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Abstract: Flexible electronic devices are widely used in the Internet of Things, smart home and
wearable devices, especially in carriers with irregular curved surfaces. Light weight, flexible and
corrosion-resistant carbon-based materials have been extensively investigated in RF electronics.
However, the insufficient electrical conductivity limits their further application. In this work, a
flexible and low-profile dual-band Vivaldi antenna based on highly conductive graphene-assembled
films (GAF) is proposed for 5G Wi-Fi applications. The proposed GAF antenna with the profile of
0.548 mm comprises a split ring resonator and open circuit half wavelength resonator to implement
the dual band-notched characteristic. The operating frequency of the flexible GAF antenna covers
the Wi-Fi 6e band, 2.4–2.45 GHz and 5.15–7.1 GHz. Different conformal applications are simulated by
attaching the antenna to the surface of cylinders with different radii. The measured results show that
the working frequency bands and the radiation patterns of the GAF antenna are relatively stable,
with a bending angle of 180◦. For demonstration of practical application, the GAF antennas are
conformed to a commercial router. The spectral power of the GAF antenna router is greater than the
copper antenna router, which means a higher signal-to-noise ratio and a longer transmission range
can be achieved. All results indicate that the proposed GAF antenna has broad application prospects
in next generation Wi-Fi.

Keywords: dual-band; graphene-assembled films; conformal antenna; Wi-Fi antenna; 5G

1. Introduction

Flexible, low profile and conformal antennas have a wide application prospect in
the fields of smart wearable devices, Internet of things (IoTs), implantable biological cir-
cuits, national defense industry and smart homes [1–6]. Furthermore, to adapt to the
development trend of miniaturization, multi-function and integration of electronic devices,
dual-band/multi-band antennas emerged at a historic moment [7–10] and can reduce the
number of antennas, thus reducing the cost and size and ameliorate the electromagnetic
compatibility problems. Romain Berges et al. proposed a printed wearable dual-band
antenna for a wireless power transfer [11]. Using polyimide film as the dielectric substrate,
the antenna has good flexibility, but bending has a great influence on its resonance char-
acteristics. Mohammad Haerinia et al. proposed a printed conformal dual-band antenna
for wireless energy harvester [12]. The designed antenna has a narrow bandwidth and
low gain. These antennas have the advantages of convenient processing and easy to mass
production, but the low conductivity of conductive ink limits the radiation performance.
Niamat Hussain designed a multi-band flexible antenna for heterogeneous applications
using the method of frequency reconfigurable [13], which has the advantages of wide
impedance bandwidth and stable radiation pattern. However, using bias diodes increases
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the complexity of the circuit. Furthermore, the proposed copper-based dual-band an-
tenna is easy to break after repeated bending, which is not suitable to apply in the scene
of repeated bending such as smart wear. To solve these problems, there is an urgent
need for the flexible dual-band antenna which can be bent repeatedly and has excellent
radiation performance.

To overcome the drawbacks of metal materials of poor flexibility and easy to break,
some new conductive materials have attracted increasing attention, such as metal mesh
conductive sheet [14], conductive ink [15–17], and a carbon nanotube [18]. Nevertheless,
the metal mesh conductive sheet is too expensive and prone to oxidation [14], the conduc-
tive ink normally has low conductivity which is not suitable for antenna design [15–17],
and the carbon nanotube also has a relatively high sheet resistance, resulting from junction
resistance and is not possible to produce large-area film [18]. Recently, graphene-assembled
films with the advantages of high conductivity, good bending resistance and good chem-
ical stability have been considered as a promising alternative conductive material for
antenna [19–21], sensor [22–24] and other RF applications [25,26], which show great poten-
tial in overcoming the challenges of conformal antenna design [27–29]. It is worth noting
that most of these flexible antennas are single-band and their bending angle is greatly
limited. Moreover, the resonant characteristics of the antenna deteriorate and it cannot
work properly after bending. Therefore, the research of flexible conformal antenna is still
lacking, especially the multi-band antenna.

