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Unité de Biologie Fonctionnelle et Adaptative (BFA), Sorbonne Paris Cité, Universite Paris Diderot,
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Copyright © 2012 Nicole Créau. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Down syndrome is a complex disease that has challenged molecular and cellular research for more than 50 years. Understanding
the molecular bases of morphological, cellular, and functional alterations resulting from the presence of an additional complete
chromosome 21 would aid in targeting specific genes and pathways for rescuing some phenotypes. Recently, progress has been
made by characterization of brain alterations in mouse models of Down syndrome. This review will highlight the main molecular
and cellular findings recently described for these models, particularly with respect to their relationship to Down syndrome
phenotypes.

1. Introduction

Down syndrome (DS) is the most frequent human ane-
uploidy (1/800 births). DS is characterized, in part, by
cognitive impairment, which is present to some degree of
severity in all affected individuals [1], and by neuropatho-
logical alterations similar to those observed in the brains
of Alzheimer’s disease patients (over 40 years in DS) [2–4].
Specific deficits of the nervous system in DS individuals affect
learning, memory, language, and movement [5–8]. These
deficits are associated to alterations in volume, in grey matter
density and altered neuronal circuits of different regions of
the brain [9–13]. DS typically results from the presence of
three complete copies of human chromosome 21 (trisomy
21, T21) [14]. Due to the presence of this extra copy of
chromosome 21 (HSA21), DS phenotypes are expected to
be associated with a gene dosage effect: genes on HSA21
are present in three copies rather than two, leading to 50%
overexpression (or 1.5-fold expression levels). Transcriptome
and proteome studies have shown that, indeed, a global gene
dosage effect is present; however, interestingly, expression of
a number of trisomic genes varies: some are compensated
(near 1), while others are underexpressed (less than 1) or
highly overexpressed (more than 1.5). These changes may
vary depending on the cellular component and likely result

from gene or protein interactions in pathways or in protein
complexes (e.g., complex subunits). These variations have
been observed in T21 as well as in different organs of mouse
models of DS and as a result of aging [15–21]. Thus, defining
which HSA21 genes (or murine orthologs) are particularly
responsible for disease phenotypes is crucial: identifying
the molecular and cellular variations in conjunction with
overexpression will help determine their associations with
the phenotype and aid in testing potential molecules for phe-
notypic rescue.

2. Mouse Models of DS

Mouse models have been critical to our understanding of
the molecular genetics of DS. Several models have been
constructed: some have an additional copy of a chromo-
some segment orthologous to HSA21 [22, 23], others have
additional copies of individual genes from HSA21 or their
mouse orthologs [24, 25]. Though more recent models
have increased our understanding of the consequences of
adding one copy of a specific gene or a segment containing
multiple genes, the most extensively studied models are
the Ts65Dn [22] and Ts1Cje [23] mice, which carry large
segmental trisomies for mouse chromosome 16 (MMU16)
(Figure 1). These models recapitulate several phenotypes of
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Figure 1: HSA21 (with main cytogenetic bands) and its ortholog segments in the mouse genome (MMU16, MMU17 and MMU10) are
indicated. Main mouse models and those reported in this review are indicated in black for human genes, and in gray for mouse genes.
Models with cDNA constructs are indicated in italics. Representation of their localisation is not to scale. Tc1 [32]; TghAPP [33]; TgSYNJ1
[54]; TgITSN1 [55]; TgRCAN1-L [56]; TgYAC152F7 [34]; hBACTgDYRK1A [24]; TgPCP4 [38]; TghCBS60.4 [57]; Ts65Dn [22]; Ts1Cje
[23]; Ts1RhR [58]; TgSynj1 [54]; TgDyrk1a [59]; mBACTgDyrk1a [25]; Dup(16)Yu, Dup(17)Yu and Dup(10)Yu [29, 31]; Ts1Yah [30].

