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Bipolar disorder is a complex psychiatric trait that is also recognized as a high substantial
heritability from a worldwide distribution. The success in identifying susceptibility loci
for bipolar disorder (BPD) has been limited due to its complex genetic architecture.
Growing evidence from association studies including genome-wide association (GWA)
studies points to the need of improved analytic strategies to pinpoint the missing
heritability for BPD. More importantly, many studies indicate that BPD has a strong
association with dementia. We conducted advanced pathway analytics strategies to
investigate synergistic effects of multilocus within biologically functional pathways, and
further demonstrated functional effects among proteins in subnetworks to examine
mechanisms underlying the complex nature of bipolarity using a GWA dataset for
BPD. We allowed bipolar susceptible loci to play a role that takes larger weights in
pathway-based analytic approaches. Having significantly informative genes identified
from enriched pathways, we further built function-specific subnetworks of protein
interactions using MetaCore. The gene-wise scores (i.e., minimum p-value) were
corrected for the gene-length, and the results were corrected for multiple tests using
Benjamini and Hochberg’s method. We found 87 enriched pathways that are significant
for BPD; of which 36 pathways were reported. Most of them are involved with
several metabolic processes, neural systems, immune system, molecular transport,
cellular communication, and signal transduction. Three significant and function-related
subnetworks with multiple hotspots were reported to link with several Gene Ontology
processes for BPD. Our comprehensive pathway-network frameworks demonstrated
that the use of prior knowledge is promising to facilitate our understanding between
complex psychiatric disorders (e.g., BPD) and dementia for the access to the
connection and clinical implications, along with the development and progression
of dementia.

Keywords: genome-wide association study, pathway analysis, functional subnetwork, prior knowledge, bipolar,
dementia
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INTRODUCTION

Many studies have suggested that there is a strong link between
bipolar disorder (BPD) and dementia. BPD could increase
the risk of developing some specific syndromes of dementia,
especially for older adults (Masouy et al., 2011; Wu et al.,
2013; Chen et al., 2015; Almeida et al., 2016; Diniz et al.,
2017). Furthermore, Kessing and Andersen (2004) suggested
that the rate of dementia is 6% higher for the patients
with BPD who get admission to hospital with every episode
than for those without BPD. BPD comes from a number of
causes, such as ages, the duration of illness, polypharmacy,
the presence of clinical comorbidity and so on (Borges et al.,
2019). According to the Anatomical evidences, the gray matter
volume and prefrontal cortex are both affected as people are
suffered from BPD, and both of these two regions in the
brain also have an influence on causing dementia (Pavlovic
et al., 2011). On the one hand, the reduction of gray
matter volume in the left cerebellar hemisphere and vermis
volume increases the risk of dementia (Baldaçara et al., 2012).
On the other hand, volumes of both hemispheres and the
vermis are reduced when people suffered from BPD. Relatedly,
Pavlovic et al. (2011) indicated that the dementia associated
with BPD has a lot to do with psychosocial and functional
impairment. Thus, dementia seems to be serious and inevitable.
The significant symptom overlapping between dementia and
psychiatric disorders like BPD is particularly an important
therapeutic target with diagnostic challenges. Although clinical
perspectives and implications with BPD and dementia were
discussed previously (Lopes and Fernandes, 2012), the potential
biologically functional pathways and molecular mechanisms still
remains unclear.

Psychiatric traits are generally complex and multifactorial.
Over the last decade, numerous genome-wide association (GWA)
studies were conducted to search for susceptibility genes for
complex human traits (Hindorffa et al., 2009). More than half
or a few million markers in hundreds or thousands of subjects
were conducted to increase the explanatory power of the disease
heritability. A large number of low-risk genetic variants (usually
odds ratios < 1.5) were identified to be involved in the etiology
of complex traits (Manolio et al., 2008). However, the associated
single-nucleotide polymorphisms (SNPs) and genes in total only
account for a small proportion of the heritability for most of
complex traits including BPD (Manolio et al., 2009). For instance,
the effects of genes identified by linkage scans and association
tests can only account for ∼2% of the ∼80% heritability of BPD
(Crow, 2011). Many replication studies further demonstrated
no replicable support for bipolar candidates (Crow, 2007). The
failure in detecting true associations for heritable diseases like
BPD might be involved with the “common-disease common-
variant” hypothesis and the noise that is inherent in GWA studies
and others (Maher, 2008; Gershon et al., 2011). We conducted
allelic association tests for each SNP of three GWA datasets
of BPD including the Wellcome Trust Consortium (WTCCC),
the Genetic Association Information Network (GAIN), and the
National Institute of Mental Health (NIMH). Again, only a
few markers (ATMIN, CENPN, HTR3B, and UBR1) reached

the commonly used genome-wide significance threshold level
(p < 5 × 10−8) in the WTCCC GWA data, indicating the fact of
potential noise inherent in genome-wide approaches. The noise
may come from several sources such as small effect sizes at
individual SNP level, causal variants (in particular when their
minor allele frequency lower than genotyped SNPs) that are not
in a complete linkage disequilibrium (LD) with SNPs, no power
in inappropriate statistical methods, and others (Yang et al.,
2010; Lee et al., 2011). In addition, due to the complexity of
BPD, it is a challenge to identify which particular gene markers
are the true causes of disease as noises may potentially be
introduced due to technical or biological errors in nature (Ideker
et al., 2011). This study aims to overcome these problems, in a
gene-gene interaction sense, through identifying and finding the
missing heritability.

In a GWA study, p-values are usually used to represent the
statistical significance in the association, and the most significant
SNP (min-p) of a gene region is selected to represent the
significance level of a gene. However, the “min-p” approach is
biased toward genes saturated with SNPs. Typically, large genes
may have a higher gene-wise statistic, and in fact, we have
previously observed a negative relationship between p-values and
gene length (Yang et al., 2011; Kao et al., 2014). Introducing such
bias into a subsequent pathway analysis may result in favoring
pathways with larger genes. There are several Sidak’s correction
based methods proposed to correct for a gene-size bias (Sidak,
1967; Saccone et al., 2007; Peng et al., 2010). In particular, a
simple method based on the first order statistic (FOSCO) can well
correct the gene-size bias by obtaining a gene-level significance
for individual genes (Mirina et al., 2012). Although the FOSCO
method does not deal with LD structures, its performance is
as well as other methods such as GATES and VEGAS, whose
computation is based on the LD structure (Mirina et al., 2012).