In this paper, a dual-band conformal antenna is proposed based on graphene assem-
bled films (GAF) with a high conductivity of 1.13 × 106 S/m. The operating frequency
bands of flexible GAF antenna cover Wi-Fi 6e bands of 2.4–2.45 GHz and 5.15–7.1 GHz. The
proposed GAF antenna has a low profile of 0.548 mm. Even the GAF antenna is bent with
angle of 180◦, the working frequencies are 2.33–2.45 GHz and 5.06–7.1 GHz, which can still
meet the requirements. The measured maximum realized gain is 6.85 dBi at 6.12 GHz. The
measured results show that the radiation patterns are relatively stable after bending. In
addition, the GAF antennas are assembled in a commercial router for performance tests.
The experimental results show that the GAF antenna router has a higher spectral power
than the initial router. With the advantages of simple structure, low profile and good
flexibility, the proposed conformal antenna has a broad application prospect in the fields of
Internet of Things and intelligent wearables.

2. Materials and Methods

The graphene-assembled films are fabricated by the following four steps [29]: Firstly,
graphene oxide (GO) slurry was diluted with ultrapure water to obtain the GO suspension
with concentration of 15 mg/mL. Then, the GO suspension was scraped onto a polyethy-
lene terephthalate (PET) substrate and then evaporated to obtain the GO assembly films.
Thereafter, the GO assembly films were annealed at 1300 ◦C for 2 h and 3000 ◦C for 1 h in
argon (Ar) gas flow. Finally, the GAF was achieved by a rolling compression process with
the pressure of 150 MPa.

The digital photo in Figure 1a shows that the GAF has good flexibility and can
be arbitrarily bent to fit different conformal scenarios. The electrical conductivity of
the graphene assembled films is 1.13 × 106 S/m measured by using a four-point probe
resistance measurement system. Moreover, the density of the GAF is 1.48 g/cm3, which
is smaller than a quarter of the copper foil of 8.8 g/cm3. Figure 1b is the cross-sectional
scanning electron microscopy (SEM) (JEOL JEM6700, Tokyo, Japan) image of the GAF
showing the thickness of the GAF to be 0.024 mm.
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Figure 1. (a) Digital photo of the GAF. (b) Cross-sectional SEM image of the GAF. 
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bled films. As shown in Figure 2a–c, W1 is the width of the substrate, W2 is the width of 
the aperture, L1 is the length of the substrate, L2 is the length of the substrate, L3 is the 
length of the matching line, L4 is the length of the feed line, L5 is the length of the open 
circuit half wavelength resonator, D is the radii of the circular slot and R1 is the Radius of 
the fan coupling line. To achieve good conformal characteristics, flexible PDMS is chosen 
as the dielectric substrate (blue part) with thickness of 0.5 mm, dielectric constant of 2.7 
and loss tangent angle of 0.02. Figure 2a,b depicts the structure of the proposed Vivaldi 
antenna, which is a broadband end-fire traveling wave type. It is usually implemented on 
a substrate with the Vivaldi design etched on the upper cladding of the substrate. 

 
Figure 2. (a–d) Structure of the proposed flexible GAF dual-band antenna. (a) Top view. (b) Bottom view. (c) The model 
of feed structure. (d) Perspective view. (e) Simulated reflection coefficients of the GAF antenna under flat state. (f) Simu-
lated gain of the GAF antenna under flat state. (g–i) Surface current distributions of the GAF antenna at 2.45 GHz, 3.8 GHz 
and 8 GHz. 

Figure 1. (a) Digital photo of the GAF. (b) Cross-sectional SEM image of the GAF.

