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A B S T R A C T

Aiming at the problem that the single CT image signal feature recognition method in the self-diagnosis of
diseases cannot accurately and reliably classify COVID-19, and it is easily confused with suspected cases. The
collected CT signals and experimental indexes are extracted to construct different feature vectors. The support
vector machine is optimized by the improved whale algorithm for the preliminary diagnosis of COVID-19,
and the basic probability distribution function of each evidence is calculated by the posterior probability
modeling method. Then the similarity measure is introduced to optimize the basic probability distribution
function. Finally, the multi-domain feature fusion prediction model is established by using the weighted D-S
evidence theory. The experimental results show that the fusion of multi-domain feature information by whale
optimized support vector machine and improved D-S evidence theory can effectively improve the accuracy and
the precision of COVID-19 autonomous diagnosis. The method of replacing a single feature parameter with
multi-modal indicators (CT, routine laboratory indexes, serum cytokines and chemokines) provides a more
reliable signal source for the diagnosis model, which can effectively distinguish COVID-19 from the suspected
cases.
1. Introduction

At present, COVID-19 epidemic is spreading rapidly all over the
world, seriously endangering the human health and life, and it causes
huge losses to people’s lives and economy. COVID-19 is an infectious
disease with strong infectivity and rapid transmission speed [1]. Ac-
cording to the statistics of the World Health Organization, the average
number of infected people who will spread the virus to other people
in the population without immunity is 3.77 [2]. Without medical
intervention, the disease will spread rapidly. The current gold standard
for diagnosing COVID-19 is RT-PCR performed on the respiratory tract
collection [3]. However, it has the disadvantages of long time, complex
process and low positive rate. In addition, it also has the problems of
short supply of detection kits, insufficient detection capacity and wrong
detection results, which may lead to the further spread of COVID-19.
It is reported that almost all patients with COVID-19 may have lung
changes during the course of the disease [4]. CT has the advantages
of non-invasive, rapid and high sensitivity in the diagnosis of COVID-
19, and it plays a vital role in the early detection of COVID-19, the
identification of suspected cases and the evaluation of curative effect.
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The specific imaging features of COVID-19 include multiple small patch
shadows and interstitial changes in the early stage, especially in the
extrapulmonary zone. Further, it develops into multiple ground-glass
opacity and infiltrating shadows in both lungs. In severe cases, the lung
consolidation may occur and the pleural effusion is rare [5]. Although
CT image is helpful for early screening of suspected cases, COVID-
19 still has certain similarities with viral pneumonia and bacterial
pneumonia in imaging manifestations, and it is difficult for doctors to
identify COVID-19 with experience directly.

COVID-19 is diagnosed based on the comprehensive analysis of
epidemiological history, clinical manifestations and experimental tests.
Among them, the positive nucleic acid test is the primary standard
for diagnosis [6]. Imaging combined with experimental tests for the
diagnosis of COVID-19 is becoming more and more popular [7]. Al-
though it brings dawn to the diagnosis and treatment of COVID-19, a
large amount of data also brings a heavy burden to doctors. Therefore,
the development of computer-aided diagnosis (CAD) will become a
necessity [8]. As a new technology in the medical field, artificial
intelligence has great advantages over the traditional methods that
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rely heavily on manual labor of lung lesions in CT images [9,10].
Gupta uses the improved random walk (IRF) algorithm to automatically
segment the ground-glass opacity (GGO), combined with the gray level
co-occurrence matrix, rotation-invariant uniform local binary pattern
and Gabor filtering method to generate the feature vector. It uses
the interactive information to reduce the dimension and adopts the
improved random forest model to classify GGO [11]. Bayoudh used
two methods of random translation and rotation of the image center
coordinates to expand the positive samples, and the trained convolu-
tional neural network 2D-CNN for GGO detection [12]. Zhang proposed
the expansion layer instead of the convolution layer to increase the
receptive domain and improve the ability of the network to learn the
global information of the image. After improving the U-net network,
the deep convolutional neural network (DCNN) model is formed [13].
Elaziz proposed a method for GGO segmentation and feature extraction
by using multi-level threshold (MLT). GGO can be effectively detected
by properly extracting the features of nodules. This algorithm mainly
depends on the selection of the threshold, which has a great influence
on the result. The change of the threshold means recalculation and
the amount of calculation increases [14]. Nave proposed the plaque-
based multi atlas method (PBMA). Through the feature vector based
on size and shape, a group of minimum number of training samples
are created, and each sample has the similar size and shape to the
actual patient GGO image. The Laplace algorithm of Gaussian speckle
detection method is used to find the segmentation region of GGO,
which improves the detection sensitivity and solves the problem of high
false positive rate [15]. Anter proposed a GGO detection algorithm
using region growth and adaptive fuzzy C-means (AFCM) technology
to reduce false positives in the nodule detection by clustering and then
classifying [16]. Soui proposed a GGO detection algorithm based on
AdaBoost cascade classifiers (ABC), which defined the GGO detection
problem as the task of constructing classifiers, and it realized GGO
detection in the form of classifiers to learn the mapping from original
data to object classification [17]. In recent two years, some scholars
have studied the methods of autonomous disease diagnosis and protec-
tion of medical data privacy. Hu [18] proposed the colorectal polyp
region saliency detection method (CPRS) based on a variety of prior
knowledge decisions. The rough saliency map is obtained based on
the image background prior. In order to suppress the false detection
of non-focus areas, the frequency prior and the adaptive center prior
are incorporated to optimize saliency. The final fine saliency map is
obtained by image cutting optimization to detect the colorectal polyp
region in the ultrasound image. Wu [19] proposed an electronic medi-
cal record privacy protection algorithm based on the sensitive attribute
clustering, which protects the privacy information of the data owner
by deleting data and generalizing data. Such research methods only
focus on the privacy of data, but it do not consider the accuracy of
data. Zhou [20] proposed the graph-based extreme learning machine
(GBELM) to solve the impact of discrete points and noise samples on
EEG classification and improve the classification performance, but the
ability to process the data needs to be improved. Yan [21] proposed an
early classification method on time series, which reduces the dimension
of time series samples, and then the samples are classified in low
dimensional space. The proposed method is superior to the existing
methods in accuracy and reliability. Dai [22] proposed the intelli-
gent rehabilitation technology of EMG, which can effectively support
quantitative diagnosis and rehabilitation efficacy evaluation, and it
assists the rehabilitation robot to achieve safe and natural human–
computer interaction. Tang [23] optimized the parameters of the BP
neural network image segmentation method, and it further modified
the training samples by extracting the image domain features. Using the
improved BP neural network image segmentation method, the image is
segmented from three aspects: the whole connected domain, the local
domain and the edge domain. He [24] proposed an image segmentation
algorithm based on neural network. The edge of image segmentation
2

is clear, and the algorithm effectively shortens the time of sample
training. Wu [25] proposed a location privacy protection method for
private information retrieval. Based on the attribute encryption and
the essential characteristics of location service, this method completes
the location service query and feedback with zero information leakage
through calculation between the user and the location server. Wu [26]
proposed a searchable encryption method, which reduces the difficulty
of key management in a multi-user environment, and the trap gate
in the scheme can be transmitted on a non-secure channel with fine-
grained access control, and the user’s access rights can be increased or
revoked according to the request of the data owner. Table 1 summarizes
the names, references, advantages and limitations of related COVID-19
autonomous diagnosis algorithms. The autonomous diagnosis method
for COVID-19 contains adjustable parameters, so the meta-heuristic
algorithm can be used to optimize the adjustable parameters to achieve
the best classification effect. Recent metaheuristics include monarch
butterfly optimization (MBO), slime mould algorithm (SMA), moth
search algorithm (MSA), hunger games search (HGS), Runge Kutta
method (RUN), and Harris hawks optimization (HHO). Feng [27] pro-
posed MBO based on reverse learning and random local disturbance,
which improves the optimization efficiency of MBO. However, this
method moves in a single way. It shares less information between
populations and shows slower convergence. Li [28] proposed improved
SMA, which uses adaptive weights to simulate the positive and neg-
ative feedback process of slime mold propagation waves based on
biological vibrators to form an optimal path connecting food with
good exploration ability. Wang [29] proposed the novelty MSA, which
has the advantages of few parameters and strong robustness, which
is rapidly applied to parameter extraction. However, the algorithm is
prone to fall into local optimization in the later stage of iteration.
Yang [30] proposed the HGS to build a prediction model and optimize
the parameters through HGS. With the advantages of easy conver-
gence, high convergence accuracy and escaping from the local optimal
solution, it found a better global approximate optimal solution to
obtain a model with higher classification accuracy. Ahmadianfar [31]
proposed the RUN with variable step size strategy to achieve adaptive
optimization control. The simulation results show that the predictive
control algorithm has fast response speed, strong robustness and strong
practicability. Houssein [32] proposed the improved Harris Hawks Op-
timization (IHHO) algorithm integrating mutualism. Tent chaotic map
is used to initialize the population, which increases the diversity of pop-
ulation and improves the optimization performance of the algorithm.
Table 2 summarizes the names, references, advantages and limitations
of related meta heuristic algorithms. Although there are many diag-
nostic methods for COVID-19, they still do not meet the requirements
for clinical application. There are also the following shortcomings: (1)
The CT manifestations of patients with COVID-19 are different types
of GGO, but GGO is not the specific imaging manifestation of COVID-
19, which can appear in a variety of lung diseases [33,34]. It needs to
be distinguished by combining blood routine, RT-PCR, cytokines and
other experimental indexes; (2) The autonomous diagnosis of COVID-
19 based on a single classifier has the shortcomings of low accuracy,
strong randomness and poor robustness. The kernel parameter 𝑐 and
punishment parameter 𝑔 of the SVM are mainly selected by experience,
and the prediction accuracy cannot meet the actual needs; (3) The
traditional method of the weighted evidence fusion is sensitive to the
basic probability distribution function and it lacks robustness. In the
face of high conflict evidence, there is a fusion failure problem, and the
influence of the consistency of diagnosis results on the fusion results is
not considered, which has certain defects.

Whale optimization algorithm (WOA) is a new optimization algo-
rithm, which has the advantages of few parameters, simple operation,
fast convergence speed and strong optimization ability. The MSVM
model contains adjustable parameters, so the classification performance
of MSVM can be improved by selecting different values. In this paper,
WOA is used to optimize the adjustable parameters. The optimization

of MSVM by WOA can accelerate the optimal speed of the adjustable
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Table 1
Literature review of COVID-19 autonomous diagnosis algorithms.

