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Despite the enormous progress in the understanding of the course of the ischemic stroke
over the last few decades, a therapy that effectively protects neurovascular units (NVUs)
and significantly improves neurological functions in stroke patients has still not been
achieved. The reasons for this state are unclear, but it is obvious that the cerebral ischemia
and reperfusion cascade is a highly complex phenomenon, which includes the intense
neuroinflammatory processes, and comorbid stroke risk factors strongly worsen stroke
outcomes and likely make a substantial contribution to the pathophysiology of the
ischemia/reperfusion, enhancing difficulties in searching of successful treatment.
Common concomitant stroke risk factors (arterial hypertension, diabetes mellitus and
hyperlipidemia) strongly drive inflammatory processes during cerebral ischemia/
reperfusion; because these factors are often present for a long time before a stroke,
causing low-grade background inflammation in the brain, and already initially disrupting
the proper functions of NVUs. Broad consideration of this situation in basic research may
prove to be crucial for the success of future clinical trials of neuroprotection,
vasculoprotection and immunomodulation in stroke. This review focuses on the
mechanism by which coexisting common risk factors for stroke intertwine in cerebral
ischemic/reperfusion cascade and the dysfunction and disintegration of NVUs through
inflammatory processes, principally activation of pattern recognition receptors, alterations in the
expression of adhesion molecules and the subsequent pathophysiological consequences.
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1 INTRODUCTION

Ischemic stroke is a serious clinical and socioeconomic problem,
especially among the aging populations of industrialized
countries. Despite the enormous progress in the understanding
of the course of the ischemic cascade over the last few decades, a
neuroprotective therapy that effectively protects neurovascular
units (NVUs) and significantly improves neurological functions
in stroke patients has still not been achieved. The reasons for this
state are still far from fully clear. Admittedly, the ischemia and
reperfusion cascade is a highly complex process that consists of
many elements of a diverse biological nature, and comorbid
stroke risk factors strongly worsen stroke outcomes and likely
make a substantial contribution to the pathophysiology of the
ischemic/reperfusion cascade, enhancing difficulties in treatment
(1, 2). The most common risk factors found in stroke patients are
arterial hypertension, diabetes mellitus and hyperlipidemia. All
of these factors cause low-grade inflammation and
microcirculatory disturbances in many organs, and also – in
the brain. Therefore, in this paper, a strong emphasis was placed
on the perspective that the main link unifying the ischemia/
reperfusion cascade and these risk factors are inflammatory
processes that already initially disrupt the proper functions of
NVUs, before a stroke onset, and participate in the course of a
stroke pathomechanism.

For many years, evidence has increased for an ambiguous,
destructive, protective and repairing role of some inflammatory
cells in the course of a stroke, although many early studies in this
field unequivocally showed that the infiltration of the ischemic
brain by inflammatory cells enlarged the extent of post-ischemic
damage through subsequent edema or intracranial hemorrhage.
This ambiguity does not undermine the possibility of therapeutic
targeting of the ischemic inflammatory process; on the contrary,
in the future, appropriate immunomodulation may halt
damaging processes and/or enhance the protective or repair
functions of some of their effectors. However, despite
ambiguous details, the negative role of inflammatory processes
in focal and global cerebral ischemia/reperfusion, intracranial
hemorrhages, or mechanical brain injuries is brought to the fore.
Clinically, in the course of ischemic stroke, a higher level of
inflammation is a significant prognostic factor for worse
treatment outcomes (3). In contrast, animal experimental
studies on neuroprotection still do not consider the coexisting
risk factors for stroke in humans as an experimental standard.
This is probably an important cause of the failure of attempts to
introduce neuroprotection into clinical practice. Accompanying
risk factors already presensitize neurovascular units to the
ischemic/reperfusion cascade. When the cascade occurs, it
encounters NVUs with their already initially impaired
functionality and consistently worsens cerebral perfusion at the
level of the microcirculation in the ischemic penumbra.
Considering this situation in basic research may prove to be
crucial for the success of future clinical trials of neuroprotection
and immunomodulation.

This review of the literature focuses on the mechanism by which
coexisting common risk factors for stroke intertwine in ischemic/
reperfusion and the dysfunction and disintegration of NVUs
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through inflammatory processes, principally activation of pattern
recognition receptors, alterations in the expression of adhesion
molecules and the subsequent pathophysiological consequences.