3. Results and Discussion
3.1. Design and Simulation of GAF Dual-Band Antenna

To cover all frequency bands under the Wi-Fi 6e standard (2.4–2.45 GHz and 5.15–7.1 GHz),
the dual-band antenna is designed in a sandwich structure, as shown in Figure 2a–d. The
top and bottom layers are radiating conductors, which are made of graphene assembled
films. As shown in Figure 2a–c, W1 is the width of the substrate, W2 is the width of the
aperture, L1 is the length of the substrate, L2 is the length of the substrate, L3 is the length
of the matching line, L4 is the length of the feed line, L5 is the length of the open circuit
half wavelength resonator, D is the radii of the circular slot and R1 is the Radius of the
fan coupling line. To achieve good conformal characteristics, flexible PDMS is chosen
as the dielectric substrate (blue part) with thickness of 0.5 mm, dielectric constant of 2.7
and loss tangent angle of 0.02. Figure 2a,b depicts the structure of the proposed Vivaldi
antenna, which is a broadband end-fire traveling wave type. It is usually implemented on
a substrate with the Vivaldi design etched on the upper cladding of the substrate.
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Figure 2. (a–d) Structure of the proposed flexible GAF dual-band antenna. (a) Top view. (b) Bottom view. (c) The model of
feed structure. (d) Perspective view. (e) Simulated reflection coefficients of the GAF antenna under flat state. (f) Simulated
gain of the GAF antenna under flat state. (g–i) Surface current distributions of the GAF antenna at 2.45 GHz, 3.8 GHz and
8 GHz.
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In order to realize dual-band radiation, band-notch structures are added to the ultra-
wideband (UWB) antenna, which not only has the characteristic of low profile, but also can
flexibly adjust the notch frequencies. Among the UWB antennas, Vivaldi antenna has the
advantages of low profile, wide band, simple structure and stable radiation pattern. By
adding notch structures beside the microstrip feeder, good stop-band suppression can be
achieved, which has the advantages of simple structure and low profile. The basic structure
of the Vivaldi antenna consists of a λ/4 uniform slot that is connected to an exponentially
tapered slot. To reduce the return loss of antenna, the λ/4 uniform slot can be replaced
by a circular slot with radius of λ/8. The slot is excited by a microstrip transmission line
from the undersurface of the substrate. The Vivaldi design is usually of low cost, and it
possesses excellent radiation characteristics, such as high gain, broadband performance,
constant beam width, and low side lobes. Parametric studies show that the directivity of
Vivaldi antennas increases as the length L2 of the antenna increases, and the bandwidth is
influenced by the opening width W3 and the aperture width W2 of the antenna. It is also
worthy to notice that as the length of the antenna increases, the beam width narrows.

The exponential taper curve is given by the following formula:

y(x) = ±Aepx + B (1)

where y is the half separation of the slot and x is the position across the length of the
antenna, A is half of the opening width W3, p is the taper rate and B can be determined
by W1, W2 and W3 (W1/2 = W2 + W3 + B). The initial value of parameter B is set as a
quarter wavelength of the highest resonant frequency of the antenna, and then its optimal
value is determined by means of parameter scanning. To improve the resistance at low
frequency, the value of p can be increased. However, large values of p simultaneously
create larger variations in the resistance and reactance over the entire band, which will
worsen the resonant characteristics of the antenna. Therefore, a compromise is usually
required between the taper rate p and the square resonant/cavity area to achieve wide
bandwidth. In addition to the bandwidth, the taper rate also has a great impact on the
antenna beam width. In general, the taper rate is positively correlated with the beam width
in the E-plane, and inversely correlated with the beam width in the H-plane. Therefore, to
obtain a wide beam width in the E-plane, the taper rate needs to be increased. Parametric
studies have shown that the optimal performance is achieved when the length L2 is greater
than one wavelength at the lowest frequency.

To obtain stable far-field radiation characteristics, the scheme of ultra-wideband and
band-notch are adopted to achieve dual-frequency band. Firstly, a Vivaldi antenna with
the advantages of frequency independence, simple structure and low profile is designed to
achieve ultra-wide working band of 2.5–10 GHz. Then, two notch elements are added to
trap the non-resonant frequencies to suppress its radiation. These two notch units are the
split ring resonator (SRR) and the open circuit half wavelength resonator (OCHWR) where
fn1 is the notch frequency of SRR and fn2 is the resonant frequency of OCHWR. SRR and
OCHWR are widely used in band-notch antenna, which have the characteristics of simple
structure, low profile and high flexibility [30,31]. In addition, double-capacitor load ring
resonator (DCRR) [32], stub-loaded resonator (SLR) [33,34] and step impedance resonator
(SIR) [35–37] can also be used as notch elements, although the design is more complex. The
equivalent circuit of the SRR can be considered as a high-Q LC resonance tank, the splitting
gap provides a capacitor (Cr) and the inductor (Lr) comes from the current loop [32]. By
adjusting the value of Lr and Cr, the resonant frequency can be dynamically adjusted. In
practical design, the desired resonant frequency is usually achieved by changing the total
length of the resonator. The frequency of the resonator is negatively correlated with its
total length, that is, when the total length increases, the resonant frequency decreases. In
this paper, fn1 is 3.8 GHz and fn2 is 8 GHz. Then the length of SRR and OCHWR can be
calculated by the following formulas:

LSRR = c/(2 fn1
√

εe) (2)
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LOCHWR = c/(2 fn2
√

εe) (3)

where, c is the speed of light and εe is the effective dielectric constant of the substrate.
The antenna is modeled and simulated in CST software based on the calculated

parameters. As shown in Figure 2e, after optimization, the simulated resonant frequencies
of the GAF dual-band antenna are 2.27–2.52 GHz and 5.13–7.17 GHz, and the reflection
coefficients at 5.65 GHz is −30 dB, which indicates good impedance match of the antenna
and the feeding system. Figure 2f shows a sharp gain decrease at 3.82 GHz and 8 GHz,
which means good band-notch characteristic can be achieved. It can be seen from Figure 2f
that the lowest value of gain is −8.06 dBi at 3.82 GHz, which means good out-of-band
suppression can be achieved. The optimized geometrical parameters of the GAF antenna
are shown as follows: W1 = 71 mm, W2 = 26.3 mm, W3 = 9 mm, W4 = 2 mm, L1 = 98.35 mm,
L2 = 54 mm, L3 = 24.35 mm, L4 = 20 mm, L5 = 10.5 mm, L6 = 8.5 mm, L7 = 3.75 mm,
D1 = 7 mm, R1 = 7.5 mm, Theta = 100◦.

The distribution of antenna surface current has great influence on antenna radiation
pattern. A new idea for antenna design can be provided by studying the distribution of
surface current. To explore the mechanism of band-notch antenna, the surface current
distributions of the GAF antenna at different frequencies are illustrated in Figure 2g–i. In
Figure 2g, the SRR and OCHWR have ignorable impact on the resonance characteristic of
GAF antenna at 2.45 GHz. On the other hand, as shown in Figure 2h, the SRR is equivalent
to a resonator, which has a big resonance effect on the antenna at 3.8 GHz [30]. Most of the
surface current energy is concentrated on the SRR and the antenna almost cannot radiate.
In the same way, when the antenna operates at 8 GHz, most of the surface current energy
are concentrated on the OCHWR. Thus band-notched characteristics can be achieved. The
notch frequency can be adjusted flexibly by adjusting the size of notch unit.

3.2. Conformal Characteristics of GAF Antenna

For conformal antennas, it is important to keep the resonant characteristics stable in
bending state. To explore the resonance characteristics of GAF dual-band antenna in the
bending state, a conformal experiment is designed, as shown in Figure 3a. The bending
radius of the antenna is changed to simulate different conformal conditions. The GAF dual-
band antenna is bent with the bending radius R of 30 mm to 45 mm, and the corresponding
bending angle is 180◦ to 120◦.
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Figure 3b shows the simulated results of resonance characteristics of GAF dual-band
antenna under different bending states. Although the equivalent electric length is increased
while the antenna is bent, and the resonant frequency of the antenna is reduced, the
working bandwidth of GAF dual band antenna is almost unchanged, even at a bending
angle of 180◦, which indicates that a flexible GAF antenna can cover the vast majority
of current conformal application scenarios. In addition, the simulated far-field radiation
patterns under different bending angles are shown in Figure 3c–f. It can be clearly seen that
the radiation consistency of the GAF dual-band antenna is good in a series bending state in
the whole working frequency band. These results show that the resonant characteristics of
the designed antenna can be kept stable under different application scenarios.