DS, including reduced brain volume, significant learning
and memory impairment, and altered synaptic plasticity
measured in hippocampal long-term potentiation (LTP).
However, recent investigations into the exact gene compo-
sition of these models have shown that, in addition to the
duplicated segment of MMU16, Ts65Dn, which results from
a translocation onto MMU17, contains a duplication for
proximal genes of MMU17 and Ts1Cje contains a deletion
of a 7-gene span of MMU12 [26–28]. More recent trisomic
models [29–31], constructed using the Cre/loxP-mediated
chromosome engineering strategy, have integrated only seg-
ments of the mouse chromosomes orthologous to HSA21—
MMU16, MMU17, and MMU10 (Figure 1)—eliminating
any potential confounding effects from additional genetic
aberrations. Another model, Tc1, is a transchromosomic
model transmitting a copy of a portion of HSA21 spanning
over 75% of the original chromosome [32]. The human
genes present on this chromosome are, indeed, expressed in
the mouse, confirming that specific models may bear either
a human or mouse gene, as previously demonstrated with
YACs containing human genes [33, 34]. Interestingly, the
Tc1 model may also be useful for evaluation of effects of
T21 mosaicism because the transchromosome appears to be
retained in only 50–60% of Tc1 adult brain cells [35]. In fact,
Papavassiliou et al. [36], in studying the rate of T21+ cells in
the buccal mucosa and lymphocytes of individuals with T21
mosaicism, found a positive correlation between patient IQ
range and percentage of T21+ cells in their tissues. Thus, the

presence of trisomy in at least 50% of brain cells may have
strong implications for cognitive development.

Transgenic models introducing a specific HSA21 gene or
murine ortholog, and for which molecular and cellular stud-
ies have been performed, are presented along with trisomic
models in Figure 1 and Tables 1 and 2. Tables 1 and 2 sum-
marize the main studies identifying molecular and cellular
changes in these models.

3. DS Transcriptome

Gene expression studies have provided much-needed insight
into global expression changes occurring in DS. In par-
ticular, microarrays have been employed to determine the
transcriptome of cells and even brain structures. Ts1Cje and
Ts65Dn transcriptomes were analyzed at various develop-
mental timepoints (see Table 1). Changes in transcript levels
were observed for genes in three copies, mirroring copy
number (i.e., near 1.5-fold). However, more specific analyses
of expression changes, as in the cerebellum of Ts65Dn
[44], suggest that the genetic backgrounds of trisomic mice
may impart individual variations onto expression changes.
Further, such inter-individual variations are observed at the
protein level [52]. Interestingly, in Tc1 mice genes from
HSA21 are expressed at embryonic day (E) 14.5, indicating
that these genes are transcribed during mouse embryonic
development [32]. Recall that this model leads to a mosaic
composition of adult organs with cells containing or not
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Table 1: Significant quantitative transcript variations observed in the DS mouse models (trisomics and transgenics, see Figure 1). Results are
classified from top to bottom with increasing age of the mice studied: age in embryonic days (E), postnatal days (d) and month (m). Names
in bold for genes present in 2 copies. Transcriptome methods used: C (cDNA arrays); N (Northern); M (microarrays); Q (quantitative-RT-
PCR); R (RT-PCR). Gene names are indicated according to gene nomenclature (Gene Cards: http://www.genecards.org/).

Brain structures Models Age Up Down Method
Additional
comment

Target Rescue References

E11–E13
telencephalon,
mesencephalon
+ diencephalon

TgYAC152F7
E11.5,
E12.5,
E13.5

Dyrk1a Q, M
Dysregulation of

the Rest
pathway

[37]

Embryonic,
brain
hemispheres,
cerebellum

Ts1Cje; TgPCP4
E11.5,

E14.5, 4 m
Pcp4 Q [38]

Embryonic total Tc1 E14.5 — R
Expression

human genes
[32]

Embryonic mBACTgDyrk1a E14.5 Dyrk1A Q [25]

Total brain Ts1Cje birth
mean:
1.435

M [39]

Cerebellum Ts1Cje birth Ptch, Shh M [26]

Cortex, brain Ts65Dn 8 d Vip, Vipr1 Q [40]

Total brain Ts65Dn 1 m
62% of
3-copy
genes

Q [18]

Hippocampus,
frontal cortex,
substantia nigra

Ts65Dn 78–92 d Kcnj6 Q [41]

Hippocampus TgYAC152F7 3 m Dyrk1a
Bdnf,
Trkb

Q Dyrk1a Bdnf, Trkb [42]

Hippocampus TS65Dn 3 m

Gart,
Ifnar2,
Kcnj6,
Itsn1,

Hcls, Sod1

M Gabra5 Bdnf [43]