Algorithm Reference Advantage Limitation

IRF Ref. [11] It is good at processing high-dimensional data. It is easy to overfit.
2D-CNN Ref. [12] Feature extraction can be performed automatically. Parameter adjustment is required, and classification speed is slow.
DCNN Ref. [13] It has very good robustness and stability. A large number of samples are required.
MLT Ref. [14] The calculation is small and the complexity is low. Its classification accuracy is low.
PBMA Ref. [15] It has very good robustness. The amount of calculation is large.
ABC Ref. [17] Different classification algorithms can be used as weak classifiers. Training is time-consuming and it is easily affected by data distribution.
CPRS Ref. [18] The operation speed is fast. Correlations of attributes in the dataset are ignored.
GBELM Ref. [20] It can solve nonlinear problems and it has strong generalization ability. When the sample is unbalanced, the prediction deviation is relatively large.
Table 2
Literature review of meta heuristic algorithms.

Algorithm Reference Advantage Limitation

MBO Ref. [27] Convergence accuracy is accelerated. Time complexity is increased.
SMA Ref. [28] Population diversity is increased. Speed of early convergence is slow
MSA Ref. [29] Convergence accuracy is accelerated. Running time is increased.
HGS Ref. [30] Convergence is improved. It is easy to fall into local optima.
RUN Ref. [31] Accuracy and robustness of the solution are improved. The data of simulation experiment is single.
IHHO Ref. [32] Local search capability is increased. The ability to jump out of local optimum is weak.
𝑜

𝑝

𝑜
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𝐼
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parameters, which shortens the running time and improves the accu-
racy of COVID-19 autonomous diagnosis. Based on the above reasons,
this study proposes an autonomous diagnosis algorithm for COVID-19
based on whale-optimized MSVM and improved D-S evidence fusion.
The contributions of this work can be summarized as the following:
(I) this paper proposes 58-dimensional feature components such as CT
image features, blood routine, RT-PCR and cytokines are extracted to
jointly quantify COVID-19; (II) this paper proposes an autonomous
diagnosis method for COVID-19 based on the least weighted whale
optimization algorithm to optimize the mixed kernel support vector
machine. The whale algorithm is improved by introducing nonlinear
factors and adaptive weights, and then the improved algorithm is used
to optimize the parameters of mixed kernel SVM, so as to improve the
optimization accuracy and convergence speed, and it prevents WOA
from falling into local optimum prematurely; (III) a method based on
the angle cosine and Lance distance is proposed to effectively solve the
high conflict evidence. The conflict evidence is identified by the cosine
of the included angle. For the existing conflict evidence, the Lance
distance between the evidences in the system identification framework
is calculated. Then the reliability of the evidence is taken as the weight,
and the weighted average on the evidence sources is performed. The
D-S synthesis rule is applied to the processed evidence source to obtain
the fusion result. The experimental results show that the model can
improve the rationality of feature structure and the performance of
classification to a certain extent, so as to improve the detection effect of
COVID-19. The algorithm model of multi-modal autonomous diagnosis
algorithm for COVID-19 is shown in Fig. 1.

2. Multi-modal feature extraction and quantification of COVID-19

2.1. Characteristic analysis and quantification of GGO

Image features are the most basic attributes used to describe image
content, and selecting reasonable features is the key for accurate GGO
detection [35,36]. The selection of features is not unique, and the
medical images generated by different types of GGO have different
features [37]. GGO features are influenced by the comprehensiveness
of its description and the accuracy of its characterization [38]. A large
amount of noise information will reduce the feature extraction accuracy
of GGO and affect the final detection results [39]. Therefore, in order
to comprehensively and accurately express the morphological structure
and local characteristics of GGO based on the analysis of medical signs
of GGO, this study qualitatively analyzed and characterized the lesions
from two-dimensional and three-dimensional perspectives. Fig. 2 shows
three different types of GGO and the ROI segmentation results including
COVID-19, bacterial pneumonia, viral pneumonia.
3

This paper focuses on autonomous diagnosis of COVID-19 based
on the multi-modal indicators, not feature extraction. The feature ex-
traction methods in this paper are referred from Ref. [3,40,41]. This
paper only lists the types of COVID-19 multi-modal diagnosis indica-
tors. In order to objectively describe the CT image characteristics of
COVID-19, the description and equations of Hu moment and gray level
co-occurrence matrix (GLCM) are expressed in this paper.

The Hu moment of an image is a kind of image feature with
translation, rotation and scale invariance. The digital image is a two-
dimensional discrete signal. The 𝑝th order Hu moment 𝑚𝑝 of 𝑓 (𝑥, 𝑦)
after discretizing can be expressed as:

𝑚𝑝 =
𝐶
∑

𝑥=1

𝑅
∑

𝑦=1
𝑥𝑝𝑦𝑝𝑓 (𝑥, 𝑦) (1)

where 𝑓 (𝑥, 𝑦) represents the pixel value of the image; 𝐶 and 𝑅 represent
the column and row of the image respectively; 𝑝 represents the order,
𝑝 = 0, 1, 2⋯.

The GLCM is a method to count the gray level distribution of an
image. The essence of its description is to count the frequency of a
pair gray levels in a certain position. The GLCM defines a pair of pixel
points with gray levels 𝑖 and 𝑗 in image 𝐼 , with the direction is 𝜃, and
the probability of simultaneous occurrence distance 𝑑 is recorded as
𝑝(𝑖, 𝑗, 𝑑, 𝜃). The specific expressions of the probability when the interval
of direction 𝜃 is 45◦ are shown in Eq. (2) to Eq. (5).

𝑝(𝑖, 𝑗, 𝑑, 0◦) = #{[(𝑘, 𝑙), (𝑚, 𝑛)]|𝑘 − 𝑚 = 0, |𝑙 − 𝑛| = 𝑑} (2)

𝑝(𝑖, 𝑗, 𝑑, 45◦) = #{[(𝑘, 𝑙), (𝑚, 𝑛)]|(𝑘 − 𝑚 = 𝑑, 𝑙 − 𝑛 = −𝑑)

𝑟(𝑘 − 𝑚 = −𝑑, 𝑙 − 𝑛 = 𝑑)}
(3)

(𝑖, 𝑗, 𝑑, 90◦) = #{[(𝑘, 𝑙), (𝑚, 𝑛)]||𝑘 − 𝑚| = 𝑑, 𝑙 − 𝑛 = 0} (4)

𝑝(𝑖, 𝑗, 𝑑, 135◦) = #{[(𝑘, 𝑙), (𝑚, 𝑛)]|(𝑘 − 𝑚 = −𝑑, 𝑙 − 𝑛 = −𝑑)

𝑟 (𝑘 − 𝑚 = 𝑑, 𝑙 − 𝑛 = 𝑑)}
(5)

here # represents the number of elements in the set, 𝐼(𝑘, 𝑙) = 𝑖,
(𝑚, 𝑛) = 𝑗.

.1.1. Shape feature
The shape features are the most intuitive visual features. It can

epresent the main medical signs of GGO, such as round mass sign, lob-
lation sign, and hairpin sign from the geometry shape, edge roughness
nd topological structure [42]. The shape feature components extracted
n this paper mainly include: perimeter, area, volume, circularity,
ectangularity, extension length, Euler number, circumscribed spherical
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Fig. 1. Model of multi-modal autonomous diagnosis algorithm for COVID-19.
volume ratio, standard deviation of surface-center distance, number of
corners, Hu moment, intersection distance of the circumscribed cuboid.

Circularity (𝐾 = 𝑃 2

4𝜋𝐴
, 𝐴 is the area of GGO, 𝑃 is the perimeter

of GGO) and rectangularity (𝑃 = 𝑆
𝑅

, 𝑆 is the area of the connected
domain, 𝑅 is the minimum circumscribed rectangular area of the
connected domain) are the main indicators to describe the geometric
characteristics of GGO. The greater the value of both, the deeper the
lobule, the more spinous processes, and the more irregular the shape.

Extension length (𝑁 =
∑

𝑥,𝑦 𝑤(𝑥, 𝑦)[𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)]2, 𝐼(𝑥, 𝑦)
represents the gray value of the pixel, 𝑤(𝑥, 𝑦) represents the weight
in the Gaussian window) can effectively describe the roughness of the
GGO. The more corners, the rougher the edge, and the more leaves and
spikes.

Number of Euler (𝐸0 = 𝐶 − 𝐻 , 𝐶 is the number of connected
regions and 𝐻 is the number of cavities) can measure the cavitation
characteristics of GGO. The smaller the number of cavities in the
calculated region, the more holes are in GGO.

Circumscribed cuboid (𝐸𝑠(𝐴𝑖) =
𝑉 𝑜𝑙𝑢𝑚𝑒(𝐴𝑖)

𝑉 𝑜𝑙𝑢𝑚𝑒(𝑉 𝑆(𝐴𝑖))
) is the ratio of

each GGO extracted from CT images to the circumscribed sphere vol-
ume 𝑉 𝑆(𝐴𝑖), which reflects the similarity between the GGO and the
sphere.

2.1.2. Intensity feature
The grayscale statistical feature is the most basic feature to describe

the two-dimensional image area quantitatively, which is called the
intensity feature from the three-dimensional perspective [38]. The
intensity feature components extracted in this paper include intensity
mean, intensity variance, maximum and minimum intensity difference,
skewness, kurtosis, intensity gradient (from inside to outside) and
Laplace divergence (mean, difference).

Intensity mean (𝐸(𝐼) =
∑

𝐼 ∗ 𝑃 (𝐼), 𝑃 (𝐼) is the pixel fractions of
image 𝐼) reflects the overall brightness of the image, and intensity
variance (𝐷(𝐼) = 𝐸[(𝐼 − 𝐸(𝐼))2]) reflects the contrast of the image.
Because of the large brightness, strong contrast and rich information of
the blood vessels. Therefore, when the size is similar, the mean value
and variance of gray scale are also larger than those of GGO.
4

Skewness (𝑆(𝐼) =
∑

(𝐼 − 𝐸(𝐼))3𝑃 (𝐼)) is the measurement of the
asymmetric probability distribution of pixels, which is reflected in the
degree of skew of the curve. Through observation, it can be found
that most of the GGOs are the bright areas, which tend to be skewed
distribution.

Kurtosis (𝐾(𝐼) =
∑

(𝐼 − 𝐸(𝐼))4𝑃 (𝐼)) is the measurement of the
sharpness of pixel probability distribution, which is reflected in the
height of the peak of the distribution curve. The larger the kurtosis
coefficient, the more extreme values of the distribution. The kurtosis
coefficient of blood vessels is generally greater than GGO.

Intensity gradient (𝐺(𝑥, 𝑦) = 𝑑𝑥(𝑖, 𝑗) + 𝑑𝑦(𝑖, 𝑗)) reflects the changes
on the gray scale of the edges of the image, which describes the edge
differences between the GGO and other tissues.

The mean of Laplacian divergence (𝐸𝑙𝑚(𝐴𝑖) = 𝑚𝑒𝑎𝑛(𝐴𝑖 × 𝐿𝑎)) is the
result of convolution of Laplacian operator 𝐿𝑎 and original CT image.
According to the calculation results, it is found that the divergence
of regions around GGO with small difference in gray values is obvi-
ously different. Therefore, calculating the average value of Laplacian
divergence is helpful to distinguish GGO from interfering impurities.