Bipolar disorder is a complex mental disorder with lifetime
prevalence ranging from 8 to 5% in the general population and
with a high probability of heritability around 80% (McGuffin
et al., 2003; Kessler et al., 2005; Kato, 2007; Merikangas et al.,
2008). Previous studies have also suggested the involvement of
polygenic and multifactorial features in the pathology of BPD,
along with the complex interactions among genes (G × G) and
environmental (G × E) factors (Holmans et al., 2009; Pregelj,
2011; Chuang et al., 2013). Recently, we identified and prioritized
candidate genes for BPD from multi-dimensional evidence-based
data sources, which provide us an opportunity to explore an
advanced pathway and network for BPD (Kao et al., 2014).
With the combined scores obtained from the prior knowledge of
BPD, each of the GWA genes was weighted by the magnitude
of association to reduce noise (e.g., false-positive results and
publication bias) and increase the effect size in pathway analysis
(Pedroso et al., 2012). This hypothesis allows BPD candidates to
play a larger role in pathways. The stronger the prior knowledge
for BPD of a gene, the larger role the gene plays in pathways.
Thus, these genes were regarded as “key genes.”

Genes normally cooperate with others having similar or
related functions or characteristics to form a complex network of
functional interactions to affect diseases, particularly for complex
psychiatric traits. Genome-wide association studies provide the
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FIGURE 1 | The study framework. The study consists of four steps, including calculation of gene-level scores, gene scores corrections, pathway analysis, and
subnetwork analysis. Each gene was assigned a gene-level score using minimal p-value of association test among SNPs in a gene. Corrected gene scores can be
obtained by calculating gene-size adjusted p-values based on FOSCO correction. Pathway analysis was conducted using competitive method (hypergeometric test,
GSEA) and self-contained method (sum-statistic) with and without weighting scheme. Subnetwork analysis was performed to construct molecular networks using
MetaCore.

potential to account for such complexity. Thus, the pathway
analytic strategy provides a basis of a gene-gene interaction to
account for the biological relevance of genes and has the potential
to detect the synergetic effects of multiple genes that might
have been missed in the traditional single-marker association
(Holmans, 2010; Fridley and Biernacka, 2011). The network
analysis further provides a dynamic interrelationship among
proteins to interconnect biological functions and molecular
mechanisms, for instance, our previous work in major depressive
disorder (Jia et al., 2011a). Most importantly, we want to
know how genes aggregated into clusters of similar or related
functions and how these components interconnect and function
biologically in pathways and networks underlying the BPD.
Therefore, pathway-based and network-based analyses are
powerful approaches that summarize genetic information from
sets of genes. Using such framework has the potential to interpret
genes and pathways biologically. Thus, the objective of the
present study uses the systems biology strategy to identify the
missing heritability of BPD, which provides additional insights
into the nature of complex genetic architecture underlying BPD.

Our current study intends to investigate enriched pathways
and functional networks for BPD using a large-scale GWA
dataset. We first conducted FOSCO method to correct for the
gene-size bias by calculating the gene-level statistical significance.
Second, we performed a pathway-based analysis using weighted
competitive and self-contained methods with a minimum p-value
approach to extract SNP information at a gene level. Third,
we applied the subnetwork analysis to construct molecular

networks. More importantly, the strategies used to conduct
pathway or network-based analyses in the current study for
bipolar potentially boosted our explanatory power to obtain
meaningful results for studying the biological functions and
molecular mechanisms of bipolar. For a more detailed study
framework, please refer to Figure 1.

MATERIALS AND METHODS

Genome-Wide Association Dataset
The BPD GWA dataset was accessed through the GAIN database
of Genotypes and Phenotypes for bipolar disorders.1 A total of
1,001 bipolar cases and 1,034 healthy controls of Americans with
European ancestry were included in this dataset. The genotyping
platform was Affymetrix Genome-Wide Human SNP Array 6.0.
After conducting quality control procedures (Manolio et al.,
2007), a total of 698,227 SNPs were retained. We assigned a SNP
to a gene if it was located within the gene or 20kb upstream
or downstream of the gene. Therefore, a total of 416,371 SNPs
were mapped into 15,213 protein-coding genes after dealing with
aliases in the GAIN GWA dataset of BPD to perform pathway
and network analyses. A basic allelic association test was used
to calculate the genomic inflation factor for this GWA dataset,
which was 1.03. The quantile-quantile plot for all analyzed SNPs

1http://www.ncbi.nlm.nih.gov/
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FIGURE 2 | The distribution of minimal p-values and quantile-quantile plots before and after gene-size correction. (A) Distribution of logarithm of minimal p-values
was skewed to the right. (B) The quantile-quantile plot, using 50% quantile of single-nucleotide polymorphism (SNP) numbers, showed a significant correlation
between minimal p-values and the gene-size. (C) The quantile-quantile plot, using median gene size, showed a significant correlation between minimal p-values and
the gene size. (D) Distribution of logarithm of gene-size corrected p-values demonstrated uniformly distributed from [0,1]. (E) The quantile-quantile plot, using 50%
quantile of SNP numbers, showed no significant correlation between gene-size corrected p-values and the gene-size. (F) The quantile-quantile plot, using median
gene size, showed no significant correlation between gene-size corrected p-values and the gene size.

can be found in Supplementary Figure 2, indicating a good
quality of this GWA dataset.

Bipolar Candidate Genes
We prioritized a list of 10,830 susceptible genes (Supplementary
Data 1) that were collected from several lines of evidence-based
datasets for BPD, including GWA study, association studies,
linkage scans, gene expression (including human and animal
studies), literature search, and biological regulatory pathways.
For each gene, a dataset-specific score (CSj) was assigned in each
data source according to the magnitude of association. All data
types were combined using an optimized weighting vector to
indicate the priority of the association of a gene with BPD. More
detailed information of this gene prioritization procedure can be
found in Kao et al. (2014).

Pathway Annotations
To map genes into biological pathways, we used the Molecule
Signature Database (MSigDB)2 annotations. The MSigDB

2http://www.broadinstitute.org/gsea/msigdb/index.jsp

consists of several open public sources of pathway annotations,
including Gene Ontology (GO) terms, Kyoto Encyclopedia of
Genes and Genomes (KEGG), BioCarta, Reactome, and gene sets
compiled from published biomedical literature (Subramanian
et al., 2005), which listed 4,726 pathways and 22,429 genes.
Pathways with extreme numbers of genes (i.e., 10th percentile
of pathway-size distribution, <10 or >380 genes) were removed
from analyses to avoid stochastic bias or testing any over-general
biological process. This procedure resulted in a total of 4,120
pathways left in the GAIN GWA dataset.