Cerebellum Ts65Dn 3-4 m

range
(0.84–
2.93);

mean 1.45

M [44]

Cortex,
midbrain,
cerebellum

Ts65Dn 4 m
mean:

1.63, 1.3,
1.37

C, M [17]

Forebrain Ts65Dn 4 m
App, Sod1,

ApoE
N [45]

Hippocampus
(rescue),
prefrontal
cortex

Ts65Dn 5-6 m
mir155,
mir802,
Mef2c

Creb1,
Mecp2

Q
mir-155,
mir-802

Mecp2,
Mef2c,
Creb1

[46]

Brain
hemispheres

Ts65Dn 4 to 12 m
App, Sod1,

Dyrk1a
Q

increase with
age

[21]

Brain Ts65Dn 6-7 m Gfap Q [47]

Hippocampus,
cortex, raphe
nuclei

Ts65Dn 9.5 m Vip, Vipr1 Q [48]

Hippocampus Ts65Dn 10 m Bdnf Q Nmdar Bdnf [49]

Total brain Ts65Dn 11 m
47% of
3-copy
genes

Q [18]

http://www.genecards.org/
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Table 1: Continued.

Brain structures Models Age Up Down Method
Additional
comment

Target Rescue References

Hippocampal
CA1

Ts65Dn (m + f) 12–24 m Htr2c
Cdk5,
Ntf3

Q [50]

Medial septum,
hippocampus

Ts65Dn 18 m App Q [51]

HSA21, detecting the molecular consequences in adults at
the transcriptional level may be more difficult. Interestingly,
Tc1 mice have impaired short-term memory but normal
long-term memory [35]; both features are affected in
Ts65Dn mice [53]. These contrasted phenotypes in adult
mice suggest that part of the functional alterations in DS
results from strong modifications in proliferation and/or
differentiation steps of neural components of various brain
structures—processes that are established during embryoge-
nesis. Notably, however, the absence of several genes on the
human chromosome transmitted in Tc1 may also influence
the functionality of the adult brain (Figure 1).

More recent evidence indicates that alternative splicing
may play a role in differentiating the brain transcriptome
in DS mouse models as well as in DS. Proteins involved
in the splicing machinery are modulated and alternative
exons of key synaptic transcripts (neuroligins, TrkB, AChE,
Mapt) can be expressed, suggesting a different control of
the transcriptome in the disease state. Modulated splicing
factors (ASF, Srp55, Srp75, Srp30, SC35) were identified
at the global protein level or at the phosphorylation level
depending on the brain regions explored as well as a result
of aging. Notably, at least one HSA21 gene appears to be
responsible for dysregulation via splicing factor phosphory-
lation: Dyrk1A. This proline-directed serine/threoninekinase
colocalizes with some of these splicing factors and, further,
regulates biogenesis of the splicing speckle compartment
[60–62]. In adults with DS, Dyrk1a overexpression appears
related to overexpression of the 3R isoform transcript of
microtubule-associated protein tau (Mapt), which is predom-
inant in neurofibrillary tangles, suggesting a new role for
Dyrk1a in neuronal degeneration [61, 63–65].

In addition to protein-coding RNAs, several functional
RNAs do not lead to the translation into a protein (non-
coding RNA). MicroRNAs (miRNA) belong to the small
noncoding RNAs class and have been shown acting on
the regulation of translation of gene transcripts either by
degradation or repression, thus influencing the content of
the proteome. Mounting evidence suggests that miRNAs
affect brain development and function [66]. Five miRNAs are
transcribed from HSA21, three of which are clustered [46].
HSA21 miRNAs (miR-99a, let-7c, miR-125b-2, miR-155,
and miR-802) are overexpressed in the DS brain from fetal to
adult stages [46, 67, 68]. In the Ts65Dn mouse model, only
miR-155 and miR-802 (both in 3 copies) have been found to
be overexpressed in brain [69]. The authors found also that
the transcription of the methyl-CpG-binding-protein (Mecp2)
gene, which is mutated in Rett syndrome, is decreased.
Intracerebroventricular injection of Ts65Dn with antisense

RNA for these two miRNAs (antagomirs) normalizes the
expression of Mecp2 and Creb (cyclic AMP responsive element
binding protein)as well as the Mecp2-regulated gene Mef2c
(increased in Ts65Dn) [69]. Other possible involvement of
miRNAs in brain alterations of DS and mouse models require
further investigation [70].