The difference of Laplacian divergence (𝐸𝑙𝑑 (𝐴𝑖 = 𝑚𝑎𝑥(𝐴𝑖 × 𝐿𝑎) −
𝑚𝑖𝑛(𝐴𝑖 × 𝐿𝑎))) is the difference between the maximum and minimum
of the Laplacian divergence, which describes the variation range of the
regional divergence.

2.1.3. Texture feature
This paper extracts the angular second-order moment, inertia mo-

ment, deficit moment, sum mean, variance, sum variance, difference
variance, entropy, sum of entropy, difference entropy, information
measure, correlation coefficient and maximum correlation coefficient
based on GLCM. The roughness, contrast and orientation based on
Tamura texture features are extracted.

The angular second-order moment (𝐴𝑆𝑀 =
∑

𝑖
∑

𝑗 𝑝(𝑖, 𝑗)2) is the
measurement of the uniformity of gray distribution and texture thick-
ness of the image. When the image texture is more detailed and the gray
distribution is more regular, the smaller the 𝐴𝑆𝑀 is; on the contrary,
the more complex the image, the larger the 𝐴𝑆𝑀 is.

Entropy (𝐸𝑛𝑡 = −
∑

𝑖
∑

𝑗 𝑝(𝑖, 𝑗)𝑙𝑜𝑔𝑝(𝑖, 𝑗)) is the measurement of the
amount of texture information in an image. The more random the
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Fig. 2. Examples of the CT images in the disease advanced stage (a) COVID-19; (b) bacterial pneumonia; (c) viral pneumonia; (a1) ROI of COVID-19 segmented by doctor (gold
standard); (b1) ROI of bacterial pneumonia segmented by doctor (gold standard); (c1) ROI of viral pneumonia segmented by doctor (gold standard).
gray value distribution of an image, the more approximately equal the
array values in GLCM are, and the greater the entropy value is; on the
contrary, the smaller the entropy, the smoother the image is.

Contrast (𝑐𝑜𝑛 =
∑

𝑖
∑

𝑗 (𝑖− 𝑗)2𝑝(𝑖, 𝑗)) measures how the texture values
are distributed and the degree of local gray level changes in the image.
The finer the image texture, the greater the contrast is, the clearer the
image is, and the larger the 𝐶𝑜𝑛. On the contrary, the rougher the
texture, the smaller the 𝐶𝑜𝑛 is.

The inertia moment (𝐼𝐷𝑀 =
∑

𝑖
∑

𝑗
𝑝(𝑖, 𝑗)

1 + (𝑖 − 𝑗)2
) reflects the clarity

and regularity of the texture. The clearer the texture, the more regular
the gray distribution is, and the larger the 𝐼𝐷𝑀 is.

Correlation coefficient (𝑐𝑜𝑟𝑟 =
∑

𝑖
∑

𝑗 ((𝑖𝑗)𝑝(𝑖, 𝑗)) − 𝜇𝑥𝜇𝑦
𝛿𝑥𝛿𝑦

) is used

to measure the similarity of textures in row or column directions.
Therefore, the size of the 𝐶𝑜𝑟𝑟 reflects the local gray correlation. The
greater the texture correlation, the greater the 𝐶𝑜𝑟𝑟 is.

2.2. The test of routine laboratory indexes

The main CT performance of patients with COVID-19 is GGO.
However, GGO is not specific imaging manifestations of COVID-19,
and it can appear in a variety of lung diseases. It needs to be dis-
tinguished by other laboratory indicators such as blood routine and
reverse transcription-polymerase chain reaction (RT-PCR). The blood
routine indexes are detected by the blood cell analyzer, including
white blood cell (WBC), lymphocyte (L), neutrophil (n) and hemoglobin
(HB). The blood liver function, renal function, blood glucose, blood
lipids and other related indicators are detected by the biochemical
analyzer, including alanine aminotransferase (ALT), aspartate amino-
transferase (AST), total bilirubin (T-Bil), glutamyl transferase (GGT),
albumin (ALB), cholinester enzyme (ChE), alkaline phosphatase (ALP),
lactate dehydrogenase (LDH), glucose (Glu), calcium (Ca2+), total
cholesterol (TC), triglyceride (TG) and C-reactive protein (CRP). The
coagulation function indexes are detected by the autonomous blood
coagulation analyzer, including thrombin time (TT), prothrombin time
(PT), fibrinogen (Fib), activated partial thrombin time (APTT) and D-
dimer (D-Dimer). The nucleic acid detection of RT-PCR is performed
with throat swabs, and the cycle threshold (Ct) is collected.
5

2.3. Detection of serum cytokines and chemokines

Detection of 34 cytokines and chemokines in serum by multi-
cytokine detection system, including 𝐼𝐹𝑁 − 𝛼, 𝐼𝐹𝑁 − 𝛾, 𝑇𝑁𝐹 − 𝛼,
𝑇𝑁𝐹 − 𝛽, 𝐼𝐿 − 1𝛼, 𝐼𝐿 − 1𝑅𝐴, 𝐼𝐿 − 1𝛽, 𝐼𝐿 − 2, 𝐼𝐿 − 4, 𝐼𝐿 − 5,
𝐼𝐿 − 6, 𝐼𝐿 − 7, 𝐼𝐿 − 8, 𝐼𝐿 − 9, 𝐼𝐿 − 10, 𝐼𝐿 − 12𝑝70, 𝐼𝐿 − 13,
𝐼𝐿 − 15, 𝐼𝐿 − 17𝐴, 𝐼𝐿 − 18, 𝐼𝐿 − 21, 𝐼𝐿 − 22, 𝐼𝐿 − 23, 𝐼𝐿 −
27, 𝐼𝐿 − 31, granulocyte-macrophage colony stimulating factor (GM-
CSF), eosinophil chemoattractant protein (eotaxin), growth-regulating
oncogenic-𝛼 (GR0-𝛼), interferon-inducible protein-10 (IP-10), mono-
cyte chemokine (MCP-1), macrophage inflammatory protein (MIP)-1𝛼,
𝑀𝐼𝑃 −1𝛽, stromal cell derived factor-1𝛼 (SDF-1𝛼), regulated activated
normal 𝑇 cells expression and secretion (RANTES).

3. Least weighted whale optimized algorithm mixed kernel
SVM(LWWOA-MSVM)

In this paper, a mixed kernel support vector machine based on the
fusion of polynomial kernel and Gaussian kernel is proposed. Aiming at
the shortcomings of basic WOA, such as easy to fall into local extreme
value and slow convergence speed, this paper realizes the improve-
ment of WOA by introducing nonlinear factors and adaptive weights.
Then the improved algorithm is used to optimize the parameters of
MSVM. The LXWOA-MSVM autonomous diagnosis prediction model for
COVID-19 is proposed.

3.1. Basic whale optimization algorithm

The whale optimization algorithm is a heuristic search algorithm
that imitates the hunting strategy of humpback whales [43]. It includes
three links: the prey being surrounded, attacking with bubble net and
prey being searched.

3.1.1. Prey surrounded
When the prey is surrounded, the position of the whale nearest to

the prey is equivalent to a local optimal solution, and other whales
are updated according to the optimal whale position to surround the
prey [44]. The update equation of whale position 𝑋(𝑡) and the distance
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𝐷 between the whale position and the optimal whale position are
expressed as:

𝑋(𝑡 + 1) = 𝑋∗(𝑡) − 𝐴∗ ⋅𝐷 (6)

= |𝐶 ⋅𝑋∗(𝑡) −𝑋(𝑡)| (7)

here, 𝑡 is the number of iterations; 𝑋∗ is the best solution obtained
o far; 𝑋 is the current solution; 𝐴∗ and 𝐶 are matrix coefficients,
xpressed as:

∗ = 2𝑎 ⋅ 𝑟 − 𝑎 (8)

= 2 ⋅ 𝑟 (9)

here, 𝑟 is a random vector in [0,1]; with the increase of 𝑡, 𝑎 decreases
inearly from 2 to 0, expressed as:

= 2 − 2 ⋅ 𝑡
𝑡𝑀𝑎𝑥𝑖𝑡𝑒𝑟

(10)

here, 𝑡𝑀𝑎𝑥𝑖𝑡𝑒𝑟 is the maximum number of iterations.

.1.2. Attack with bubble net
The whale spits out bubbles and swims to the target prey in a spiral

rajectory [45]. The mathematical model for updating the individual
osition is:

(𝑡 + 1) = 𝐷 ⋅ 𝑒𝑏𝑙 ⋅ cos(2𝜋𝑙) +𝑋∗(𝑡) (11)

where, 𝐷 is the same as Eq. (7), 𝑏 is a constant, and 𝑙 is a random vector
in [0, 1].

3.1.3. Hunt for prey
At the stage of hunting for prey, whales wander for food and

conduct global exploration randomly [46]. The mathematical model is:

𝑋(𝑡 + 1) = 𝑋𝑟𝑎𝑛𝑑 (𝑡) − 𝐴∗ ⋅𝐷 (12)

= |𝐶 ⋅𝑋𝑟𝑎𝑛𝑑 (𝑡) −𝑋(𝑡)| (13)

here, 𝑋𝑟𝑎𝑛𝑑 represents the location where the whale randomly selects
n individual from the population as the target position.

In WOA, when the parameters meet |𝐴∗
| < 1, the local optimal

olution search is carried out. At this time, the whale surrounds the
rey with the probability 𝑃 ∗ and spirals with probability 1−𝑃 ∗; When
he parameters meet |𝐴∗

| ≥ 1, the algorithm searches for the global
ptimal solution.

.2. Least weighted whale optimization algorithm

.2.1. Improved least convergence factor
In WOA, 𝐴∗-value determines the conversion between global search

bility and local development ability of the algorithm, that is, the
alue change of the convergence factor 𝑎 determines the optimization
uality of the algorithm. However, 𝑎 decreases linearly in the iterative
rocess, which cannot adapt to the actual optimization process. This
aper adopts a new least nonlinear exponential decreasing method for
:

= 2 − 2( 1
𝑒 − 1

× (𝑒
𝑡

𝑡𝑀𝑎𝑥𝑖𝑡𝑒𝑟 ) − 1) (14)

The improved 𝑎 decreases slowly in the early stage and it improves
the global search ability. In the later stage, 𝑎 decreases rapidly. The
optimization speed is accelerated and the local search efficiency is
improved.
6

n

3.2.2. Adaptive inertia weight
The value of inertia weight has an important influence on the op-

timization and convergence ability of the algorithm. In the traditional
WOA, the inertia weight takes a large fixed value. Although it ensures
the global optimization ability of WOA, it is not conducive to the local
optimization in the later stage of WOA. Therefore, this paper divides
the contraction encirclement and spiral predation behavior of WOA
into three stages: early, middle and later. It adjusts the value of inertia
weight according to the iteration period dynamically. The segmented
dynamic inertia weight based on iteration period is:

𝑤 =

{

1 − 𝑒𝑥𝑝(𝑟𝑎𝑛𝑑( 𝑡
𝑡𝑀𝑎𝑥𝑖𝑡𝑒𝑟−1

)), 𝑡 ≥ 1
3 𝑡𝑀𝑎𝑥𝑖𝑡𝑒𝑟

1, 𝑡 < 1
3 𝑡𝑀𝑎𝑥𝑖𝑡𝑒𝑟

(15)

here, 𝑟𝑎𝑛𝑑 represents the random number between 0 ∼ 1; 𝑡 represents
he number of iterations and 𝑡𝑀𝑎𝑥𝑖𝑡𝑒𝑟 represents the maximum number
f iterations.