Gene-Wise Statistical Significance
Correction of Gene-Size Bias
To obtain a gene-level statistical significance, we first mapped
SNPs to a gene (using NCBI build 36) if SNPs were located
within the gene region or 20 kb upstream or downstream
of the gene, which was suggested as a good gene boundary
(Jia et al., 2011b). We used a commonly adopted method
to select the most significant SNP (min-p, denoted as pmin)
among M SNPs in a gene region in association tests to
represent the significance level of a gene. Because the p-values
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are biased toward to a gene-length, we utilized padj
= 1−(

1− pmin)Meff to adjust it to the gene-wise statistical significance.
We approximated the effective number, or alternatively adjusted
number, of SNPs (Meff ) using M

λ to correct for the actual
number of SNPs (M), where the tuning parameter λ satisfies
the correlation between adjusted p-values (padj) and M is
minimal; that is, min

∣∣∣corr
(

padj, M
)∣∣∣. The value of the tuning

parameter λ can be optimized empirically on permuted genotype
data under the null through randomly permuting case/control
status of subjects, keeping the genotypes remain the same.
If padj are well corrected for the gene-size, they would be
uniformly distributed from [0,1]. For a detailed method, please
refer to Mirina et al. (2012).

Statistical Methods for Pathway
Enrichment Analysis
We applied three statistical methods to test the enrichment
of significant pathways for BPD. According to prior studies,
we extended two permutation-based approaches, the Gene
Set Enrichment Analysis (GSEA, a competitive method) and
the sum-statistic method (a self-contained method), by taking
into account prior knowledge on BPD (Wang et al., 2010,
2011). We denoted D as the disease of interest (here is BPD),
and rj(D) as the gene-wise statistic value that defined as the
logarithm of adjusted gene-wise p-values of the corresponding
to the most significant SNP in gene j(j = 1, . . ., N). Here
we allowed bipolar candidate genes to play a larger role in
pathway analyses. A weight (≥1), wj = 1+ CSj

CS
, proportional

to the prior knowledge (i.e., magnitude of association) is
particularly assigned to gene j, where CS represents the mean of
combined scores of all bipolar candidate genes. Thus, a weighted
GSEA (wGSEA) was generalized. A set of genes (g) was first
ordered according to the weighted gene-wise statistic values
[wjrj(D)] so that genes with a stronger significance (or small
p-values) are ranked on the top. For each tested pathway (S),
an enrichment score (ES) was calculated based on p-values of
a gene-set in each pathway. The ES can be written as ES =

max
1≤j≤N

{∑
g∈S,j≤i

∣∣∣wjrj(D)
∣∣∣p

NR
−
∑

g /∈S,j≤i
1

N−NH

}
which consists of

two parts, namely, gain (if gene is in a pathway) and loss (if
gene is not in a pathway), where NH represents the number
of genes in a pathway S and NR =

∑
g∈S

∣∣wjrj(D)
∣∣p is the total

gain with p = 1. The ES was used to evaluate association signals
for each annotated pathway. Then, for each pathway, the ES
was normalized to compute NES by subtracting the mean of
the ES in the permutated data sets, ES(Sperm), and divided by
the standard deviation of ES(Sperm). We calculated empirical
p-values for all pathways using 5,000 permutations to compare
the original ES score from the GWA dataset and the permutation
datasets (denoted as Sperm) by computing the fraction of the
numbers of

{
ES
(
Sperm) > ES (S)

}
divided by the total number

of permutations. In a weighted sum-statistic (wSS) method,
only genes in a specific pathway were considered, while part
of those genes may play a larger role in the pathway. The wSS
method calculates the sum of the weighted gene-wise statistic

values over the set of genes
(∑k

j=1 wjr(D)j

)
. Alternatively, a

statistical probability hypergeometric model was applied. In the
hypergeometric test, we used a cutoff p-value of 0.05 to define
significant genes using their gene-wise statistics (i.e., p-values).
A p-value based on a hypergeometric distribution for each
pathway was computed to describe the probability of interest
genes (i.e., significant genes) in a specific pathway without a
replacement from the whole GWA genes. We performed the
hypergeometric test for all annotated pathways using the GWA
dataset for BPD.

Biologically Functional Subnetwork
Analysis
To perform the biologically functional subnetwork analysis, we
selected genes from 15,213 GAIN GWA genes only if the gene
contains at least one SNP having gene-wise statistic padj < 0.05
and the gene provides prior knowledge (i.e., having combined
score greater than the total mean of combined scores) as these
genes were denoted as seed genes for a further subnetwork
analysis. We applied the AUTO expand algorithm in software,
MetaCore3, to these seed genes. A large network was constructed
to the initial list of seed nodes (i.e., seed genes). Then, we cut
the large network into several subnetworks according to the
following procedures. Firstly, we expanded edges from the most
relevant nodes (i.e., proximity of a node and traffic/flow through
the node) for the outgoing (•→) path direction. Secondly, a flow
value was calculated for each of seed nodes, with the flow through
it equal to 1, according to algorithm. For example, a node has
three incoming flows (each with flow value of 1/4), and then the
node receives a flow value of 3/4. On the contrast, if the sum of
incoming flows exceeds 1, the resulting flow value will be reduced
to 1. Thirdly, we only considered the most connected node and
selected the nodes that have the highest flow values. Fourthly, we
iterated the process until the included nodes exceeded a default
limit of 50. Fifthly, we applied the above steps for ingoing (←•)
path direction and merged them into one subnetwork. Sixthly,
the nodes selected for the subnetwork from the large network
were deleted. Finally, a new subnetwork was reconstructed until
no more subnetworks can be generated.

Each subnetwork provides a Z-score that ranks the
subnetworks according to their saturation with genes from
the initial list of seed nodes. The formula for the Z-score is

Z − score =
rnode
− nnode

(
Robject

Nnode

)
√

nnode
(

Robject

Nnode

) (
1− Robject

Nnode

) (
1− Robject−1

Nnode−1

) ,

where rnode and nnode represent the number of nodes and the
total number of nodes in each subnetwork generated from the
seed nodes, respectively, Robject represents the number of network
objects corresponding to the genes and proteins in the seed nodes,
and Nnode represents the total number of nodes in MetaCoreTM

database. A high Z-score exhibits that the network is highly
saturated with genes from the seed genes. Similar to Z-score, we

3http://thomsonreuters.com/products_services/science/systems-biology/
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compared the genes in the subnetwork versus the genes not in
the subnetwork within the full set of all genes (i.e., MetaCore
base knowledge) on maps, and calculated a p-value based on the
hypergeometric distribution for each subnetwork to estimate the
probability for a particular mapping to a subnetwork.

