Rpn4, originally
identified as a protein associated with the 26S proteasome,
binds to the conserved sequence motif known as proteasome-
associated control element (PACE) in the promoter region of
all proteasome subunit genes and some proteasome assembly
chaperone genes (Mannhaupt et al., 1999; Shirozu et al., 2015).
The Rpn4 protein is extremely short-lived (t1/2 ≈ 2min)
and is degraded continually by the proteasome; therefore,
Rpn4 accumulates and promotes proteasome expression under
conditions of proteasomal dysfunction (Xie and Varshavsky,
2001), thereby playing a compensatory role in response to
decreased proteasome activity. By contrast, lack of Rpn4 or PACE
sequences in yeast decreases proteasome activity and resistance
to various stresses such as DNA damage and oxidation (Wang
et al., 2008). The transcription factor Rpn4 is therefore essential
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FIGURE 2 | The transcription factor Nrf1 is processed and activated by DDI2

under conditions of proteasomal dysfunction. Under normal conditions, Nrf1 is

degraded via the ERAD pathway. In proteasomal dysfunction, Nrf1 is

processed by the aspartic protease DDI2; the mature form of Nrf1 then

translocates to the nucleus to induce expression of proteasome genes.

for stress-induced proteasome expression in a negative feedback
loop, as well as for its constitutive expression.

Despite the importance of Rpn4 in yeast, there are no
orthologs of Rpn4 or the PACE sequence in mammalian
cells. However, several transcription factors that regulate the
expression of proteasome subunits have been identified. Nuclear
transcription factor Y (NF-Y) is a complex composed of NF-
YA, NF-YB, and NF-YC; this complex binds to the CCAAT
motif in the promoter of target genes. The CCAAT motif
is present in six CP subunit genes (α2, α5, α7, β3, β4,
and β6), five RP subunit genes (Rpt1, Rpt5, Rpt6, Rpn10,
and Rpn11), and one assembly chaperone (p28) (Xu et al.,
2012). Knockdown of NF-YA downregulates proteasome genes
and decreases cellular proteasome activity. Forkhead box
protein O4 (FOXO4), the mammalian ortholog of DAF-16
in nematodes, is crucial for maintenance of increased levels
of Rpn6 and high proteasome activity in human embryonic
stem cells (Vilchez et al., 2012b). Signal transducer and
activator of transcription 3 (STAT3), which is activated by
JAK phosphorylation upon cytokine signaling in the JAK/STAT
pathway, regulates expression of β subunits and mediates
epidermal growth factor-induced proteasome upregulation
(Vangala et al., 2014). Knockdown of STAT3 downregulates
β5; accumulation of activated STAT3 results in the induction

of β5. These findings explain the induction of a particular set
of constitutive proteasome subunits by specific transcription
factors in mammalian cells; however, the significance of the
mechanism by which different transcription factors separately
regulate a part of the subunits is not understood. A recent
study suggested that the compensatory increase in proteasome
expression in mammalian cells is induced by nuclear factor
erythroid-derived 2-related factor 1 (NFE2L1, also known
as Nrf1) (Radhakrishnan et al., 2010). Nrf1 upregulates
expression of all proteasome subunits and proteasome assembly
chaperones in response to proteasome inhibition, leading to
de novo proteasome synthesis. Therefore, Nrf1 is considered a
pivotal regulator of proteasome expression in the presence of
proteasomal dysfunction.

MOLECULAR CHARACTERISTICS OF THE
TRANSCRIPTION FACTOR NRF1

Nrf1 belongs to the cap “n” collar basic leucine zipper
(CNC-bZIP) family of transcription factors, which includes
six transcription factors: Nrf1 (Chan et al., 1993), Nrf2 (Moi
et al., 1994), Nrf3 (Kobayashi et al., 1999), nuclear factor
erythroid 2 (NF-E2) p45 subunit (Andrews et al., 1993), BTB
and CNC homolog 1 (Bach1), and Bach2 (Oyake et al., 1996).
All of these proteins contain a CNC domain and a bZIP
domain. The bZIP domain has two structural features, a region
enriched in arginine and lysine residues (basic region) and a
heptad repeats of leucine residues (leucine zipper) (Ellenberger,
1994). The basic region recognizes a specific DNA sequence,
whereas the leucine zipper mediates dimerization with other
bZIP proteins. Because CNC-bZIP proteins cannot bind DNA
as monomers, they form heterodimers with small Maf proteins,
which are also bZIP proteins, for transcriptional activation
(Johnsen et al., 1996). The CNC domain is conserved between
insects and mammals and is necessary for the DNA binding
and transactivation capacity of CNC-bZIP proteins (Sykiotis and
Bohmann, 2010).