In the early stage of WOA, 𝑤 still maintains a large fixed value, so
hat the whale has a large search step. In the middle and later stages
f WOA, as the iteration progresses, 𝑤-value decreases nonlinearly,
aking the whale approach the global optimal solution and speed up

he convergence.
The value of inertia weight 𝑤 is calculated according to Eq. (15),

hich ensures that 𝑤-value is within [0,1]. At the same time, with the
mplementation of WOA, 𝑤-value decreases nonlinearly, which is con-
ucive to avoid the phenomenon that WOA falls into local optimization
nd cannot jump out in the later stage.

Through the cooperation of nonlinear convergence factor and adap-
ive weight, an improved whale optimization algorithm with high
onvergence accuracy and fast convergence speed is obtained. The
ocation update equation of WOA is as following:

(𝑡 + 1) = 𝑤𝑋∗(𝑡) − 𝐴∗ ⋅𝐷, 𝑝 < 0.5 (16)

(𝑡 + 1) = 𝐷 ⋅ 𝑒𝑏𝑙 ⋅ cos(2𝜋𝑙) +𝑤𝑋∗(𝑡), 𝑝 ≥ 0.5 (17)

(𝑡 + 1) = 𝑤𝑋𝑟𝑎𝑛𝑑 (𝑡) − 𝐴∗ ⋅𝐷 (18)

.3. Mixed kernel SVM

The regression of SVM uses the kernel function to map the data to
he high-dimensional feature space, and then performs linear regression
n the high-dimensional feature space [47]. According to the principle
f structural risk minimization, the learning process is transformed into
convex optimization problem, namely:

𝑖𝑛[ 1
2
‖𝑤‖

2 + 𝑐
𝑙

∑

𝑖=1
(𝜉𝑖 + 𝜉∗𝑖 )]

.𝑡.

⎧

⎪

⎨

⎪

⎩

𝑦𝑖 −𝑤𝛷(𝑥𝑖) − 𝑏∗ ≤ 𝜀 + 𝜉𝑖
−𝑦𝑖 +𝑤𝛷(𝑥𝑖) + 𝑏∗ ≤ 𝜀 + 𝜉∗𝑖 , 𝑖 = 1, 2,… , 𝑙
𝜉𝑖 ≥ 0, 𝜉∗𝑖 ≥ 0

(19)

The final regression function is:

𝑓 (𝑥) =
𝑙

∑

𝑖=1
(𝑎𝑖 − 𝑎∗𝑖 )𝐾(𝑥𝑖, 𝑥) + 𝑏∗ (20)

here, 𝛷(𝑥) is a nonlinear mapping function; 𝑤 is the normal vector
f the hyperplane; 𝑏∗ is the offset of the hyperplane; 𝜀 is the linear
nsensitive loss function; 𝐾(𝑥𝑖, 𝑥𝑗 ) = 𝛷(𝑥𝑖)𝛷(𝑥𝑗 ) is the kernel function
hat satisfies the condition of Mercer. In this paper, the radial basis
s selected as the kernel function of SVM. 𝑎𝑖 and 𝑎∗𝑖 are Lagrange
ultipliers in quadratic programming.

The polynomial kernel function is the local kernel function with
trong fitting ability. The radial basis kernel function is the global
ernel function with strong extrapolation ability. Therefore, the poly-
omial kernel and radial basis kernel are selected as the basis of
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Fig. 3. The flowchart of LWWOA-MSVM algorithm for COVID-19 diagnosis.
the composite functions. According to the construction principle of
the composite kernel function and the Mercer criterion, the following
composite kernel function is constructed:

𝐾𝑚𝑖𝑛 =
1
2
[𝜌𝐾𝑝𝑜𝑙𝑦 + (1 − 𝜌)𝐾𝑅𝐵𝐹 +𝐾𝑝𝑜𝑙𝑦 ⋅𝐾𝑅𝐵𝐹 ] (21)

where, 𝐾𝑝𝑜𝑙𝑦 = [𝑔(𝑥 ⋅ 𝑥𝑖) + 1]3 represents cubic polynomial kernel
function; 𝐾𝑅𝐵𝐹 = 𝑒𝑥𝑝(−𝑔‖𝑥 − 𝑥𝑖‖2), 𝑔 > 0, it represents RBF kernel
function; 𝜌 represents the weight coefficient.

In Eq. (21), 𝜌-value determines the proportion of a single kernel
function in the mixed kernel function. When 𝜌 > 0.5, the polynomial
kernel function is dominant. When 𝜌 < 0.5, the Gaussian kernel function
is dominant. In this paper, through repeated tests, 𝜌 = 0.35.

3.4. The forecast implementation steps of LWWOA-MSVM

The key parameters of LWWOA optimized MSVM are penalty fac-
tor 𝑐, kernel function parameter 𝑔. The inertia weight of LWWOA
proposed in this paper decreases with the increase of the number of
iterations, so the complexity of the model is reduced and the amount
of calculation is reduced. In addition, the optimized parameters by
LWWOA are not many, which will reduce the model complexity of the
algorithm and make it difficult to over fit. Fig. 3 shows the flowchart
of LWWOA-MSVM algorithm for COVID-19 diagnosis. The prediction
implementation steps can be summarized as following:

Step 1: the number of training and testing samples is determined.
The search range of penalty factor 𝑐, kernel function parameter 𝑔 are
set. Eq. (22) is used to normalize the instance data sequence.

𝑥 = (𝑥 − 𝑥 )∕(𝑥 − 𝑥 ) (22)
7

𝑚𝑖𝑛 𝑚𝑎𝑥 𝑚𝑖𝑛
Step 2: the sum of the absolute value of the average relative error
is selected as the fitness function of LXWOA-MSVM:

𝑚𝑖𝑛𝑓 (𝑐, 𝑔) = |

𝑛
∑

𝑖=1

|𝑦𝑖 − 𝑦|
𝑦𝑖

|

𝑠.𝑡.

{

𝑐 ∈ [𝑐𝑚𝑖𝑛, 𝑐𝑚𝑎𝑥]
𝑔 ∈ [𝑔𝑚𝑖𝑛, 𝑔𝑚𝑎𝑥]

(23)

where, 𝑦𝑖 is the measured value of the 𝑖th sample; 𝑦𝑖 is the predicted
value of the 𝑖th sample.

Step 3: the maximum number of iteration 𝑡𝑀𝑎𝑥𝑖𝑡𝑒𝑟, the population
number 𝑁 , the maximum inertia weight 𝑤𝑚𝑎𝑥, the minimum iner-
tia weight 𝑤𝑚𝑖𝑛 are set. The individual spatial position of the whale
population is initialized and making the current iteration number 𝑡 = 1.

Step 4: the fitness value of each whale and the population are
calculated. The optimal individual position 𝑋∗ in the population is
found and recorded.

Step 5: the period of iteration. If 𝑗 ≤ 𝑡𝑀𝑎𝑥𝑖𝑡𝑒𝑟, 𝑎, 𝐴∗, 𝐶, 𝑙 and 𝑝 are
updated. When 𝑝 < 0.5 and if |𝐴∗

| < 1, Eq. (16) is used to update
the spatial position of the whale population. If |𝐴∗

| ≥ 1, the position
of the whale group 𝑋𝑟𝑎𝑛𝑑 from the current population is randomly
determined, and Eq. (17) is used to update the spatial position of the
whale population. If 𝑝 ≥ 0.5, Eq. (18) is used to update the spatial
position of the current whale individual.

Step 6: the updated individual fitness value of the whale population
is calculated. If the individual fitness of the new whale group is better
than that of the previous generation, the individual position of the new
whale group will replace that of the original group. Otherwise, the
individual position of the original whale group is kept.

Step 7: 𝑡 = 𝑡+1 is set. Whether the algorithm meets the termination
condition is judged. If so, the optimal individual position 𝑋∗ and
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its fitness value are output, and then the algorithm ends. Otherwise,
step5∼ step7 are repeated.

Step 8: the optimal individual position 𝑋∗ is obtained by LWWOA.
hat is, the penalty factor 𝑐, the kernel function parameter 𝑔 are
ubstituted into the LWWOA-MSVM model for prediction.

. The measurement method of conflict evidence based on angle
osine and Lance distance

.1. The identification framework and synthesis rules of traditional D-S
vidence theory

In the theory of evidence, the combination of possible recognition
esults in pattern recognition is called the framework 𝛩, denoted as
= {𝜃1, 𝜃2 ⋯ 𝜃𝑛}. 𝜃 represents the recognition result after evidence

ynthesis, which is called the focal element [48]. It is finite and
ountable, and they are mutually exclusive. The recognition framework
s an important basis for pattern recognition, and the corresponding
utput results are obtained on the basis of evidence synthesis [49].

For the recognition framework 𝛩, 2𝛩 is the set composed of all
ubsets of 𝛩, which satisfies 𝜙 ∈ 2𝛩 and 𝛩 ∈ 2𝛩[50]. Under the

identification framework 𝛩, the probability distribution function is the
apping of the set 2𝛩 between [0,1], which is recorded as 𝑚 ∶ 2𝛩 →

[0, 1] and satisfies:
⎧

⎪

⎨

⎪

⎩

𝑚(𝜙) = 0
∑

∀𝐴∈2𝛩
𝑚(𝐴) = 1 (24)

where, 𝑚(𝐴) represents the probability distribution function of the
support degree for event 𝐴; 𝐴 indicates a specific event; 𝑚(𝜙) indicates
the support degree of the evidence for uncertain empty sets.

𝑚(𝐴) is the basic probability distribution of an eigenvalue to propo-
sition 𝐴, which indicates the degree of support for proposition 𝐴. If
𝑚(𝐴) > 0, 𝐴 is called a focal element of the function.