4. DS Proteome

Alterations in the transcriptome in DS is expected to have
direct implications on the proteome. The brain proteome has
been studied using different quantification methods, but its
modulations are more difficult to approach on a large scale.
Quantitative immunohistochemistry is complementary to
these approaches, since it can reveal which cells may be
more affected by protein expression changes. Indeed, it is
necessary to determine whether any fluctuations in protein
expression result from changes at the cellular level or changes
in the proportion of cells expressing the protein(s). Current
research targeting potential pathways have led to an increase
in studies identifying the proteome changes within specific
brain structures in DS models.

Table 2 recapitulates significant protein changes (up or
down) observed in the trisomic and transgenic mice in
function of age and brain structures. Interestingly, these
data show that the proteins level even in the same mouse
model may increase with age (App and Sod1—which are in 3
copies), may depend on the brain structures (Synaptophysin
(Syp) up in cortex versus down in hippocampus; Gaba-b
receptor 2 (Gabbr2) up in hippocampus versus down in tha-
lamus) or may be increased from early stages to adult (Map2,
Ntf3), though all developmental stages are not yet studied.

5. Morphological and Cellular Changes in
Brain Structures

The universal presence of cognitive impairment in DS has
made understanding the structural and cellular changes in
the DS brain the focus of much research effort. Reduction
in cerebellum volume is a feature of Down syndrome and
is recapitulated in Ts65Dn and to a lesser extent in Ts1Cje
models. Interestingly, changes in volume or cellular density
appear to differ between regions of the brain, suggesting
that gene dosage differentially affects brain structure devel-
opment [9, 10, 89, 90]. Similarly, enlargement of the lateral
ventricle, another alteration in brain morphology, has been
observed in both DS and mouse models of DS, specifically
Ts1Cje, Ts2Cje [91], Ts65Dn, and mBACTgDyrk1a [25].
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Cell proliferation is also altered in DS and in mouse
models, suggesting a relationship between alterations in vol-
ume and altered cell numbers in brain structures. In cortex,
hippocampus, and cerebellum, region volume and neuronal
populations are affected [58, 92–96]. These defects in
proliferation alter the neuron as well as the astrocyte number
and percentage. Recently, proliferation impairment in neural
cell precursors of Ts65Dn was shown to involve inhibition
of the hedgehog pathway [72]. This finding extends those
of Roper et al. [97], who linked hedgehog to decreased
granular cell progenitor (GCP) production in the cerebellum
of Ts65Dn. Sonic hedgehog (Shh), produced by the cerebellar
Purkinje cell, typically activates GCP proliferation during
cerebellar development, but this pathway is defective in DS
models. Similarly, a defect in Shh mitotic response is present
in neural crest progenitors of these mice [98]. Inhibition of
the hedgehog pathway can occur through overexpression of
a fragment of amyloid precursor protein (App, in 3 copies
in the Ts65Dn), AICD (App intracellular domain). Through
increased binding of AICD to the Ptch1 (Patched, SHH
receptor) promoter and histone hyperacetylation, Ptch1 is
overexpressed [72]. However, silencing of Ptch1 restores
proliferation of neural cell precursors. Indeed, AICD has
been shown to act as a transcriptional regulator for its own
gene (App) as well as other genes [99]. Reduced cerebellar
volume also occurs in Ts1Cje mice (2 copies of App), but to
a lesser extent than in Ts65Dn (3 copies of App), suggesting
that other 3-copy genes contribute to the proliferation defect
through the Shh receptor Ptch1 [26] or other molecules.

Notably, these proliferation defects may be associated
with the surprising lack of medulloblastoma and neurob-
lastoma tumors observed in Down syndrome [100–102].
In DS models, several genes involved in the regulation of
the cell cycle, namely, cell-cycle-dependent kinases p21Cip1
[103] and p27Kip1 [104, 105], are differently affected and
induce a dysregulation of the cell cycle. These proteins as
well as Ptch1, the receptor for Shh [72], have been shown to
be important players in medulloblastoma induction [106].
Thus, the alteration in neural proliferation, while likely
contributing to cognitive impairment in DS, may protect
against these type of tumors. Additionally, increased Dyrk1a
[107] and Pcp4 [38, 108, 109] expression are associated
with premature neuronal differentiation at early embryonic
stages, which may also guard against these tumors by driving
neurons to a more mature state.