A heterodimer of a CNC-bZIP protein and a smallMaf protein
binds to the antioxidant response element (ARE) sequence
located in the promoter regions of various genes involved in
antioxidant responses and metabolic regulation (Rushmore et al.,
1991; Wasserman and Fahl, 1997). The ARE core sequence 5′-
RTGACnnnGC-3′ corresponds to the Nrf1 binding consensus
sequence 5′-RTGACTCAGC-3′, which was recently identified
using chromatin immunoprecipitation (Baird et al., 2017).
Notably, this binding sequence is present in the promoter region
of all 33 proteasome subunit genes. Although Nrf2 recognizes
the same consensus sequence as Nrf1, proteasome genes are
predominantly regulated by Nrf1 and not Nrf2 (Hirotsu et al.,
2012; Baird et al., 2017). However, Nrf2 induces proteasome
expression in several types of cancer cells in a p53-dependent
manner (Walerych et al., 2016). Although the role and target
genes of Nrf1 differ from those of Nrf2, the precise mechanisms
underlying the regulation of these two transcription factors need
further investigation.
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MOLECULAR MECHANISM OF NRF1
ACTIVATION

Normally, Nrf1 localizes to the endoplasmic reticulum (ER) via
a transmembrane domain in its N-terminus (Wang and Chan,
2006; Zhang et al., 2007). ER-associated protein degradation
(ERAD)mediates degradation of misfolded ER-resident proteins,
and Nrf1 is continuously degraded by the ERAD pathway. In
this pathway, Nrf1 is translocated from the ER to the cytosol by
the AAA+ ATPase p97/valosin containing protein, ubiquitinated,
and degraded by the proteasome (Tsuchiya et al., 2011). Because
Nrf1 undergoes rapid degradation by the proteasome, inhibition
of the proteasome results in significant accumulation of Nrf1,
which leads to compensatory expression of proteasome subunit
genes (Figure 2).

Nrf1 is cleaved and translocated to the nucleus, where
it becomes transcriptionally active (Radhakrishnan et al.,
2014; Sha and Goldberg, 2014). DNA damaged inducible
1 homolog 2 (DDI2; DDI1/VSM1 in yeast), an aspartic
protease, was recently identified as a critical regulator of Nrf1
activation (Koizumi et al., 2016). In DDI2 mutant cells, the
processed form of Nrf1 disappears, and the full-length form
accumulates. Moreover, compensatory expression of proteasome
genes in response to proteasome inhibition is suppressed
in DDI2-deficient cells. The contribution of DDI family
proteins to Nrf1 activation was also observed in nematodes
(Lehrbach and Ruvkun, 2016). These findings suggest that
the mechanism underlying Nrf1 activation is highly conserved
among multicellular organisms.

PROTEASOME EXPRESSION IN
RESPONSE TO NUTRIENT CONDITIONS

Mechanistic target of rapamycin complex 1 (mTORC1) is
activated in the presence of high nutrient levels or in
response to growth factors; it then promotes cell growth
and proliferation by inducing protein and lipid synthesis
(Dibble and Manning, 2013). Besides, mTORC1 activation
promotes protein degradation by upregulating proteasome
expression, thereby increasing the intracellular pool of amino
acids for new protein synthesis (Zhang et al., 2015). Sterol
regulatory element binding protein (SREBP-1), encoded by
the SREBF1 gene, regulates expression of lipogenic genes; its
activation is stimulated by growth factor signaling through
mTORC1 (Ricoult and Manning, 2013). Recent studies indicate
that SREBP-1 is activated by mTORC1 and induces Nrf1
expression and thus proteasome expression (Figure 3) (Zhang
and Manning, 2015; Zhang et al., 2015). However, activated
mTORC1 phosphorylates and inhibits ATG proteins involved in
autophagy induction, including ATG13 and ATG1 (Hosokawa
et al., 2009; Dibble and Manning, 2013). Accordingly, mTORC1
oppositely regulates the UPS and autophagy in response to
nutrient conditions.