Under the same recognition framework, the fusion rule of probabil-
ity distribution function is defined as:

𝑚(𝐴) = 1
1 − 𝑘

⋅
∑

∩𝐴𝑠=𝐴

∏

1≤𝑖≤𝑛
𝑚𝑖(𝐴𝑠) (0 < 𝑖 ≤ 𝑛) (25)

𝑘 =
∑

∩𝐴𝑠=∅

∏

1≤𝑖≤𝑛
𝑚𝑖(𝐴𝑠) (26)

where, 𝑛 represents the total number of probability distribution func-
tion; 𝑚𝑖(𝐴𝑠) represents the confidence level of the event 𝐴𝑠 in the 𝑖th
robability distribution function; 𝑘 represents the fusion conflict factor,
hich reflects the degree of conflict in the probability distribution

unction fusion. The greater 𝑘-value, the greater the conflict between
different evidences.

4.2. Problems in D-S evidence theory

Although D-S evidence theory has many advantages, it can generally
deal with uncertain information in multi-modal system well. However,
when it integrates highly conflicting evidence, the D-S evidence theory
has the problem of failure. Mainly as: (1) It has the problem of one-vote
veto. No matter how much other evidences support the proposition,
when the basic trust distribution function of a certain evidence is 0,
the occurrence of this proposition is completely denied. (2) It has
a normalization factor. When 𝑘 = 1 can be obtained from the D-S
ynthesis equation, the denominator of 1

1 − 𝑘
is 0. At this time, the

fraction is meaningless and the D-S evidence theory cannot be used.
(3) It has the poor robustness. Even if there is a slight change in the
degree of support for the proposition, it will seriously affect the whole
synthesis result.

In view of the problems existing in the above-mentioned D-S evi-
dence theory, this paper uses the cosine of the included angle and the
Lance distance to measure the degree of the evidence conflict, so as to
reduce the incorrect conclusion due to the conflict between different
evidences.
8

4.3. An improved D-S evidence fusion method based on angle cosine and
Lance distance

This paper modifies the source of evidence in the D-S evidence
theory. Firstly, whether there is conflict between different evidences
is judged. If there is no conflict, D-S synthesis rule is directly used; If it
exists, the Lance distance between different evidences under the identi-
fication framework 𝛩 is calculated and the reliability of each evidence
is determined. Then, the basic trust function is redistributed with the
reliability as the weight. Finally, the weighted average evidence is fused
by D-S synthesis rules to get the final result.

4.3.1. Conflicting and non-conflicting evidences are determined
There are 𝑁 evidences are supposed under the recognition frame-

work 𝛩. The basic trust distribution functions of mutually independent
evidences 𝑚𝑖 and 𝑚𝑗 can be expressed as 𝑚𝑖 = {𝑚𝑖(𝐻1), 𝑚𝑖(𝐻2),… ,
𝑚𝑖(𝐻𝑀 )} and 𝑚𝑗 = {𝑚𝑗 (𝐻1), 𝑚𝑗 (𝐻2),… , 𝑚𝑗 (𝐻𝑀 )}. Then the similarity
between the evidences 𝑚𝑖 and 𝑚𝑗 is expressed by the angle cosine
function as:

𝑠𝑖𝑗 = 𝑐𝑜𝑠𝑚𝑖𝑚𝑗
=

⟨𝑚𝑖 ⋅ 𝑚𝑗⟩

|𝑚𝑖| ⋅ |𝑚𝑗 |
=

∑𝑀
𝑡=1 𝑚𝑖𝑡 ⋅ 𝑚𝑗𝑡

√

∑𝑀
𝑡=1 𝑚

2
𝑖𝑡 ⋅

√

∑𝑀
𝑡=1 𝑚

2
𝑗𝑡

(27)

According to the angle cosine equation, when the value of cosine
between two evidences is 1, it indicates that the two evidences are
completely consistent. According to the properties of the cosine func-
tion, with the angle increases, the value of cosine becomes smaller and
smaller, then the conflict between different evidences will gradually
increase. When the included angle increases to 90◦, there is no corre-
lation between the evidences. In particular, when the cosine value of
the two evidences is equal to −1 and the included angle is 180◦, there
is no correlation between the evidences at all.

In order to judge whether there is conflict between different ev-
idences, the average similarity between one evidence and other evi-
dences is obtained to quantify the similarity between the evidences.

𝑆 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑠1
𝑠2
⋮
𝑠𝑁

⎤

⎥

⎥

⎥

⎥

⎦

(28)

here, 𝑠𝑖 =
∑𝑀

𝑗=1 𝑠𝑖𝑗
𝑀

. On the basis of obtaining the average similarity,
the set threshold 𝜏 is compared to determine whether there is a conflict
between different evidences. When the similarity is less than the
threshold 𝜏, there is a conflict between the evidences and it is necessary
to measure the conflict evidence. On the contrary, if there is no conflict
between the evidences, the D-S composition rule can be used directly.

4.3.2. Measurement of the conflict evidence based on Lance distance
The traditional D-S evidence theory does not consider the correla-

tion between the evidences and assigns the same weight to different
evidences. However, due to various factors, the weights between differ-
ent evidences are not necessarily the same. Because the Lance distance
is suitable for large-scale data processing, this paper introduces it
into D-S evidence theory. The large-scale data here refers to multi-
modal data. Compared with a single diagnostic index, the multi-modal
diagnostic index data belongs to large-scale data. The large scale here
does not mean the number of huge, but it refers to the kind of many.
According to the basic trust distribution function, the distance between
different evidences is obtained, so as to make up for the defects of
traditional evidence theory.

Assuming that in the system identification framework 𝛩 = {𝐻1,𝐻2,
… ,𝐻𝑀}, the Lance distance between evidences 𝑚𝑖 and 𝑚𝑗 is:

𝑑𝑖𝑗 (𝐿) =
1

𝑀
∑ |𝑚𝑖𝑡 − 𝑚𝑗𝑡| (29)
𝑀 𝑡=1 (𝑚𝑖𝑡 + 𝑚𝑗𝑡)
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Fig. 4. The fusion process of improved D-S evidence theory.
According to the calculated Lance distance, the distance matrix
𝐷𝑁×𝑁 is:

𝐷𝑁×𝑁 =

⎡

⎢

⎢

⎢

⎢

⎣

0 𝑑12 ⋯ 𝑑1𝑁
𝑑21 0 ⋯ 𝑑2𝑁
⋮ ⋮ ⋮ ⋮

𝑑𝑁1 𝑑𝑁2 ⋯ 0

⎤

⎥

⎥

⎥

⎥

⎦

(30)

The distance of evidence can reflect the gap between the evidences.
In order to take into account the fusion effect between the evidences,
the consistency of evidences 𝑚𝑖 and 𝑚𝑗 is defined as:

𝑐𝑜ℎ(𝑚𝑖, 𝑚𝑗 ) = 1 −𝐷𝑁×𝑁

=

⎡

⎢

⎢

⎢

⎢

⎣

1 1 − 𝑑12 ⋯ 1 − 𝑑1𝑁
1 − 𝑑21 1 ⋯ 1 − 𝑑2𝑁

⋮ ⋮ ⋮ ⋮
1 − 𝑑𝑁1 1 − 𝑑𝑁2 ⋯ 1

⎤

⎥

⎥

⎥

⎥

⎦

(31)

The degree of consistency between the evidences reflects the degree
of mutual support. At this time, the reliability of an evidence 𝑚𝑖 in the
entire multi-modal system can be defined as:

𝑟𝑒𝑙 =
𝑅𝑖

∑𝑁 (32)
9

𝑖=1 𝑅𝑖
Among them:

𝑅𝑖 =

√

√

√

√

√

𝑁
∑

𝑗=1,𝑗≠𝑖
(1 − 𝑑𝑖𝑗 )2 (33)

The more uncertain information contained in the evidence, the
greater the uncertainty. Because different evidences have different pro-
portions in the framework of the identification system, the reliability
is used as the weight of the evidence to redistribute the basic trust
distribution function of the evidence.

𝑚′
𝑘(𝐻𝑖) =

⎧

⎪

⎨

⎪

⎩

𝑟𝑒𝑙𝑘 ⋅ 𝑚𝑘(𝐻𝑖),𝐻𝑖 ≠ 𝛩
1 −

∑

𝐻𝑖≠∅
𝑟𝑒𝑙𝑘 ⋅ 𝑚𝑘(𝐻𝑖),𝐻𝑖 = 𝛩 (34)

After the basic trust distribution function is redistributed, a new
piece of evidence is obtained based on the original evidence source by
weighted average.

𝑚𝑎𝑣𝑒(𝐻𝑖) = 𝑟𝑒𝑙1 × 𝑚1(𝐻𝑖) + 𝑟𝑒𝑙2 × 𝑚2(𝐻𝑖) +⋯ + 𝑟𝑒𝑙𝑁 × 𝑚𝑁 (𝐻𝑖) (35)

𝑚𝑎𝑣𝑒(𝐻𝑖) is used to replace the original trust distribution function,
and D-S evidence theory is used to synthesize rules to fuse the replaced
evidence. When there are 𝑁 original evidences in the system, it is
necessary to fuse 𝑁 − 1 times.

The method proposed in this paper considers the conflict evidence
from two parts, and it uses the angle cosine function to judge the
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conflict and non-conflict evidences in the system framework, which can
reduce the computational complexity of the system to a certain extent.
When there is conflict evidence in the system, it does not completely
deny the possibility that contains the real information, but it assigns
different weights to each evidence. Therefore, this method can improve
the intuitive results due to the existence of conflict evidence to a
certain extent. Fig. 4 shows the fusion process of improved D-S evidence
theory.

5. Decision-level fusion for COVID-19 multi-modal recognition

The CT images, routine laboratory tests, serum cytokine and
chemokine tests are independent of each other in multi-modal iden-
tification of COVID-19. Therefore, the ability of D-S theory to combine
independent evidences can be used to fuse MSVM identification infor-
mation from different features. Finally, the type of pneumonia (COVID
−19 or viral pneumonia or bacterial pneumonia) is determined by the
decision module. The algorithm steps are as following:

(1) MSVM recognition based on the single feature
CT images, routine laboratory tests, serum cytokine and chemokine

tests of COVID-19 are extracted respectively. The MSVM classifier is
used to recognize three kinds of single features.