Interestingly, increased dosage of murine Dyrk1a leads to
an increase in neurons and glial cells in the thalamus VPL-
VPN while other structures, like the somatosensory cortex,
though increased in volume, do not show any change in the
numbers of these cellular components [25]. Thus, prolifera-
tion may be differentially affected in particular regions and
cell types during development, as has been visualized in the
DS brain [10, 110].

Adult neurogenesis occurs at two major sites in the brain:
the subventricular zone of the lateral ventricule and the
subgranular zone of the dentate gyrus of the hippocampus
(human and mouse). Though the physiological relevance of
adult neurogenesis is still under debate, it may have strong

implication in new acquisition of memory. Adult neuroge-
nesis is impaired in Ts65Dn hippocampus [111] and can be
reversed by treatment with fluoxetine, an inhibitor of sero-
tonin (5-HT) reuptake [112]. Recent experiments using the
same molecule rescued neurogenesis in Ts65Dn not only in
hippocampus but also other structures (striatum, neocortex)
and involved the rescue of expression of the neurotrophic
factor BDNF [75], which is crucial for neuron survival.
Indeed, BDNF levels (RNA and protein) depict a complex
situation in DS that may result partly from a newly identified
mechanism acting in brains of DS models: regulation of local
translation [113]. BDNF RNA levels are decreased in DS and
mouse models, but circulating levels of BDNF are higher in
DS [42, 114, 115]. In Ts1Cje, increased BDNF release in the
hippocampus occurs through different regulators of synaptic
local translation, suggesting a more fine-tuned regulation
of this neurotrophic factor. Further, the new hypothesis
proposed by Troca-Marı́n et al. [113] of a positive-feedback
loop involving BDNF and the Akt-mTOR pathway suggests
new avenues for treatment. This type of regulation may
involve other molecules important for brain function, as has
already been shown for Dscam [116]—which occurs in 3
copies in the mouse models—and still needs to be explored.

Other molecules and pathways contributing to DS neu-
ropathology have been extensively studied. For example,
Map2, a microtubule-associated protein present in the soma
and dendrites of mature neurons, is increased in hippocam-
pus and cingulate cortex of Ts65Dn, independent of age [71,
87]. Map2 immunolabeling reveals thicker, shorter, and less-
tapered dendrites in aged Ts65Dn adult neurons. Further,
during embryonic cell differentiation in culture, abnormal
neurite branching was observed in neurons of fetal T21 [117]
and Tc1 [118], combined with an increase in secondary
to primary dendrites. Abnormal dendrites have been previ-
ously observed during early development in DS cortex; the
overdevelopment of dendritic trees in the visual cortex of
DS patients at birth, despite dendritic atrophy later during
infancy [119, 120], suggests that temporally different mech-
anisms may contribute to abnormal maturation of neurons
in DS. Though different 3-copy genes might contribute to
these changing phenotypes [38, 59, 121], the mechanisms of
altered cytoskeletal dynamics remain unexplained.

Another neuronal phenotype in DS is the excitation-
inhibition imbalance shown to play a central role in brain
malfunction; reducing overinhibition represents a current
goal for ameliorating cognitive dysfunction [122, 123]. Over-
inhibition may result from an increase in inhibitory neurons
[80, 95], an increase in inhibitory synapses [124, 125], an
increase in efficiency of inhibitory synapses [126], an increase
in stimulation of GABAergic ouput neurons [127], or a
decrease in these excitatory components [128]. Moreover,
in relation to Girk2 overexpression (Kcnj6 in 3 copies)
which regulates the GABA-B receptor at dendrites, the
balance between GABA-B and GABA-A inhibition is altered
in Ts65Dn hippocampus [41, 73, 129]. In Ts65Dn cortex,
excitatory neurons exist in the same proportions in control
and Ts65Dn brains throughout development; interneu-
rons, however, are increased in Ts65Dn brains. Further,
these interneurons show an increased excitability in basal
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conditions [95]. Reducing copy numbers of Olig1 and Olig2
transcription factors required for oligodendrocyte specifica-
tion and differentiation [130], rescues the number of cortical
interneurons of Ts65Dn [95]. Finally, additional circuitries
of neurotransmitter release as well as neuropeptide signaling
are impaired ([54, 79, 131, 132]; Table 2).