Multiple Testing Corrections
To account for multiple testing problems in the pathway and
network analyses, we used the method proposed by Benjamini
and Hochberg (1995) to control for the false discovery rate (FDR).
We ordered all the p-values of pathways and compared each
p-value p(i) with a threshold of (i/m) q∗, where m represents
the total number of pathways, and q∗ represents the significance
level. Thus, the procedure controls for the FDR at q∗ = 0.05
level in this current study, assuming p-values are independently
distributed under null hypotheses.

RESULTS

A total of 416,371 SNPs were annotated and mapped into
15,213 protein-coding genes in the GAIN GWA study of BPD,
which were then mapped to 4,726 annotated pathways in the
gene-pathway mapping process. We computationally optimized
the tuning parameter λ in the gene-wise statistical significance
correction step, and the value 0.85 was estimated iteratively to
approximate the effective number of SNPs (see Supplementary
Figure 2) for calculating gene-size corrected p-values using the
GAIN GWA study for BPD. Figure 2 displays the distribution
of minimal p-values and quantile-quantile plots before and after
the gene-size correction. We used 50% quantile of SNP numbers
(i.e., >13 SNPs) and median of gene lengths (i.e., >23.15mb)
to define a large gene. The distribution of logarithm of minimal
p-values was skewed to the right (Figure 2A) and the quantile-
quantile plots were far away from the 45◦ line (i.e., under
null hypothesis of no correlation), which showed a significant
correlation (p = 2.2 × 10−16) between minimal p-values and
the gene-size (Figures 2B,C). After adjusted for the gene-length,
the corrected p-values approximated uniformly distributed from
[0,1] (Figure 2D) and their quantile-quantile plots followed the
45◦ line, which exhibit no any correlation (p = 0.13) between
corrected p-values and the gene-size (Figures 2E,F).

In total, 87 enriched pathways (see Supplementary Table 1)
were identified for their biological relevance in BPD using
the GAIN GWA dataset after controlling the FDR at the
0.05 level. Table 1 summarizes 36 significant pathways
that were simultaneously enriched in both with or without
weighting schemes under competitive methods (wGSEA and
hypergeometric test) and self-contained method (wSS). Of
which, 26 pathways were identified in permutation-based
approaches (i.e., 22 out of 80 were identified in GSEA and
12 were identified in Sum-statistic, with 8 overlaps). The
eight overlapping pathways (six from KEGG and two from
Reactome) are drug metabolisms of other enzymes, pentose and
glucuronate interconversions, starch and sucrose metabolism,
ascorbate and aldarate metabolism, retinol metabolism,
porphyrin and chlorophyll metabolism, glucuronidation,

and phase II conjugation, which related to drug metabolism,
carbohydrate metabolism, metabolism in cofactors and vitamins,
xenobiotic metabolism, immune system, cell differentiation,
cellular communication, cellular signal transduction, and
growth factors. The remaining 18 pathways (3 from KEGG,
6 from GO, 2 from Reactome, and 7 from Curated gene
sets) are mainly involved with lipid metabolism, xenobiotics
biodegradation and metabolism, ion transport, molecular
transport, cellular component, cellular communication, cell
differentiation, immune system, growth factors, and oncogenes
and translocate cancer genes. From a statistical and probabilistic
point of view, 10 enriched pathways (7 from GO and 3
from Curated gene sets) were found significant using the
hypergeometric test. Those pathways were structurally mapped
to channel activities (i.e., voltage-gated channel activity, gated
channel activity, voltage-gated cation channel activity and
cation channel activity), molecular transport activities (i.e.,
cation or ion transmembrane transporter activity and metal
ion transmembrane transporter activity), immune system,
cell differentiation, cellular communication, cellular signal
transduction, transcription factor, and growth factor.

We selected 274 genes (denoted as seed nodes) that show a
high chance to associate with BPD (see our selection criteria
in Materials and methods) from 15,213 GAIN GWA genes
further for a functional subnetwork analysis. The selection of
the 274 seed nodes was unlikely to be affected by large genes
(correlation coefficient = −0.045, p = 0.46). The type and
location of the 274 seed nodes were summarized in Table 2.
These genes were mainly allocated to G-protein coupled receptor
(e.g., GRM1 and ADRA1B in plasma membrane), growth factor
(e.g., FGF5 and TGFA in extracellular space), ion channel
(e.g., KCNB1 and CACNA2D in plasma membrane; ITPR2
and NOX5 in cytoplasm), ligand-dependent nuclear receptor
(e.g., NR3C2 in nucleus), transcription regulator (e.g., PAX in
nucleus; WHAH in cytoplasm), transmembrane receptor (e.g.,
IL17RA in plasma membrane; TSPO in cytoplasm), transporter
(e.g., ATP6V1B2 in cytoplasm; SLC16A4 in plasma membrane),
and others.

A total of 26 subnetworks were constructed in MetaCore using
these 274 seed nodes. The crosstalk information and statistical
tests for network saturation of the top three function-related
biological subnetworks were listed in Table 3 and the remaining
subnetworks in Supplementary Table 2. The top one functional
subnetwork (Figure 3) was saturated with 22 objects (spanned
by 15 seed nodes) and 39 interactions (33 were activation and 6
were inhibition), which has a hub in transcription factor SP1 with
10 activation interactions (p = 2.33 × 10−20, Z-score = 24.35).
This subnetwork was involved with several GO processes such
as de novo posttranslational protein folding, de novo protein
folding, protein folding, cellular protein complex assembly, and
protein polymerization (p = 9.6 × 10−33

∼4.4 × 10−22). The
top two functional subnetworks (Figure 4) were centered around
six hubs, including three transcription factors (SMAD3, PAX6,
UBF), two generic binding proteins (BLNK, MTS1) and one
generic enzyme (HDC), in a high range of crosstalk (ranging
from 5 to 14 interactions) with other genes (p = 3.25 × 10−18,
Z-score = 21.93). These subnetworks contained 15 objects
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TABLE 1 | Significantly enriched pathways in the Genetic Association Information Network (GAIN) genome-wide association (GWA) study for bipolar disorder (BPD) using
competitive and self-contained methods with and without weighting scheme.