(2) Construction of the BPA function
Because the decision output 𝑓 (𝑥) of the standard MSVM is the hard

output {1,−1} and the soft decision of MSVM is required to solve
the uncertainty problem, the most commonly used soft decision is
probability. In order to construct the BPA of evidence, the sigmoid
function is used as the connection function to map 𝑓 (𝑥) to [0,1] to
realize the posterior probability output of MSVM. The output form is:

𝑃 (𝑦 = 1|𝑥) ≈ 𝑃𝐴𝑆 ,𝐵𝑆
(𝑓 ) = 1

1 + 𝑒𝑥𝑝(𝐴𝑆𝑓 + 𝐵𝑆 )
(36)

where 𝑓 is 𝑓 (𝑥), representing the standard output 𝑥-value in MSVM;
𝐴𝑆 and 𝐵𝑆 represent the parameters that control the shape of the
sigmoid function. 𝐴𝑆 and 𝐵𝑆 can be obtained by solving the maximum
likelihood problem, namely

min
𝑍=𝐴𝑆 ,𝐵𝑆

𝐹 (𝑍) = −[
𝑙

∑

𝑖=1
𝑡𝑖 lg 𝑝𝑖 + (1 − 𝑡𝑖) lg(1 − 𝑝𝑖)] (37)

Among them, 𝑝𝑖 = 𝑃𝐴𝑆 ,𝐵𝑆
(𝑓𝑖).

𝑡𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑁+ + 1
𝑁+ + 2

, (𝑦𝑖 = 1; 𝑖 = 1, 2,… , 𝑙)

1
𝑁− + 2

, (𝑦𝑖 = −1; 𝑖 = 1, 2,… , 𝑙)
(38)

where, 𝑁+ and 𝑁− represent the number of positive and negative
amples. For any two class 𝑀𝑆𝑉𝑀𝑖 classifier, after completing the
earning process of the sample set, the optimal parameters 𝐴𝑆 and 𝐵𝑆
re obtained according to Eq. (36), and the posterior probability 𝑝𝑗 is

constructed. Then the learning sample set 𝑀𝑆𝑉𝑀𝑖(𝑖 = 0, 1, 2) is tested
to obtain the recognition accuracy 𝑟𝑖. The BPA function can be defined
as:

𝑚𝑗 (𝐴) = 𝑝𝑗𝑟𝑗 (39)

(3) Decision fusion and judgment rules
The reliability of each evidence is calculated according to Eq. (39),

and the reliability under the combined effect of these evidences is
calculated according to Eq. (35). 𝐴𝑖(𝑖 = 0, 1, 2) is the type of pneu-
monia (COVID-19 or viral pneumonia or bacterial pneumonia), and
𝐴𝑤 is the target category (COVID −19 or viral pneumonia or bacterial
pneumonia). After obtaining the evidence 𝐴𝑖 in the framework 𝛩 and
the uncertainty evidence 𝑚𝑗 (𝛩), the classification decision is subject to
the following rules: (I) 𝑚(𝐴𝑤) = 𝑚𝑎𝑥{𝑚(𝐴𝑖)}. That is, the class with the
greatest reliability is the target class; (II) 𝑚(𝐴𝑤) − 𝑚(𝐴𝑖) > 𝜀1(𝜀1 > 0).
That is, the difference of reliability between the target class and other
classes must be greater than a certain threshold; (III) 𝑚(𝐴 ) − 𝑚(𝛩) >
10

𝑤 s
𝜀2(𝜀2 > 0). That is, the reliability of the target class must be greater
than the uncertain reliability assignment. (IV) 𝑚(𝛩) < 𝜃(𝜃 > 0). That is,
the assigned value of uncertainty reliability must be less than a certain
threshold and the uncertainty of evidence for the target class cannot be
too large.

6. Simulation and analysis of results

The software and hardware environment involved in this experi-
ment are as following:

Software environment: Windows 10 operating system, Matlab
R2019b, ImageJ 1.48u.

Hardware environment: Intel Core i54670–3.4 GHz, 8.0 Gbyte RAM,
500 Gbyte hard disk.

Experimental data: the CT images of 450 patients with GGO la-
beled by doctors (including 150 cases of COVID-19, 150 cases of
bacterial pneumonia, 150 cases of viral pneumonia) are used as the
experimental samples, with the size of 512 ×512, and the thickness
is 2 mm. At the same time, routine laboratory indexes, serum cy-
tokines and chemokines are collected from these 450 patients. The
COVID-19 CT images, routine laboratory indexes, serum cytokines and
chemokines tested in this paper are from Chinese PLA general hospi-
tal. In this study, the pathological indicators(CT, routine laboratory
indexes, serum cytokines and chemokines) of 360 patients(including
120 cases of COVID-19, 120 cases of bacterial pneumonia, 120 cases of
viral pneumonia) are used as the original data to construct the detection
model, and then the pathological indicators(CT, routine laboratory
indexes, serum cytokines and chemokines) of 90 patients(including 30
cases of COVID-19, 30 cases of bacterial pneumonia, 30 cases of viral
pneumonia) are used as the detection data to verify the validity of the
model. The existing COVID-19 autonomous diagnosis system is mainly
based on CT image [51], and no scholar has proposed to use multi-
modal indicators (routine laboratory testing, cytokines and chemokines
testing, CT image) for autonomous diagnosis of COVID-19. Therefore,
such public multi-modal data sources are not easy to find. Limited
by the cost and difficulty of collection, the data of the experimental
samples in this paper were all collected from the hospital. The amount
of data used in this paper is what we have tried our best to collect.

The parameters are set as following: the maximum number of iter-
ations of LWWOA-MSVM 𝑡𝑀𝑎𝑥𝑖𝑡𝑒𝑟 = 200, the number of groups 𝑁 = 20,
the constant 𝑏 = 2, the linear inductive loss function 𝜀 = 1.5, the weight
coefficient 𝜌 = 0.35.

The evaluation indexes of COVID-19 classification model include
accuracy, precision. The equations are as following:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(40)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(41)

where, 𝑇𝑃 represents the number of correctly classified COVID-19;
𝐹𝑃 represents the number of misclassified COVID-19; 𝑇𝑁 represents
the number of correctly classified non COVID-19; 𝐹𝑁 represents the
number of misclassified non COVID-19.

6.1. Target attribute information of COVID-19 diagnostic indicators

In this paper, three groups (𝑒1, 𝑒2, 𝑒3) of diagnostic indicators are
sed, including the detection of CT image indicators, routine labo-
atory indicators, serum cytokine and chemokine tests. 58 kinds of
ttribute information are collected for three targets (bacterial pneu-
onia, COVID-19 and viral pneumonia). 𝑃 < 0.05 is considered to

e statistically significant. The COVID-19, bacterial pneumonia, and
iral pneumonia are all advanced types in this paper. Table 3 shows
T image detection results (gold standard) of GGO for COVID-19 and
uspected cases. Table 4 shows laboratory test results (gold standard)
f COVID-19 and suspected cases. Table 5 shows detection results
gold standard) of serum cytokines and chemokines for COVID-19 and
uspected cases.
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Table 3
CT image detection results (gold standard) of GGO for COVID-19 and suspected cases.

Feature category Feature component Bacterial pneumonia COVID-19 Viral pneumonia 𝑃 -value

Shape feature

perimeter 9.07 ± 1.74 9.56 ± 0.24 10.36 ± 2.09 0.075
area 1.50 ± 0.18 1.59 ± 0.21 1.70 ± 0.20 0.082
volume 2.71 ± 0.24 2.84 ± 0.22 2.94 ± 0.28 1.524
circularity 0.3121 ± 0.2414 0.6517 ± 0.3525 0.9532 ± 0.4925 0.067
rectangularity 0.3625 ± 0.1352 0.6961 ± 0.3562 0.9659 ± 0.4462 0.062
extension length 0.2141 ± 0.1241 0.3529 ± 0.2125 0.6432 ± 0.3251 0.059
number of Euler 9 ± 4 10 ± 3 13 ± 6 0.563
number of corners 12 ± 7 15 ± 5 17 ± 7 0.064
first-order Hu moment 2.72 ± 0.12 4.24 ± 0.24 7.86 ± 0.35 0.071
second-order Hu moment 4.31 ± 0.14 6.86 ± 0.25 8.32 ± 0.31 0.151

Intensity feature

intensity mean 5.23 ± 1.05 5.90 ± 1.24 7.07 ± 1.74 0.621
intensity variance 9.41 ± 2.63 14.06 ± 3.63 16.88 ± 4.21 0.164
skewness 0.3525 ± 0.1512 0.5956 ± 0.3241 0.7532 ± 0.3351 0.251
kurtosis 1.6743 ± 0.6425 2.7348 ± 1.4143 3.5 ± 1.7532 0.531
maximum and minimum intensity difference 4.86 ± 1.36 5.51 ± 1.56 6.56 ± 2.04 0.769
intensity gradient 0.4625 ± 0.2452 0.5636 ± 0.2853 0.6734 ± 0.3824 0.062
Laplace divergence(mean) 10.4593 ± 2.4913 13.9598 ± 3.5921 15.8426 ± 4.6925 0.314
Laplace divergence(difference) 6.80 ± 1.56 7.29 ± 1.34 8.03 ± 1.69 0.224

Texture feature

𝑐𝑜𝑛 6.4352 ± 3.4235 8.3104 ± 4.6436 10.5637 ± 5.4522 0.124
relevance 9.4534 ± 3.3411 12.0416 ± 4.5631 15.3421 ± 5.3212 0.393
𝐸𝑛𝑡 0.3432 ± 0.1943 0.4303 ± 0.2452 0.5492 ± 0.3521 0.486
𝐼𝐷𝑀 0.6436 ± 0.2414 0.7709 ± 0.4625 0.8231 ± 0.4692 0.12
Table 4
Laboratory test results (gold standard) of COVID-19 and suspected cases.

index bacterial pneumonia COVID-19 viral pneumonia 𝑃 -value

WBC (×109/L) 7.62 ± 3.70 5.01 ± 1.43 3.80 ± 1.10 0.024
L (×109/L) 3.06 ± 0.84 1.60 ± 0.45 0.96 ± 0.27 <0.001
N (× 109/L) 4.06 ± 3.62 3.09 ± 1.31 2.50 ± 0.80 0.76
Hb (g/L) 144.00(128.25,161.25) 142.50(121,155.25) 132.00(109.00,135.50) 0.26
ALT (U/L) 13.25(10.83,42.30) 20.25(13.65,31.30) 24.50(12.10,55.50) 0.72
AST (U/L) 31.65(23.98,37.45) 23.25(19.75,30.38) 34.50(24.80,51.20) 0.24
T-Bil (u mol/L) 13.95(10.00,46.85) 10.20(7.95,13.75) 6.40(5.55,7.75) 0.01
GGT (U/L) 14.55 ± 2.78 22.52 ± 10.26 19.74 ± 12.20 0.40
Alb (g/L) 47.48 ± 2.34 45.47 ± 4.64 40.66 ± 3.22 0.047
ChE (U/L) 10719.25 ± 1447.10 7980.10 ± 2339.50 6792.40 ± 1524.63 0.03
ALP (U/L) 47.10(45.45,49.88) 50.45(47.13,72.65) 55.40(47.45,75.95) 0.37
CRP (mg/L) 0.03(0.01,0.05) 3.25(0.11,14.04) 14.66(7.66,35.37) 0.02
LDH (U/L) 207.50(183.00,223.00) 172.50(151.00,220.75) 201.00(166.00,232.50) 0.84
CD3+T (/uL) 2106.25 ± 605.95 1140.58 ± 380.42 580.00 ± 314.15 <0.001
CD4+T (/uL) 852.25 ± 230.37 566.00 ± 231.59 334.20 ± 177.00 0.009
TT (s) 18.33 ± 0.87 17.61 ± 0.65 17.00 ± 0.62 0.048
PT (s) 11.20 ± 0.51 11.65 ± 0.65 11.78 ± 0.64 0.37
Fib (g/L) 2.78(1.93,2.86) 2.61(2.07,3.12) 2.64(2.19,4.00) 0.86
APTT (s) 25.95 ± 1.68 28.44 ± 3.37 29.14 ± 3.66 0.31
D-Dimer (mg/L) 0.62(0.19,1.10) 0.26(0.21,0.37) 0.27(0.22,0.31) 0.95
Glu (mmol/L) 5.66(4.70,6.92) 5.65(5.30,7.10) 7.18(6.00,9.79) 0.13
Ca2+ (mmol/L) 2.40 ± 0.11 2.25 ± 0.16 2.13 ± 0.10 0.036
TC (mmol/L) 4.65(3.36,5.00) 4.00(3.59,4.27) 3.64(3.15,4.03) 0.28
TG (mmol/L) 0.88(0.64,2.92) 0.89(0.73,1.27) 1.07(0.95,1.18) 0.61
Ct <37 ≥40 37∼40 <0.001
Table 5
Detection results (gold standard) of serum cytokines and chemokines for COVID-19 and suspected cases.