For the review, the PubMed electronic database was searched
using the fol lowing keywords: adhesion molecules ,
inflammation, ischemic stroke, pattern recognition receptors,
penumbra, reperfusion, stroke risk factors. Experimental,
clinical and review publications from 1971 to 2021 were cited,
with a predominance of those published after the year 2000.
2 THE CEREBRAL ISCHEMIA/
REPERFUSION CASCADE AND
STROKE COMORBIDITIES

Arterial hypertension, diabetes mellitus, and hyperlipidemia are
well-known modifiable risk factors for the development of
ischemic stroke in humans. Currently, an epidemic increase in
the incidence of these diseases is observed in the Western world.
In many countries, approximately 50% of the population over 60
years of age has been diagnosed with hypertension, and this
prevalence is actually increasing (4). Elevated diastolic or systolic
blood pressure, or both parameters, is a major risk factor for
stroke development (5, 6). Similarly, diabetes mellitus shows a
worrying trend of increasing morbidity, despite the presence of
many pro-health social campaigns. Type 2 diabetes, until
recently considered mainly as a disease of elderly age, is now
responsible for approximately 4-5% of premature deaths (7).
Approximately 50% of people with diabetes signs delayed end-
organ/system damages and as many as 40% of subjects have
vascular complications, both result from the silent progression of
the disease before its diagnosis (8). Hyperlipidemia (elevated
blood lipid/lipoprotein levels) also severely affects various age
groups in wealthy Western societies. As an example in the
United States of America, ~33.5% of adults aged ≥20 years
have elevated low-density lipoprotein cholesterol levels above
160 mg/dL (9). In adults, hyperlipidemia is an important risk
factor for the development of cardiovascular diseases and stroke
(10, 11).

Molecular mechanisms involved in inflammation, e.g., in
general, an activation of the pro-inflammatory genes and an
increase in the expression of adhesion molecules, in addition to
their well-documented role in the ischemic cascade in the brain,
can now also be reasonably considered an important connecting
bridge between the above risk factors for ischemic stroke and the
unfavorable prognosis in the event of its occurrence.
Hypertension and diabetic hyperglycemia can worsen the
prognosis of stroke through endothelial dysfunction and
increased leukocyte adhesion to blood vessels and other
pathologies affecting the functions of NVUs. Moreover,
chronically elevated blood cholesterol levels also result in
endothelial disturbances and increased adhesion of leukocytes
and platelets during ischemia/reperfusion (12–14). These
observations constitute important clinical indications for
research in the field of ischemic stroke neuroprotection,
vasculoprotection and immunomodulation, and for widespread
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preclinical studies with animal models with modeled risk factors
for stroke in humans.

Based on the current knowledge, to understand the
mechanistic links how the common risk factors for stroke may
worsen its course through amplification of the disintegration and
dysfunction of NVUs, we first need to review the mechanisms of
ischemic/reperfusion cascade and ischemic inflammation in light
of this regard.

2.1 The Mechanisms of NVUs Damage
in the Course of the Focal Cerebral
Ischemia/Reperfusion Cascade
During an ischemic stroke, a decrease in the patency of the
plugged artery lumen leads to a local decrease in the volume of
blood flow in the brain area supplied by it. This decline is not
uniform across the entire ischemic region. On the basis of the
degree of blood flow reduction, it is possible to distinguish the
infarct core (< 20% of basal blood flow) and the penumbra,
where the collateral circulation maintains the blood flow at the
level of ~40% of the basal blood flow (15). During ischemic
oxygen-glucose deprivation in the cells located in the infarct
core, there is a strong decrease in the rate of oxidative
phosphorylation, a decrease in intracellular ATP (adenosine 5′-
triphosphate) concentration, and consequently a decrease in the
activity of Na+/K+-ATPase and a disturbance in the ATP-
dependent transport of K+ and Na+ ions. The ion homeostasis
of the cells in the infarct core is lost. The outflow of K+ from cells
and the inflow of Na+ into the cytosol causes cellular
depolarization. High cytosolic concentrations of Na+ and Cl-

result in the development of strong cytotoxic edema (16, 17).
Depolarized neurons in the infarct core are not able to restore
their resting potentials, and they die within a few minutes as a
result of energetic collapse, a loss of ion homeostasis, cytotoxic
edema, proteolysis, cytoskeleton disintegration, lipolysis and cell
membrane fragmentation (18). The loss of energy/ion
homeostasis disrupts the communication of neurons with glial
and endothelial cells. Astrocytes exposed to glutamate toxicity,
similar to neurons, suffer from cytotoxic edema, calcium
overload and mitochondrial depolarization, followed by free
radical damage (19, 20).