PI3K/Akt signaling, a key regulator of mTORC1 activity,
negatively regulates FOXO transcription factors, which induce
cell cycle arrest and apoptosis (Brunet et al., 2010; Zhang

FIGURE 3 | Regulation of the expression of proteasome genes. Proteasome

dysfunction and mTORC1 activation induce transcription of proteasomal

genes in an Nrf1-dependent manner. MAP kinase and ribosomal dysfunction

are suggested to regulate translation of proteasomal mRNAs.

et al., 2011). Although mTORC1 and FOXO transcription
factors play different roles in cell growth and proliferation,
both promote the expression of proteasome genes. These
intriguing facts suggest that improving our understanding of
proteins targeted for proteasomal degradation and identifying
ubiquitin ligases that are activated by mTORC1 or FOXOs
is essential for elucidating the physiological significance
of proteasomal degradation for cell growth, proliferation,
and death.

TRANSCRIPTIONAL REGULATION OF THE
IMMUNOPROTEASOME

Major histocompatibility complex (MHC) class I antigens
are generated by the proteasome. Antigens are degraded by
the proteasome, thereby generating small peptides that are
translocated into the ER by the transporter associated with
antigen processing (TAP), a heterodimer consisting of TAP1 and
TAP2; these peptides then associate with MHC class I molecules
(Leone et al., 2013). The immunoproteasome is a proteasome
subtype that is induced by exposure to proinflammatory
cytokines such as TNF-α and IFN-γ (Aki et al., 1994; Hallermalm
et al., 2001). Immunoproteasomes have three catalytic subunits,
namely β1i (LMP2), β2i (MECL-1), and β5i (LMP7), which
correspond to β1, β2, and β5, respectively. These subunits
catalyze the production of peptides that bind efficiently to MHC
class I proteins (Kloetzel, 2001). Genes encoding β1i (PSMB9)
and β5i (PSMB8) are located in the MHC class II region adjacent
to the genes encoding TAP1 and TAP2, whereas the β2i gene
(PSMB10) is located outside the MHC locus (Figure 4). β1i, β2i,
and β5i are expressed in response to inflammatory stimuli and
oxidative stress (Aki et al., 1994; Hallermalm et al., 2001; Hussong
et al., 2010). IFN-γ induces expression of molecules associated
with antigen presentation, including TAP1 and TAP2 (Ma et al.,
1997), as well as the proteasome activator PA28αβ (Realini et al.,
1994; Ahn et al., 1995). However, immune cells constitutively
express immunoproteasomes at high levels. Hence, proteasomal
subtypes are differentially expressed in cells according to cellular
conditions and function.
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FIGURE 4 | Genomic organization of the subunits of the immunoproteasome

and thymoproteasome in humans. The genes encoding β1i (PSMB9) and β5i

(PSMB5) are located in the MHC region and adjacent to the TAP1 and TAP2

genes. The β2i gene (PSMB10) is located outside the region. The gene

encoding the thymoproteasome subunit β5t (PSMB11) is located close to the

β5 gene (PSMB5).

The β1i and TAP1 genes share a bidirectional promoter
characterized by the lack of a TATA box and the presence of
several GC boxes (Wright et al., 1995). This region contains
interferon consensus sequence 2 and γ-interferon-activated
sequence sites, which interact with interferon regulatory
factor 1 (IRF1) and STAT1 (Chatterjee-Kishore et al., 2000).
IRF1 and STAT1 are mainly responsible for β1i induction
in response to IFN-γ stimulation. The NF-κB transcription
factor is necessary for TNF-α-dependent induction, and basal
expression of β1i requires the GC box and the transcription
factor Sp1 (Wright et al., 1995). Similar to β1i, the β5i
promoter region contains a GC-rich region andNF-κB consensus
sequence, along with a TATA-box (Zanelli et al., 1993).
The transcription factor Zif268 (Egr1/Krox24/NGF-IA) induces
expression of β1i and β5i in neuronal cells and regulates
proteasome activity (James et al., 2006). The β2i gene is
located outside the MHC region; however, its expression is
also upregulated in response to IFN-γ (Hisamatsu et al., 1996).
The promoter region of β2i does not contain CAAT or TATA
boxes, whereas it contains Sp1, NF-κB, and IRF-1 binding
sequences (Cruz et al., 1997; Hayashi et al., 1997). Hence,
transcription of the β1i, β5i, and β2i genes is regulated by
similar mechanisms.