index bacterial pneumonia COVID-19 viral pneumonia 𝑃 -value

IL-7 (pg/mL) 7.33 ± 2.83 12.71 ± 2.14 16.73 ± 2.13 0.018
IL-8 (pg/mL) 18.31 ± 10.58 223.51 ± 158.68 173.38 ± 158.69 0.003
IL-18 (pg/mL) 35.34(18.74,39.20) 39.59(22.00,61.49) 41.13(18.25,123.47) 0.253
eotaxin (pg/mL) 15.52 ± 10.43 13.66 ± 11.83 10.29 ± 7.88 0.945
GRO-𝛼 (pg/mL) 9.56 ± 6.82 26.35 ± 22.94 10.43 ± 6.52 0.166
IP-10 (pg/mL) 38.4 ± 18.94 129.89 ± 122.89 169.47 ± 139.98 0.053
MCP-1 (pg/mL) 13.95(10.00,46.85) 10.20(7.95,13.75) 6.40(5.55,7.75) 0.01
MIP-1𝛼 (pg/mL) 14.55 ± 2.78 22.52 ± 10.26 19.74 ± 12.20 0.40
MIP-1𝛽 (pg/mL) 47.48 ± 2.34 45.47 ± 4.64 40.66 ± 3.22 0.047
SDF-1𝛼 (pg/mL) 107.19 ± 14.47 79.80 ± 23.39 67.92 ± 15.24 0.03
RANTES (pg/mL) 47.10(45.45,49.88) 50.45(47.13,72.65) 55.40(47.45,75.95) 0.37
11
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Fig. 5. Parameter selection results of COVID-19 CT image classification model (a) contour map; (b) 3D view.
6.2. Parameters optimization of LWWOA-MSVM classification model for
COVID-19

In order to verify the COVID-19 classification effect of the improved
algorithm, LWWOA-MSVM (paper method), traditional whale optimiza-
tion algorithm-mixed support vector machine (TWOA-MSVM) [52],
genetic algorithm-mixed support vector machine (GA-MSVM) [53] and
particle swarm optimization- mixed support vector machine (PSO-
MSVM) [54] models are used to train the data of CT images, routine
laboratory indexes, serum cytokines and chemokines, and then COVID-
19, bacterial pneumonia and virtual pneumonia are classified by the
tested data.

The CT dataset of COVID-19 is classified. The upper and lower
limits of parameters c and g are determined by LWWOA for large-
scale optimization. The contour map of MSVM parameters selection
based on LWWOA is shown in Fig. 5. According to Fig. 5, the range of
parameter c is reduced to 20 ∼ 24, that is 1 ∼ 16; the range of parameter
g is reduced to 2−1 ∼ 23, that is 0.5 ∼ 8. The maximum number
of iterations of LWWOA is set to 200 and the number of population
is 20. According to the rough range obtained by optimization, the
search range of parameters c and g are set to be [1, 16], [0.5, 8]
respectively. After the training of LWWOA-MSVM classification model,
the best optimization parameters are obtained as best c=4.6859, best
g=3.9429. That is, the best fitness score of the model is the highest at
this time. In order to judge the performance of the model, the MSVM
classification model optimized by TWOA, GA and PSO are selected
for comparison with LWWOA-MSVM. The same maximum number of
iterations and population size are set. The optimization process of the
four optimization algorithms are shown in Fig. 6. It can be seen that
compared with the three optimization algorithms of TWOA, GA, and
PSO, the LWWOA-MSVM classification model has the highest fitness
score of 78.8764%. The optimal fitness scores of the MSVM classifica-
tion model optimized by TWOA, GA and PSO are 70.2399%, 67.117%
and 65.0221% respectively. The optimization speed of LWWOA is fast,
and the fitness function value can reach the best when the number
of iterations is 8. TWOA, GA, and PSO reached the optimal level at
37th, 25th and 20th generation respectively. Moreover, the LWWOA
algorithm is relatively more stable and it is not easy to fall into the
local optimum. The traditional comparison methods are easy to fall into
the local optimum during the optimization process, and it falls into the
local optimum solution in the 6th, 10th, and 18th generation.
12
The CT data of 90 samples are selected as the test set, including
30 cases of COVID-19, 30 cases of bacterial pneumonia, and 30 cases
of viral pneumonia. The trained MSVM classification models are used
to classify the CT dataset. The diagnostic results of COVID-19 of the
four models are shown in Fig. 7. Among them, LWWOA-MSVM has
the highest diagnostic classification precision of 78.89% (71/90). The
diagnostic classification precision of TWOA-MSVM is 70% (63/90); the
diagnostic classification precision of GA-MSVM is 66.67% (60/90), and
the diagnostic classification precision of PSO-MSVM is 64.44% (58/90).

The routine laboratory test dataset of COVID-19 is classified. The
upper and lower limits of parameters c and g are determined by
LWWOA for large-scale optimization. The contour map of MSVM pa-
rameters selection based on LWWOA is shown in Fig. 8. According
to Fig. 8, the range of parameter c is reduced to 21 ∼ 24, that is
2 ∼ 16; the range of parameter g is reduced to 21 ∼ 22, that is 2 ∼ 4.
The maximum number of iteration of LWWOA is set to 200 and the
number of populations is 20. According to the rough range obtained
by optimization, the search range of parameters c and g are set to
be [2, 16], [2, 4] respectively. After the training of LWWOA-MSVM
classification model, the best optimization parameters are obtained as
best c=5.8084, best g=3.7464. That is, the best fitness score of the
model is the highest at this time. In order to judge the performance
of the model, the MSVM classification model optimized by TWOA,
GA and PSO are selected for comparison with LWWOA-MSVM. The
same maximum number of iterations and population size are set. The
optimization process of the four optimization algorithms are shown in
Fig. 9. It can be seen that compared with the three optimization algo-
rithms of TWOA, GA, and PSO, the LWWOA-MSVM classification model
has the highest fitness score of 72.6419%. The optimal fitness scores of
the MSVM classification model optimized by TWOA, GA and PSO are
66.12%, 69.0111% and 65.0221% respectively. The optimization speed
of LWWOA is fast, and the fitness function value can reach the best
when the number of iterations is 5. TWOA, GA, and PSO reached the
optimal level at 18th, 12th and 23th generation respectively. Moreover,
the LWWOA algorithm is relatively more stable and it is not easy to fall
into the local optimum. The traditional comparison methods are easy to
fall into the local optimum during the optimization process, and it falls
into the local optimum solution in the 10th, 8th, and 9th generation.

The routine laboratory index of 90 samples are selected as the test
set, including 30 cases of COVID-19, 30 cases of bacterial pneumonia,
and 30 cases of viral pneumonia. The trained MSVM classification
models are used to classify the routine laboratory index dataset. The
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Fig. 6. COVID-19 CT image classification model parameter optimization fitness (accuracy) curve.
diagnostic results of COVID-19 of the four models are shown in Fig. 10.
Among them, LWWOA-MSVM has the highest diagnostic classification
precision of 73.33% (66/90). The diagnostic classification precision of
TWOA-MSVM is 66.67% (60/90); the diagnostic classification preci-
sion of GA-MSVM is 68.89% (62/90), and the diagnostic classification
precision of PSO-MSVM is 64.44% (58/90).

The serum cytokines and chemokines test dataset of COVID-19
is classified. The upper and lower limits of parameters c and g are
determined by LWWOA for large-scale optimization. The contour map
of MSVM parameters selection based on LWWOA is shown in Fig. 11.
According to Fig. 11, the range of parameter c is reduced to 2−2 ∼ 20,
that is 0.25 ∼ 1; the range of parameter g is reduced to 20 ∼ 22,
that is 1 ∼ 4. The maximum number of iterations of LWWOA is set
to 200 and the number of population is 20. According to the rough
range obtained by optimization, the search range of parameters c and
g are set to be [0.25, 1], [1, 4] respectively. After the training of
LWWOA-MSVM classification model, the best optimization parameters
are obtained as best c=0.24471, best g=2.219. That is, the best fitness
score of the model is the highest at this time. In order to judge the
performance of the model, the MSVM classification model optimized by
TWOA, GA and PSO are selected for comparison with LWWOA-MSVM.
The same maximum number of iterations and population size are set.
The optimization process of the four optimization algorithms are shown
in Fig. 12. It can be seen that compared with the three optimization
algorithms of TWOA, GA, and PSO, the LWWOA-MSVM classification
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model has the highest fitness score of 67.5066%. The optimal fitness
scores of the MSVM classification model optimized by TWOA, GA
and PSO are 61.6156%, 57.5153% and 53.3165% respectively. The
optimization speed of LWWOA is fast, and the fitness function value
can reach the best when the number of iterations is 20. TWOA, GA,
and PSO reached the optimal level at 43th, 23th and 26th generation
respectively. Moreover, the LWWOA algorithm is relatively more stable
and it is not easy to fall into the local optimum. The traditional
comparison methods are easy to fall into the local optimum during the
optimization process, and it falls into the local optimum solution in the
6th, 8th, and 24th generation.