Though the global composition of Ts65Dn synapses
does not differ from controls reduced CaMKIIalpha and
increased peptide phosphorylation, potentially important
for synaptic function, have been found; synaptojanin 1
(Synj1), which is important for synaptic vesicle recovery
and is triplicated in Ts65Dn, is also increased [133]. Addi-
tionally, spine morphology and spine density differ [134,
135], but the global level of synaptophysin, a marker of
presynaptic vesicles, appears reduced [71]. Decreased spine
density has been observed in Ts65Dn hippocampus and
temporal cortex [135–137]. Further, synapse enlargement
is present in hippocampus, with an associated decreased
length of spine neck [135]. Similarities are evident in spine
morphology between Ts1RhR [58], Ts1Cje, and Ts65Dn, but
with increased severity of phenotype with increased number
of genes in 3 copies [134, 138]. Moreover, the trisomy in
Ts1RhR is sufficient to induce a decreased average in spine
density in the fascia dentata [138]. Finally, endocytosis may
be altered by increased levels of Itsn1 [55, 139], Dyrk1A
[140], Synj1 [141], and interaction with other genes in 3
copies [142]. Together, these anomalies may lead to altered
synaptic plasticity, as visualized at the level of hippocampal
LTP, and likely regulate learning processes.

Glial cells are another structurally and functionally
important component of the brain, serving as support and as
regulators of synapse connectivity; they are also present at
the blood-brain barrier. Glial fibrillar acidic protein (GFAP)
is commonly used to identify these cells. During early devel-
opment in DS hippocampus and frontal lobe, an increase
in GFAP-positive cells is observed [143, 144], together with
a more mature morphology [144]. This may result from a
preference for glial cell production over neuron production,
as seen during the differentiation of neural precursor cells
[117, 145–148]. An increase in glial cells has been identified
in the Ts65Dn hippocampus during early postnatal develop-
ment [149]. However, in adult Ts65Dn brain, a decrease in
GFAP transcript was observed [47]. Moreover, dysfunction
of Ts65Dn astrocytes [40] coupled with an increase in beta-
catenin in the microvessels of Ts65Dn brain [150, 151], two
important components of the brain-blood-barrier, suggest
that its function might be altered.

Interestingly, in aged DS brains, a reduced glial cell num-
ber has been observed in the cortex [152], and alterations
in the morphology of astroglial cells develops with age [153].
Further, increased GFAP in the frontoparietal cortex and hip-
pocampus of aged Ts65Dn mice revealed gliosis [83]. Thus,
altered glia may play a role in the modified functionality of
brains of DS mouse models. Notably, alterations in Purkinje
axons in the cerebella of Ts65Dn have been observed from 10
months of age, while astrogliosis appears later [85, 86]. These
results suggest that the Ts65Dn cerebellum is not protected
against neuronal degeneration, which may be detected earlier
by specific modifications of neuronal properties.

Finally, identification of aging processes related to Alz-
heimer’s disease pathology are under investigation in DS
models. APP has been suspected as a major player in this
pathology and increased copy number of APP in human is
associated with Alzheimer’s disease [154]. Other genes on
HSA21 may either protect against or enhance the effects of
the increase in APP [21, 64, 65]. Aged Tc1 mice (18 months)
have an increase in tau phosphorylation and neurofibrillary
tangles, features not present in young animals. Further, a
correlation with the level of Dyrk1A was found, but only
in aged mice [65]. In this model, human proteins like APP,
SYN1, ITSN1, and RCAN1 may be absent, suggesting they
do not play a role in that process [35]. Transgenic mice
with a copy of the entire APP [33] or SYNJ1 [54] gene have
been already constructed, but mice transgenic for ITSN1
and RCAN1 were constructed with heterologous promoters.
Thus, although elevated phospho-tau was observed in
transgenic TgRCAN1-L [56] mice, confirmation in a model
with the entire gene is needed to further understand the role
of these genes in Alzheimer’s disease pathology.