Permutation-based Probability-based

GSEA Sum-statistic Hypergeometric test

Annotated pathwaya npw
GWA/npw npw

BPD Equal weight Weighting Equal weight Weighting

ES pBH
b ES pBH

b SS pBH
b SS pBH

b pnom pBH
b

KEGG:

Drug metabolism other enzymes 48/51 26 0.68 <10−4 0.72 <10−4 42.24 <10−4 73.01 <10−4

Retinol metabolism 60/64 42 0.67 <10−4 0.66 <10−4 53.94 <10−4 93.48 <10−4

Pentose and glucuronate interconversions 25/28 13 0.73 <10−4 0.78 <10−4 28.58 <10−4 50.73 <10−4

Porphyrin and chlorophyll metabolism 37/41 19 0.69 <10−4 0.75 <10−4 31.95 <10−4 57.27 <10−4

Starch and sucrose metabolism 49/52 32 0.63 <10−4 0.70 <10−4 38.81 <10−4 70.11 <10−4

Ascorbate and aldarate metabolism 23/25 12 0.79 <10−4 0.81 0.03 27.54 <10−4 50.67 <10−4

Drug metabolism cytochrome P450 68/72 54 53.22 <10−4 98.54 <10−4

Metabolism of xenobiotics by cytochrome P450 68/70 54 51.41 <10−4 94.61 <10−4

Steroid hormone biosynthesis 51/55 36 38.49 <10−4 69.22 <10−4

GO:

Extracellular region part 313/332 218 0.49 <10−4 0.55 <10−4

Extracellular space 224/239 155 0.51 <10−4 0.57 <10−4

Ion transport 174/184 108 0.54 <10−4 0.54 0.05

Substrate specific transmembrane transporter
activity

321/341 207 0.49 <10−4 0.51 0.05

Substrate specific transporter activity 366/388 236 0.48 <10−4 0.50 0.05

Cytosol 191/202 139 0.50 0.03 0.55 0.03

Cation transmembrane transporter activity 201/211 130 1.2 × 10−6 0.002

Ion transmembrane transporter activity 259/275 169 6.7 × 10−6 0.006

Metal ion transmembrane transporter activity 140/145 91 7.3 × 10−6 0.006

Voltage-gated channel activity 70/73 46 3.1 × 10−5 0.02

Gated channel activity 115/121 76 3.8 × 10−5 0.02

Voltage-gated cation channel activity 64/66 41 5.8 × 10−5 0.03

Cation channel activity 115/118 78 6.3 × 10−5 0.03

REACTOME:

Glucuronidation 17/19 8 0.83 <10−4 0.81 <10−4 22.50 <10−4 37.16 <10−4

Phase II conjugation 56/60 35 0.60 <10−4 0.66 0.03 42.18 <10−4 72.53 <10−4

Purine ribonucleoside monophosphate
biosynthesis

11/11 6 0.82 0.03 0.84 0.05

Biological oxidations 120/127 83 76.62 <10−4 133.5 <10−4

Curated gene-set:

Riggi ewing sarcoma progenitor UP 375/426 245 0.46 <10−4 0.54 <10−4

Zhang breast cancer progenitors UP 360/448 215 0.46 <10−4 0.49 0.03

Mullighan mll signature 1 UP 351/389 235 0.46 0.02 0.50 0.03

Weber methylated icp in fibroblast 16/16 6 0.76 0.02 0.75 0.03

Rizki tumor invasiveness 3D DN 215/234 145 0.49 0.02 0.53 0.05

Bonci targets of MIR15A and MIR16_1 81/81 57 0.57 0.04 0.61 0.05

Mccabe bound by HOXC6 350/461 228 0.46 0.05 0.50 0.05

Martinez response to trabectedin 40/42 27 5.9 × 10−10 2.4 × 10−6

Manalo hypoxia UP 191/210 127 6.5 × 10−6 0.006

Onder CDH1 targets 2 UP 226/258 159 3.0 × 10−5 0.02

npw, the number of genes in pathway; npw
GWA, the number of genes on chip; npw

BPD, the number of bipolar candidate genes in pathway (i.e., prior knowledge to BPD); GSEA,
gene-set enrichment analysis; ES, enrichment score; SS, sum-statistic; pnom, nominal p-value.
a GSEA and Sum-statistic results were based on 5,000 permutations and hypergeometric test results were based on statistical probability model.
b The pBH were based on Benjamini and Hochberg (1995) multiple testing correction.
Pathways with p-values highlighted in bold are significantly enriched for their biological relevance in BPD.
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TABLE 2 | Type and location of the 274 seed nodesa selected from the GAIN GWA genes.

Type Location Genesb

G-protein coupled
receptor

Plasma membrane ADRA1B, BAI1, GPR133, GRM1, NMBR, OR2B6, OR9G1, PTGER4

Growth factor Extracellular space FGF5, NELL1, TGFA

Ion channel Plasma membrane ACCN3, CACNA2D, CNGA3, KCNB1, KCNIP1, KCNQ1, KCNS1, PKD2L1, SCN3B, TRPC7, TRPV1, TRPV3

Cytoplasm ITPR2, NOX5, PEX5L

Unknown NALCN

Ligand-dependent
nuclear receptor

Nucleus NR3C2

transcription regulator Nucleus ADNP, ANKRD55, ATF3, ATF4, BASP1, CDYL, CREBBP, DMRT1, DNMT3L, FANK1, FOXM1, HIF3A, HIVEP2, HNF1B,
KIDINS220, MLL4, NCOA1, PAX5, REST, RFX2, SIM1, TCF7L1, VSX1, ZBTB32, ZSCAN2

Cytoplasm ATF6Y, WHAH

Transmembrane
receptor

Plasma membrane CD40, GFRA1, IFNGR1, IL17RA, KIR2DS4, LMBR1, SFRP1, TYROBP

Cytoplasm TSPO

Transporter Cytoplasm ABCB8, ATP6V1B2, CCT6B, DOC2A, FABP3, SLC25A13, SYT2, SYT6, VPS26B

Plasma membrane ATP10B, SLC16A4, SLC17A3, SLC2A13, SLC4A10, VTI1A SLC5A1, SLC5A7, SLC6A15, SORCS2, STXBP3, TM9SF2,

Unknown SLCO5A1, SYT14

Peptidase Cytoplasm GZMB, PEPD

Extracellular space HABP2, MMP7

Plasma membrane DPP4

Unknown USP13

Phosphatase Plasma membrane PPFIA2, PTPRB

Cytoplasm PPM1A

Chemical- endogenous
mammal

Unknown C3

Cytokine Extracellular space CCL1, IFNA7, IFNG, IL26, WNT2, WNT4

Enzyme Cytoplasm ADSL, ALDH9A1, BRAF, BTRC, CNOT4, CYP26A1, CYP2C18, FBXL2, GCLM, GM2A, GNPAT, HEXA, HS3ST5,
HSP90AA1, IRS1, MGAT4A, MTHFD1L, NAT1, NOS3, PAFAH1B2, PDHX, PLCG2, RAB21, RAB2A, RAB6A, TIAM2,
UGT1A1, UGT1A4, UGT1A10, UGT1A8