The serum cytokines and chemokines of 90 samples are selected
as the test set, including 30 cases of COVID-19, 30 cases of bacterial
pneumonia, and 30 cases of viral pneumonia. The trained MSVM
classification models are used to classify the serum cytokines and
chemokines dataset. The diagnostic results of COVID-19 of the four
models are shown in Fig. 13. Among them, LWWOA-MSVM has the
highest diagnostic classification precision of 67.78% (61/90). The diag-
nostic classification precision of TWOA-MSVM is 62.22% (56/90); the
diagnostic classification precision of GA-MSVM is 57.78% (52/90), and
the diagnostic classification precision of PSO-MSVM is 53.33% (48/90).

It can be seen from Table 6 that the accuracy and precision of
LWWOA-MSVM are improved compared with the comparison methods,
and the overall classification accuracy and precision can be improved
to about 10%. However, the diagnostic classification samples have
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Fig. 7. Classification results of the COVID-19 CT image test set (precision).

Fig. 8. Parameter selection results of COVID-19 routine laboratory index classification model (a) contour map; (b) 3D view.
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Fig. 9. COVID-19 routine laboratory index classification model parameter optimization fitness (accuracy) curve.
Table 6
Comparison of optimization parameters and classification evaluation indicators.

Types of diagnostic indicators Classification methods Optimal parameter c Optimal parameter g Test accuracy /% Test precision /%

CT image

LWWOA-MSVM 4.6859 3.9429 78.8764 78.89
TWOA-MSVM 3.0005 3.2353 70.2399 70.00
GA-MSVM 3.9543 3.788 67.1170 66.67
PSO-MSVM 1.671 3.78 65.0221 64.44

Routine laboratory indexes

LWWOA-MSVM 5.8084 3.7464 72.6419 73.33
TWOA-MSVM 4.9926 4.4863 66.1200 66.67
GA-MSVM 2.2807 3.982 69.0111 68.89
PSO-MSVM 2.0435 4.1712 65.0221 64.44

Serum cytokines and chemokines

LWWOA-MSVM 0.24471 2.219 67.5066 67.78
TWOA-MSVM 3.3351 0.7165 61.6156 62.22
GA-MSVM 2.4733 0.9449 57.5153 57.78
PSO-MSVM 18.7465 0.0828 53.3165 53.33
different degrees of misclassification, and the misclassification rate can
exceed 20% for a certain type of index classification. Therefore, there is
always a risk of misclassification when COVID-19 is classified only by
a single index. Multiple indicator data should be integrated to obtain
more credible evidence to reduce the risk of misclassification in the
diagnosis of a single indicator source.

6.3. Solution of basic probability distribution function

The obtained three types of sensitive feature parameters are used as
three sources of evidence, namely 𝑒 = {𝑒1, 𝑒1, 𝑒1}. The basic recognition
framework composed of three stages of pneumonia classification is
𝛩 = {𝑚(𝐴), 𝑚(𝐵),
𝑚(𝐶)}. The MSVM optimized by the whale algorithm is used for pre-
liminary prediction to obtain the prediction error of each feature
15
parameter, then the prediction error is subjected to locally judged and
the decision result is converted into the posterior probability. Finally,
the posterior probability is used to construct the basic probability
distribution function of each feature parameter, as shown in Table 7.

It can be seen from Table 7 that the maximum value of the basic
probability distribution function at stage I of evidence e3 is 0.5707,
which appears at m(B), resulting in the misjudgment of the identifica-
tion as stage II. The maximum value of the basic probability distribution
function in the stage III of evidence e2 is 0.5971, which appears at
m(B), resulting in the misjudgment of the identification as stage II. The
maximum value of the basic probability distribution function in the
stage I of evidence e1 is 0.7100, which appears at m(B), resulting in the
misjudgment of the identification as stage II. Therefore, it is impossible
to accurately identify COVID-19 and its suspected cases by a single
diagnostic index.
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Fig. 10. Classification results of the COVID-19 routine laboratory index test set (precision).

Fig. 11. Parameter selection results of COVID-19 serum cytokines and chemokines classification model (a) contour map; (b) 3D view.
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Fig. 12. COVID-19 serum cytokines and chemokines classification model parameter optimization fitness (accuracy) curve.
Table 7
Values of the basic probability distribution function and results of the preliminary
identification in each evidence.

evidence real stage m(A) m(B) m(C) recognition results

e1
I 0.4078 0.7044 0.1026 II
II 0.2539 0.6243 0.1615 II
III 0.8393 0.0716 0.2208 I

e2
I 0.3690 0.5801 0.1847 II
II 0.2439 0.6317 0.1573 II
III 0.0546 0.0953 0.7630 III

e3
I 0.5078 0.5707 0.2797 II
II 0.0835 0.7869 0.1026 II
III 0.0583 0.1008 0.7501 III

6.4. Analysis of fusion results of multi-domain feature decision level

Aiming at the defect that a single feature has insufficient ability to
identify COVID-19 and the suspected cases, the method of replacing
single signal feature with multi-domain feature parameters is adopted.
The traditional D-S evidence fusion and the weighted D-S evidence
fusion methods are used to fuse three evidence sources respectively.
The comparison of the recognition effect is shown in Table 8.

It can be seen from Table 8 that the recognition results of traditional
D-S evidence fusion [55] and the weighted D-S evidence fusion are
correct in stage I and II. However, in stage III, the recognition result of
traditional D-S evidence fusion is wrong, while the recognition result
of weighted D-S evidence fusion is correct. According to the evidence
analysis of stage II and stage III, the more fusion evidence, the higher
17
the value of the basic probability distribution function after fusion.
Thus, the more fusion features, the higher the accuracy of prediction.
Therefore, the COVID-19 prediction method based on the weighted
D-S evidence theory and the multi-domain features proposed in this
paper effectively solves the problem that it is difficult to accurately
identify COVID −19 and suspected cases with a single pathological
signal feature. It eliminates the defect of the traditional D-S evidence
fusion method, that is, the recognition misjudgment caused by the
failure of high conflict evidence fusion, and it provides an effective
basis for COVID-19 autonomous diagnosis.

The data fusion of COVID-19 multimodal indicators can obtain more
reliable diagnostic results. The classification results of three diagnostic
index data fusion are shown in Fig. 14. As can be seen from Fig. 14,
the multi-modal indicators classification precision of COVID-19 with
the traditional D-S evidence theory fusion is 91.11% (82/90), and the
multi-modal indicators classification precision of COVID-19 with the
improved D-S evidence theory fusion is 97.78% (88/90). It shows that
the new evidence obtained by fusion has high reliability, which can
make the COVID −19 diagnostic classification results more stable and
reliable, so as to effectively reduce the misclassification risk of a single
diagnostic index.

The simulation results show that the proposed algorithm can ef-
fectively reduce the conflict between each evidence and the diagnosis
conclusion, and it enhances the reliability of the correct diagnosis
results. Compared with other comparison methods, it can solve the
problem of high conflict of evidence. It quickly identifies COVID-19
and reduces uncertain information in the system with high reliability. It
significantly improves the accuracy and precision of decision-making,
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Fig. 13. Classification results of the COVID-19 serum cytokines and chemokines test set (precision).

Fig. 14. COVID-19 classification precision by multi-modal indicators (a) LWWOA-MSVM combined with improved D-S evidence fusion; (b)LWWOA-MSVM combined with traditional
D-S evidence fusion.
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Table 8
Comparison of recognition results between traditional D-S evidence fusion and the improved D-S evidence fusion.

Real stage Evidence fusion Traditional D-S evidence fusion method Improved D-S evidence fusion method

m(𝐴)1 m(𝐵)1 m(𝐶)1 Recognition result 1 m(𝐴)2 m(𝐵)2 m(𝐶)2 Recognition result 2

I e1,e2 0.4456 0.4771 0.0933 II 0.6727 0.2255 0.0835 I
e1,e3 0.0466 0.4408 0.4884 III 0.6786 0.2508 0.0651 I
e2,e3 0.8220 0.1529 0.0243 I 0.7521 0.2108 0.0368 I
e1,e2,e3 0.7907 0.1898 0.0192 I 0.7265 0.2440 0.0291 I

II e1,e2 0.1606 0.7413 0.0827 II 0.2047 0.6677 0.1078 II
e1,e3 0.1142 0.4413 0.4433 III 0.0658 0.8901 0.0417 II
e2,e3 0.0157 0.9705 0.0135 II 0.0352 0.9338 0.0304 II
e1,e2,e3 0.0049 0.9897 0.0053 II 0.0140 0.9707 0.0152 II

III e1,e2 0.1238 0.4282 0.4457 II 0.0263 0.0547 0.8953 III
e1,e3 0.1139 0.4091 0.4852 III 0.0101 0.0241 0.9608 III
e2,e3 0.0014 0.0044 0.9938 III 0.0046 0.0143 0.9801 III
e1,e2,e3 0.0003 0.0013 0.9983 III 0.0014 0.0059 0.9925 III
and the experiment validates the effectiveness of multi-modal infor-
mation fusion in COVID-19 autonomous diagnosis. The use of multi-
modal indicators (CT, routine laboratory indexes, serum cytokines and
chemokines) can effectively distinguish COVID-19 from viral pneumo-
nia and bacterial pneumonia. However, the proposed method has some
disadvantages. The LWWOA-MSVM treats each sample data equally,
but each training data obviously has different effect on the calculation
of the classification surface. Equal treatment will affect the calculation
of the classification surface and thus affect the output of BPA, and the
performance needs to be further improved. In addition, the COVID-
19 multi-modal autonomous diagnosis system needs to collect multiple
diagnostic indicators, so the cost of acquisition increases.

7. Conclusion

In this paper, the whale-optimized MSVM is used to establish a
single-index classifier for COVID-19 based on CT images, routine labo-
ratory index detection, serum cytokines and chemokines detection, and
the output of each MSVM is used as independent evidence to construct
the basic reliability distribution on this diagnostic index. Then, the
improved D-S evidence theory is applied to effectively integrate the
judgment information of COVID-19 from different diagnostic indica-
tors as independent evidence at the decision-making level. Finally,
the rules of constructed decision fusion threshold discrimination are
used for decision recognition. The experimental results show that the
paper method can not only avoid the problem of low recognition
rate caused by the unilateralism of single diagnostic index, but it also
solves the problem that the feature vector dimension is too high and
is not conducive to the identification caused by the multi-diagnostic
index features. However, the proposed method has some disadvan-
tages. Multi-modal autonomous diagnosis system for COVID-19 needs
to collect multiple diagnostic indicators, so the collection cost increases.
MSVM needs to preliminarily classify three diagnostic indicators, so
the algorithm has larger amount of calculation than one single diag-
nostic index. In addition, the improved D-S evidence fusion should
consider the combination output of expert diagnosis, artificial neural
network and MSVM to obtain more objective and accurate reliability
distribution, and further improving the practicality and effectiveness
of the multi-modal COVID-19 autonomous diagnosis system. The next
work focuses on the optimal matching of different diagnostic indicators
with low cost to improve the application effect of D-S fusion theory in
COVID-19 recognition.
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