6. Genes and Pathways Targeting

Thanks to these rapid advances in understanding the specific
brain alterations in DS, therapeutic approaches are being
developed. The first therapeutic assay targeted the specific
loss of basal brain cholinergic neurons (BFCN) observed
after 6 months in Ts65Dn. This specific loss, due to altered
transport of nerve growth factor (NGF), was rescued by
infusion of NGF [84], demonstrating the potential for
phenotype reversal. As excitation-inhibition imbalance has
emerged as a strong target, recent approaches have targeted
the potential pathways at the roots of the observed over-
inhibition. Fernandez et al. [123], by using an inhibitor of
the GABA-A receptor (pentylenetetrazole, PTZ), reversed the
phenotype of Ts65Dn, confirming that GABA, the major
inhibitory neurotransmitter of the central nervous system,
is involved. Though multiple approaches are currently being
tested (see Table 1), only two recent approaches have tried to
identify—on a large scale—correlations between molecular
changes and behavioral changes induced by a therapeutic
molecule, in adults of DS models.

Braudeau et al. [43, 155] analyzed the transcriptome
of mice submitted to memory processing using the Morris
water maze paradigm following treatment with an inhibitor
of the GABA-alpha5 receptor, the GABA-alpha5 promne-
siant inverse agonist (alpha5IA). The GABA-alpha5 receptor
(Gabra5) is specifically expressed in the hippocampus and,
thus, its modulation directly involves hippocampal function.
In combination with the expression of early genes, specific 3-
copy genes were modulated significantly: 6 transcripts were
upregulated (Kcnj6, Sod1, Itsn1, Hcls, Gart, Ifnar2) and 3
were downregulated (App, Kcnj6, Sod1) in Ts65Dn following
treatment. Moreover, a set of 5 3-copy genes (including Pcp4,
Hmgn1, Cbr1, and Gabpa), as well as BDNF, showed an
interaction between genotype and treatment, suggesting a
close relationship with this pathway.

Rescue of BDNF expression can also be obtained using
green tea polyphenols (PGT) [42] and memantine [49] (see
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Tables 1 and 2). BNDF level rescue is associated with rescue
of learning impairments, and thus plays a critical role in our
understanding of DS and its potential therapies.

Regulation of the glutamate receptor, NMDAR, may be
altered by several genes of HSA21, namely, through the
calcineurin pathway. MK-801, a noncompetitive antagonist
of NMDAR, may rescue memory retention, in particular,
during aging. Locomotor activity of Ts65Dn and TS1Cje was
evaluated in relation to different doses of MK-801 which
block this receptor with a high affinity [52]. It was given
at a dose leading to the same level of induced locomotion
in the two strains. Proteins fractions (nuclear, cytosolic and
membranous) of hippocampus and cortex were analyzed
for their level in phosphorylation for proteins belonging
to the Mapk pathway and for Tiam1, Itsn1, and Dyrk1a.
Overexpression of these proteins was observed in Ts65Dn
and Ts1Cje. Interestingly, a partial decrease in Dyrk1a and
modified phosphorylation of MAPK proteins was observed
in a genotype-specific pattern, suggesting that the genes
responsible are at different locations on the trisomic seg-
ments [52, Table 2]. Interestingly MK-801 and memantine
restore the phospho-mTOR level in Ts1Cje hippocampal
dendrites [113]. But it is still to be proved that such treatment
will benefit to the Ts65Dn memory impairment [111].

As an noninvasive approach, “environmental enrich-
ment” that combines sensorimotor to social stimulations,
may impact at the behavioral and molecular levels [156, 157].
Standardized methods (starting age, type of stimulation)
may be needed to compare the changes observed and help
understand why it benefits preferentially to Ts65Dn females.

Finally, molecular and cellular analyses in DS mouse
models and DS brains show a clear correlation, though
brain regions may vary in their specific features, confirming
the utility of mouse models of DS for testing therapeutic
treatments [158]. The number of therapeutic approaches in
DS mouse models is rapidly increasing, with accompanying
tests for behavioral rescue. However, little is known about
the molecular and cellular consequences of these treatments;
assessing these consequences will be crucial for future
research and for any potential translation into the clinic.
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