Plasma membrane ADCY6, DAGLA, FADS1, GNG7, RAB4B, VNN1

Nucleus CA9, FNBP1, MAD2L2, SMARCAD1, SMYD3, TARS

Extracellular space SOD3

Unknown FAM135A, LCMT2, MBOAT2

Kinase Cytoplasm CHUK, CSNK1E, DCLK2, DGKH, EIF2AK4, PRKCE, STK4, TAOK2

Nucleus CDK5, CDK6, VRK2

Plasma membrane MAGI2, TRAT1, TRIO

Unknown RBKS, TTBK2

Other Cytoplasm ADAL, ARC, ARRB1, BAG1, BCAS4, BLNK, CIDEA, CST5, EFHA1, EML1, FAM129B, HBXIP, HSPB6, MFHAS1,
NLRP5, NOS1AP, RASGRP3, RIN2, RPS7, SOCS6, STARD10, STARD13, STMN4, SWAP70, TBC1D15, TPM2

Extracellular space COL28A1, FBLN2, FST, LAMA5, NLRP7, TIMP2

Nucleus BCL11B, BMS1, CABLES1, CDAN1, FYB, GCKR, HIRIP3, HIST1H2AB, HIST1H3B, HIST1H4B, JRK, MAD1L1,
NCAPD3, PCBP3, RANBP3, RASSF2, RBM15, SNRPA, SFRS5, SYNE1, ZFP161, ZMYND11, ZNF260, ZNF295,
ZNF461, ZNF564, ZNF592

Plasma membrane ANK3, BTN2A1, CD276, CD53, CDH19, CDH22, CDH4, CGNL1, DSC3, EPB41L5, KIAA1797, GYPA, NPTN, PLXDC1,
RPH3AL, SEZ6L, SGCG, SIRPB1, STOM, TANC1, TLN1, TSPAN15

Unknown ACTR3B, ADAMTSL3, BICC1, CACNA2D4, CALM3, CCDC122, CDKAL1, CTDSPL2, DNHD1, DPY19L1, FHAD1,
GRAMD1B, KRTAP4-5, LONRF1, ODZ4, PHF21B, PSAPL1, SLC38A10, TMEM133, TMEM51, TMEM54, TTC15,
TRIM38, TTC39B, TTLL12, WDFY2

a All selected genes were mapped in the Ingenuity Pathways Analysis (IPA).
bAll genes contained at least one SNP having gene-wise statistic padj<0.05 and provided information of combined scores greater than the median. Detailed methods of
calculating combined scores please refer to Kao et al. (2014).

(spanned by 14 seed nodes) and 83 interactions (58 were
activation and 25 were inhibition), which mainly involve in
GO processes of positive regulation of biological process,
cellular process, signal transduction, response to stimulus and

macromolecule metabolic process (p = 3.7× 10−29–8.8× 10−22).
In addition, 16 canonical pathways were presented on the
subnetwork. The top three functional subnetworks (Figure 5)
contained 16 objects (spanned by 14 seed nodes) and 64
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TABLE 3 | The top three biologically enriched subnetworksa.

No Key subnetwork
objects

GO processes No. of seed
nodes

No. of
pathways

p-valueb Z-scorec

1 DPP4, Ankyrin-B,
ADNP, MCR, TAO2

“de novo” posttranslational protein folding (26.0%), “de novo” protein folding
(26.0%), protein folding (31.5%), cellular protein complex assembly (28.8%),
protein polymerization (19.2%)

15 0 2.33 × 10−20 24.35

2 BLNK, Granzyme
B, PAX5, C3,
Follistatin

positive regulation of biological process (80.0%), positive regulation of cellular
process (76.0%), positive regulation of response to stimulus (46.7%), positive
regulation of signal transduction (40.0%), positive regulation of macromolecule
metabolic process (56.0%)

14 16 3.25 × 10−18 21.93

3 WNT4, TIMP2,
GCKR(MAP4K5),
B-Raf, SFRP1

canonical Wnt receptor signaling pathway (28.7%), positive regulation of
biological process (82.5%), positive regulation of cellular process (77.5%),
non-canonical Wnt receptor signaling pathway (20.0%), signal transduction
(83.8%)

14 6 3.25 × 10−18 21.93

aResults are based on 274 selected genes (seed nodes). bp-value was calculated using hypergeometric test. cZ-score was calculated based on
MetaCore base knowledge.

interactions (49 were activation and 15 were inhibition), which
have two hubs in a transcription factor (EGR1) and a GPCR
receptor (FZD7) with a range from 5 to 18 interactions
(p = 3.25 × 10−18, Z-score = 21.93). These subnetworks
were involved with several GO processes including canonical
and non-canonical Wnt receptor signaling pathways, a positive
regulation of biological process and cellular process, and a signal
transduction (p = 3.3 × 10−35–1.6 × 10−29). In addition, six
canonical pathways were presented on the subnetwork.

DISCUSSION

A rich and large-scale GWA data has been produced over past few
years to document complex traits like BPD. The pathway-based
analytics strategy provides an opportunity to uncover enriched
pathways that are involved with the etiology of BPD based on
prior knowledge of gene functions and molecular mechanisms.
In this study, we reported 36 overrepresented pathways using a
GWA dataset for BPD in GAIN, where genes in the same pathway
were jointly associated with BPD. It is worth noting that many of
these genes did not reach significant associations in GWA studies
of BPD at a gene-level but reveal their potential roles in pathway-
based analyses. In gene-level association analyses of the GAIN
GWA study for BPD, the most genome-wide significant loci were
found in GRAMD1B (rs4936819, p = 1.2× 10−6), although it did
not reach genome-wide significance threshold level at 5 × 10−8.
Not surprisingly, we observed that many genes were included in
multiple pathways to increase the risk of BPD but not reported
in the GAIN GWA study for BPD. For example, HTR3B and
CACNA1C (the top 6th and 12th in BPD genes) were included in
substrate specific transmembrane transporter activity, substrate
specific transporter activity, cation transmembrane transporter
activity, ion transmembrane transporter activity, metal ion
transmembrane transporter activity, gated channel activity, and
cation channel activity (Kao et al., 2014). Evidence also supported
that HTR3B encodes the subunit B of type 3 receptor for
5-hydroxytryptamine (serotonin). It was also found to be a
susceptible gene for the development of BPD while CACNA1C
was reported to be associated with the involvement of calcium

channels in the biological mechanisms of BPD (Frank et al., 2004;
Kloiber et al., 2012).