3.3. Fabrication and Measurement of GAF Dual-Band Antenna

The GAF antenna is fabricated by a one-step laser-direct mold engraving method. The
model of the laser engraving machine used is LPKF ProtoLaser S, and the resolution is
25 µm. The PDMS substrate is then machined by a mechanical cutter bar to obtain the
desired size. Finally, the graphene conductive layer and the PDMS dielectric layer are
assembled to obtain the GAF conformal antenna, which is shown in Figure 4a,b. The
thickness of the antenna is only 0.548 mm, which means a low profile is achieved.
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As shown in Figure 4c, the GAF antenna is conformed on foam cylinders with different
radii of 30 mm–45 mm to explore the resonance characteristics in different conformal states.
The relative dielectric constant of foam cylinders is 1.05, which has little effect on antenna
radiation. The feeder port of antenna was connected to a SMA-KHD 23 connector, which
was linked to a power network analyzer (PNA) through a coaxial line. The reflection
coefficients of the antenna were measured by the PNA. The radiation patterns and gain
of the antenna were derived from the antenna measurement system, which consisted of a
PNA, a diamond engineering antenna measurement system (DAMS) platform controller,
and a microwave anechoic chamber. The PNA was connected to a positioner platform
and a standard reference antenna (REF antenna) of the microwave anechoic chamber to
control signal reception. The DAMS platform controller was connected to the positioner
platform of the microwave anechoic chamber. The radiation patterns were obtained by
a rotating antenna under test (AUT) with increments of 3◦. Figure 4d is the measured
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resonant frequency and return loss of the GAF dual-band antenna. In the bending radius of
30 to 45 mm (the corresponding bending angle of 180◦–120◦), the GAF dual-band antenna
can cover 2.40–2.45 GHz and 5.15–7.1 GHz, although the resonant frequency is slightly
shifted. Therefore, GAF antenna can work normally, even under bending angle of 180◦.

As demonstrated in Figure 4e, f, the simulated and measured realized gain of GAF
antenna show good consistency. The measured realized gain ranges from 5.25–6.85 dBi
within 5.1–7.2 GHz and 2.62–2.91 dBi within 2.3–2.5 GHz. Figure 5a–d show the measured
radiation patterns of GAF dual-band antenna at 2.45 GHz, 5.5 GHz, 6.0 GHz and 6.5 GHz
in different conformal states. Although the radiation patterns are slightly distorted after
bending, the radiation consistency is still good in the whole frequency band.
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As shown in Figure 6a, the proposed GAF antenna is used in the router, which has the
advantages of high transmission rate, easy to conformal and light weight. Figure 6b depicts
that the GAF antenna router is fabricated by replacing the original copper antenna of the
router with the GAF antenna. By conforming the GAF antenna to the surface of the router,
space utilization can be improved and miniaturization can be achieved. The transmission
rates and spectral power of the GAF antenna and copper antenna were measured in an
anechoic chamber as shown in Figure 6c. It can be seen from Figure 6d,e that the GAF
antenna has a transmission rate comparable to that of a copper antenna. Figure 6f shows
that the spectral power of the GAF antenna is greater than the original copper antenna in
the router, which means a higher signal-to-noise ratio and a longer transmission range can
be achieved.
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4. Conclusions

In conclusion, a flexible GAF dual-band antenna with low profile and light weight is
designed, fabricated and measured. The GAF antenna possesses the mechanical advantages
of good flexibility and excellent flexural endurance. The designed GAF antenna has a low
profile of 0.548 mm, which is very suitable for conformal applications. The measured peak
realized gain of 6.85 dBi is obtained at 6.12 GHz. Furthermore, the measured results show
that the GAF antenna has good matching performance and stable radiation patterns in the
frequency bands of 2.4–2.45 GHz and 5.15–7.1 GHz, even under the bending angle of 180◦.
The fabricated GAF antenna router has the advantages of miniaturization, light weight
and high transmission rate. Furthermore, the spectral power of the GAF antenna router is
greater than the copper antenna router, indicating a higher signal-to-noise ratio and longer
transmission range. All the results show that GAF dual-band antenna has great application
potential in the next generation of conformal Wi-Fi antenna.
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