TRANSCRIPTIONAL REGULATION OF THE
THYMOPROTEASOME

Immature thymocytes undergo positive and negative
selection in the thymic cortex and medulla, respectively.
The thymoproteasome, the most recently identified proteasomal
subtype, is expressed specifically in the thymic cortex and
is essential for positive selection of CD8+ T cells (Murata
et al., 2007, 2018). The β5t catalytic subunit is unique to
thymoproteasomes and expressed exclusively in cortical thymic
epithelial cells (cTECs), whereas immunoproteasomes are

expressed in medullary thymic epithelial cells (mTECs). The
gene encoding β5t (PSMB11) is adjacent to that for β5 (PSMB5)
(Figure 4), and the gene product is encoded by a single exon in
both the human and mouse genomes. A recent study showed
that the forkhead transcription factor FOXN1, a master regulator
of TEC lineage specification (Romano et al., 2013), promotes
β5t expression directly (Uddin et al., 2017). The promoter
region of the β5t gene contains the highly conserved Foxn1-
binding core sequence 5′-ACGC-3′; a point mutation in this
sequence decreases β5t expression and CD8+ T cell production.
Despite the presence of the FOXN1-β5t transcriptional axis
in cTECs, FOXN1 does not always induce β5t expression as
FOXN1 is also expressed in mTECs, which do not express
β5t at detectable levels. This suggests the existence of an
unidentified cellular context unique to cTECs that is required for
β5t expression.

TRANSLATIONAL REGULATION OF
PROTEASOMES

A recent investigation of the proteasome demonstrated that
proteasomal gene expression is regulated not only at the
transcriptional level but also by a post-transcriptional or
translational mechanism. In yeast, the mitogen-activated
protein kinase Mpk1 maintains proteasome levels in response
to tunicamycin and rapamycin, which upregulate expression
of proteasome subunits and 19S regulatory particle assembly
chaperones (RACs) in an Mpk1-dependent manner; however,
mRNA levels do not differ between wild-type and Mpk1-
deficient cells (Figure 3) (Rousseau and Bertolotti, 2016),
suggesting that Mpk1 regulates expression of the proteasome
and RACs under stress conditions at the translational level.
Haploinsufficiency of ribosomal protein genes, which is the
primary cause of Diamond-Blackfan anemia, suppresses
translation of Rpt5 (encoded by PSMC3) mRNA (Khajuria
et al., 2018). Therefore, the shortage of available ribosomes
selectively inhibits translation of proteasomes in hematopoietic
stem and progenitor cells, thereby impairing erythroid lineage
commitment. These findings suggest that proteasome abundance
is regulated at the post-transcriptional or translational
level, although the underlying molecular mechanism
remains unclear.

CONCLUDING REMARKS

Many studies have attempted to elucidate the mechanisms
underlying the regulation of proteasome expression, leading
to the identification of several transcription factors. In
yeast, Rpn4 acts as a transcription factor under normal
and proteasome-impaired conditions. In mammals, Nrf1
promotes expression of all proteasome subunits in response to
proteasomal dysfunction. Although specific transcription factors
that regulate the expression of proteasome subunits under
normal conditions have been identified, a universal mechanism
regulating expression of all subunits remains to be elucidated.
In addition, recent findings suggest that proteasome expression
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is regulated not only at the transcriptional level but also at the
translational level; therefore, a comprehensive understanding
of the molecular mechanisms underlying the regulation
of proteasome expression remains elusive. Because precise
regulation of proteasome expression is essential for cellular
homeostasis, and its failure is associated with various diseases
such as cancer, neurodegenerative disease, inflammatory,
and immunological diseases, and senescence, further studies
are warranted to elucidate the mechanism underlying the
regulation of proteasome expression in a physiological and
pathological context.
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