Among the 36 enriched pathways, we examined the degree of
overlapping for significant genes (p < 0.05) in these pathways
to evaluate their crosstalk. The resulting number and proportion
of overlapping genes were shown in Supplementary Table 3.
The proportion of significant genes (i.e., contain at least one
SNP having p < 0.05) among all pathways was between 12
and 88% (average = 49.4%). This demonstrated that these
significant pathways were dominated by many genes rather than
one single gene. Our results exhibited a low to intermediate
level of overlapping across pathways, indicating some crosstalk
of molecules in enriched pathways. Among all pair-wise
pathway comparisons, 48.4% did not have any significant genes
overlapping, 33.6% had a low degree of overlapping (less than
20%), 8.6% had a moderate degree of overlapping (20–70%), and
only 9.4% pathways had a high degree of overlapping (more than
70%). The fact that only a few genes were commonly identified
in significant pathways for BPD further reflects the difficulty we
faced in identifying “the genes” for complex diseases.

Many disease traits are usually caused by the dysfunction of
several susceptible gene loci with small main and interaction
effects. In fact, there may exist some (or even a few) key genes
to dominate particular functions within a specific biological
pathway. To capture this, we allowed such genes to play
important roles relevant to BPD in the pathway. Thus, a
weighting algorithm linking to prior biological knowledge was
introduced into our analytic strategies for the pathway analysis.
Genes with stronger prior information contributed majorly to the
significance of the pathway. We found the number of enriched
pathways increased with the proportion of significant genes (i.e.,
prior information) of a pathway. The development of pathway-
based approaches that incorporate prior biological knowledge
can identify novel disease susceptibility pathways along with “the
key genes,” which will greatly facilitate the interpretation of GWA
data biologically. Therefore, without highlighting the effects of
these key genes in the pathway analysis, it is difficult to interpret
their biological mechanisms correctly.

The min-p is a commonly used approach to assess association
evidence at the gene-level in the pathway-based analysis.
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FIGURE 3 | The top one functional subnetwork. This subnetwork was saturated with 22 objects and 39 interactions, with a hub in transcription factor SP1 with 10
activation interactions. Thick cyan lines indicate the fragments of canonical pathways. Upregulated genes are marked with red circles and downregulated with blue
circles. Green and red arrows indicate activation and inhibition effect, respectively.

However, using the min-p statistic to represent the significance
of a gene may be limited. For instance, if a number of markers
within a gene region are moderately associated with a disease
trait, the signal of such gene may be downweighed by not
having “one” particular significant signal. Thus, combining all
information of SNPs (i.e., combined-p) in a gene can aggregate
the overall evidence that the gene-set association and SNPs with
moderate effects can be included. Different strategies of defining
the gene-level statistic may have substantial influences on results.
This seems to be reasonable and also supported by observations
evidence (Kao et al., 2012). One possible future direction in
defining gene-level statistic is to adopt a mixed approach of
using min-p and combined-p. With the mixed algorithm, an
appropriate gene-level statistic will be computed to represent
each gene properly.

In this current study, we found several BPD-susceptibility
pathways were significantly related to metabolism that is
not reported in previous studies using GWA SNPs data.

However, there is overwhelming evidence to suggest that many
metabolic pathways have been reported to be linked to complex
traits, particularly psychiatric disorders (Saxena, 2009; Wood
and Wood, 2013). In the past, a meta-analysis of metabolic
abnormalities in BPD reported that bipolar patients, particularly
patients of older age, are at a high risk for metabolic syndrome
(Vancampfort et al., 2013). Priebe et al. (2012) used genome-wide
SNP data to search for the presence of copy number variations
in 291 early-onset bipolar patients and 872 healthy controls
to implement pathways and biological processes. They found
many pathways were significantly enriched in drug metabolism,
lipid metabolism, and molecular transport, which were in line
with our findings. Our results were also consistent with other
studies based on using information from allele-specific gene
methylation and incorporating information of microRNAs into
the pathway analysis in the GAIN GWA study for BPD (Chuang
et al., 2013; Shih et al., 2013). Besides, schizophrenia patients
were found to be associated with thiol metabolism. In addition,

Frontiers in Molecular Neuroscience | www.frontiersin.org 10 November 2021 | Volume 14 | Article 772584

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-14-772584 November 17, 2021 Time: 13:4 # 11

Kuo et al. Pathways and Subnetworks for BPD

FIGURE 4 | The top two functional subnetwork. This subnetwork contained 15 objects and 83 interactions, which centered around six hubs, including three
transcription factors (SMAD3, PAX6, and UBF), two generic binding proteins (BLNK and MTS1), and one generic enzyme (HDC). Thick cyan lines indicate the
fragments of canonical pathways. Upregulated genes are marked with red circles and downregulated with blue circles. Green and red arrows indicate activation and
inhibition effect, respectively.

abnormalities in metabolic cascades and metabolic disturbances
were further observed in schizophrenia patients (Thakore, 2004;
Kirkpatrick et al., 2008). Overall, the above evidence suggests
that metabolic syndromes and complex psychiatric disorders
like BPD appear to share some common in genetic factors, and
may contribute to medical co-morbidity, including endocrine
disturbances, dysregulation of sympathetic nervous system, and
behavior patterns in these patients (Fagiolini et al., 2008). Our
results identified nine enriched metabolic pathways that were
significantly associated with BPD. These pathways were involved
with human metabolic profiles, including drug, cofactors and
vitamins, carbohydrate, lipid, and xenobiotics biodegradation.
Importantly, human metabolizing systems act as a role of
detoxification and transport through specialized enzymatic
systems to aid excretion of xenobiotics, including drugs.

The BPD-related subnetworks (Figures 3–5 and Table 3)
are complex and sophisticated, involving with several biological
processes, cellular processes, signal transduction, metabolic
processes, neuronal activities, immune system, and inflammation
processes. The most significant subnetwork (Figure 3) is
primarily related to the activation mechanism of transcription
regulation between effects of SP1 and many proteins (e.g., MAD,
Prostacyclin receptor, NOX5, LHX3, PGE2R4, PKC-beta2, MCR,
Claudin-1, p57 and IP3R1). This subnetwork plays a role in
cell growth and apoptosis (e.g., NOX5), cell differentiation (e.g.,
TCF7L1, also known as TCF3), major transcript (e.g., Ankyrin-
B), and ion or water transport (e.g., MCR). The second significant
subnetwork (Figure 4) plays a role in regulating B-cell function
and development (e.g., BLNK), B-cell differentiation and neural
development (e.g., PAX5), immune system and inflammatory

Frontiers in Molecular Neuroscience | www.frontiersin.org 11 November 2021 | Volume 14 | Article 772584

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-14-772584 November 17, 2021 Time: 13:4 # 12

Kuo et al. Pathways and Subnetworks for BPD

FIGURE 5 | The top three functional subnetwork. This subnetwork contained 16 objects and 64 interactions, with two hubs in a transcription factor (EGR1) and a
GPCR receptor (FZD7) with ranging from 5 to 18 interactions. Thick cyan lines indicate the fragments of canonical pathways. Upregulated genes are marked with red
circles and downregulated with blue circles. Green and red arrows indicate activation and inhibition effect, respectively.

response (e.g., Granzyme B, C3), cellular proliferation and
differentiation (e.g., Follistatin), and mediation of the control
of cellular processes including cell cycle, neuron growth, ion
channel regulation, and immune response (e.g., PKC). The
third significant subnetwork (Figure 5) is central with two
hubs (EGR1 and FZD7). EGR1 plays a critical role in animal
models of maternal behavior on stress responses in the offspring
(Weaver et al., 2004). The mechanism underlying the effect of
early maternal behavior involves the EGR-mediated regulation
of glucocorticoid receptor that may influence psychiatric illness
susceptibility and abnormal anxiety-related behaviors later in life
(Fish et al., 2004). McGowan et al. (2009) conducted a study
in postmortem brains and suggested that similar mechanisms
may occur in humans. FZD7 was also identified to be associated

with psychiatric or neurological disorders (Hoseth et al., 2018).
This subnetwork plays a role in the response to environmental
stress [e.g., GCKR (MAP4K5)], long-term memory (ARC),
hippocampal neuron (B-Raf), and in regulating cell growth and
differentiation (SFRP1). In this study, we identified 26 BPD-
related functional subnetworks, which provide us an opportunity
to facilitate future follow-up and functional studies for bipolar.

Many enriched pathways and selected genes were significantly
associated with BPD in this study. Of which several genes
and pathways were discussed and found to be consistent
with previous studies. Particularly, six metabolic pathways
(drug metabolism, retinol metabolism, pentose and glucuronate
interconversions, porphyrin and chlorophyll metabolism, starch
and sucrose metabolism, ascorbate and aldarate metabolism)
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were connected to dementia. A metabolic-caused dementia
is a loss of function in the brain, e.g., cognitive changes
and memory loss, that often occurs with certain psychiatric
disorders like BPD. For instance, drugs are frequently a cause
of dementia, which may impair cognition indirectly through
metabolic effects (Starr and Whalley, 1994). Retinol metabolism
was connected to an increased risk of dementia development.
Retinol hypofunction and impaired transport may contribute to
patients with memory impairment in Alzheimer’s disease (AD)
and dementia (Goodman and Pardee, 2003). Two metabolic
pathways, pentose and glucuronate interconversions (Zheng
et al., 2019), and starch and sucrose metabolism (Ling et al., 2021)
may play roles in learning and cognitive impairment that are
caused by abnormal nitric oxide production and monoaminergic
neurotransmitters in AD, BPD, and/or dementia patients. Other
metabolisms, including porphyrin and chlorophyll metabolism
(Wang et al., 2015), and ascorbate and aldarate metabolism (Chen
et al., 2011) were biologically or molecularly connected with
psychiatric disorders (e.g., AD, BPD) and dementia. We noticed
that some of enriched network pathways that were not reported
previously suggest that there may be potential links between BPD
and the risk of dementia or possibly a chance association.

There are some limitations in our study. First, our pathway
analysis relied on the accuracy and completeness of pathway
annotation databases (e.g., MSigDB). Some genes may have
potential impacts on BPD but not annotated in pathway
databases, and they may be excluded from our analyses. Other
datasets, such as IPA knowledge base,4 that provides detail-rich,
highly structured knowledge for over 1,582,000 biological and
chemical concepts in 19,635 humans, 15,194 mice, and 8,190
rat genes may be helpful to be considered in future analyses
though their annotations need to be carefully selected. Second,
it is possible that some genes might be falsely reported as
significant loci in the literature. Thus, the accuracy of prior
information is subjective to the completeness of data sources
from the literature and current knowledge. We integrated
gene information from different platforms or data sources to
construct a combined score for each gene, followed by weighted
pathway analysis to obtain more value-added pathway results
using all existing genomic evidence and knowledge for BPD.
Third, different strategies of defining the gene-level statistic
may result in different outcomes in the pathway analysis. Some
genes may be dominated by one (or a few) SNP(s) with a
strong effect while other genes may be dominated by several
SNPs with moderate effects. In this study, we only used the
min-p statistic to extract information of SNPs for a gene. An
advanced approach in calculating gene-level statistics for each
gene is to extract SNPs information using both the min-p
and the combined-p (e.g., random effects model or Bayesian
statistical methods according to the structure of SNPs in a
gene region (Stephens and Balding, 2009). Fourth, our study
uses the signals of genetic association, while other genomic
information (such as gene expression, gene regulation, etc.) has
not been used yet. Concerning other useful genomic datasets,
a possible utilization approach is to incorporate all possible

4http://www.ingenuity.com/products/ipa#/

genomic information into the pathway analysis. Finally, we only
focused on Caucasian populations, using one GWA dataset for
the pathway analysis and other for prior information collection
(Kao et al., 2014). To generalize the results to the Eastern
countries, a meta-analysis (or mega-analysis) of combining
different populations (Caucasian and Han Chinese) of GWA
data is underway to increase power to uncover the underlying
biological mechanisms for BPD.

CONCLUSION

Applying our comprehensive framework for the pathway and
functional subnetwork analyses is useful for uncovering the
underlying mechanisms and networks for complex traits. The
evidence-based collection of prior information could benefit
from quick accumulated data information and evidence from
different aspects, which provides valuable information to quantify
the contribution of genes in pathways for complex traits of
interest. A number of novel genes that did not show significant
associtions with BPD in the original single marker or gene
analysis of GWA dataset were found to participate in several
pathways, which, jointly with other genes, play roles in the
pathogenesis of BPD. Although it remains largely unclear how
the defect of pathways is specifically linked to the development
of BPD, our identified pathways provided important biological
insights into the interpretation of genome-wide association data
for BPD. These findings are anticipated to facilitate future
follow-up and functional studies for the connection and clinical
implications between BPD and dementia.
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