Currently, it is commonly accepted that damage to NVUs in
the penumbra occurs as a consequence of a combination of
numerous factors of a diverse nature – such as excitotoxicity,
peri-infarct depolarizations (PIDs), free radical stress, apoptosis,
inflammatory processes, cerebral blood vessel damage, and
microcirculatory disturbances during ischemia and reperfusion.
It seems, however, that glutamate excitotoxicity and peri-infarct
depolarizations are the most primary (21, 22). Within 6–8 hours,
the penumbra is recruited to the infarct core (23). According to
the excitotoxicity hypothesis, a high concentration of glutamate
diffuses from the infarct core to its edge and hyperactivates
postsynaptic N-methyl-D-aspartate receptors (NMDA-Rs) in
penumbra neurons (24, 25). In response to excessive, long-
term stimulation of NMDA-Rs, there is an excessive
intracellular influx of Na+ and Ca2+ ions. Highly elevated
intracellular concentrations of Ca2+ initiate a number of
Frontiers in Immunology | www.frontiersin.org 3
pathways, leading to the death of neurons (26). At the same
time, astrocytes internalize glutamate transporter-1 (GLT-1) –
transporters most importantly involved in the reuptake of
glutamate from the synaptic cleft, which leads to a high
concentration of glutamate in the interstitial fluid. The
downregulation of GLT-1 enhances and prolongs the
excitation of postsynaptic neurons (27, 28). Moreover, a sharp
increase in the activity of astrocytic cAMP/PKA (3′,5′-cyclic
adenosine monophosphate/protein kinase A) signaling leads to
the phosphorylation of aquaporin-4 (AQP4), which ultimately
increases the permeability of the cell membrane to water and
promotes cytotoxic edema of astrocytes and mechanical pressure
on microvessels (29). These astrocytic metabolic disorders (with
calcium overload) are the initiation of the astrogliosis. In turn,
PIDs are initiated mainly by a high concentration of K+ ions
diffusing in the extracellular space. These ions come from
depolarized/dead neurons of the infarct core and reach high
concentrations there as a result of astrocyte dysfunction. PIDs,
due to insufficient blood supply and the decoupling of the
relationship between the metabolism of neurons and the
reactivity of microcirculation in the penumbra, lead to
episodes of hypoxia and energetic depletion of neurons in this
zone and a loss of their ion homeostasis, which may also cause
anoxic depolarizations. The number of PIDs positively correlates
with the size of ischemic damage (30). With regard to astrocytic
upregulation AQP4, it was shown that this protein significantly
contributed to the propagation of depolarization waves by
increasing the extracellular concentration of K+ (31).
Additionally, the downregulation of GLT-1 protein is involved
in the propagation of depolarizing waves as well (32). PIDs also
damage NVUs as a result of the activation of metalloproteinases
(e.g., metalloproteinase-9, MMP-9) and the subsequent
weakening of the blood–brain barrier (BBB). The severity of
ischemic BBB damage and the degree of vasogenic edema are
positively correlated with the number of PID episodes (33).

When a reopening of an arterial vessel occurs, reperfusion
takes place, restoring blood flow through the ischemic area.
Depending on the duration of ischemia and/or the patient’s
health history, reperfusion may bring clinically beneficial as well
as unfavorable effects (34). However, reperfusion carries risks,
especially after a long episode of ischemia. Some experimental
studies have shown that focal ischemia with subsequent
reperfusion can cause more extensive brain damage than focal
ischemia without reperfusion (35, 36). During reperfusion,
disturbances in the regulation of blood flow in the penumbra
and oligemic areas are revealed, and reactive oxygen species are
produced by the NADPH oxidase (NOX) system, the xanthine
oxidase (XO) system, and the mitochondrial enzymatic systems
damaged by ischemia (37). The significant presence of the NOX
and XO systems has been confirmed in blood vessels (endothelial
cells). Hypoxic/reoxygenated endothelial cells show an increase
in NOX expression/activity, reactive oxygen species (ROS)
production, and adhesion molecule expression, causing
vascular injuries. All of these responses can be prevented by
treating cells with inhibitors of NOX-activating signaling
pathways (38–40). Likewise, for XO, various cytokines released
November 2021 | Volume 12 | Article 782569
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during reperfusion, including IL-1 (interleukin 1), IL-6
(interleukin 6), TNF-a (tumor necrosis factor alpha), and
IFN-g (interferon gamma), increase the expression/activity of
the enzyme in various cell types, and inhibitors of XO prevents
against vascular injuries (37, 41).

During the reperfusion phase, inflammatory processes
evidently begin; activated peripheral leukocytes migrate to brain
tissues, contributing to brain tissue damage, the aggravation of
BBB disruption and vasogenic edema, as well as hemorrhagic
transformation (HT); and blood cellular elements create
intravascular conglomerates that impair microcirculation (42, 43).

2.2 Inflammatory Processes in the
Course of Ischemic Stroke
2.2.1 General View
The dead and dying cells of the brain ischemic area induce
inflammatory processes by releasing into their surroundings
molecules that activate microglial cells, endothelial cells of the
brain blood vessels, astrocytes and, in subsequent stages,
infiltrating leukocytes. These molecules are collectively known
as DAMPs (danger-associated molecular patterns) and include,
e.g., ATP, UTP (uridine 5’-triphosphate), nicotinamide adenine
dinucleotide, peroxiredoxins, HMGB1 (high mobility group box
1) and HSP60 (heat shock protein 60) (44). Microglial cells,
leukocytes, astrocytes and neurons, and endothelial cells present
receptors in their cell membranes that can be stimulated by these
molecules. The activation of these receptors triggers a series of
processes leading to the expression of pro-inflammatory genes
and changes the resting phenotype of microglia into the
amoeboid M1. Microglia transform, proliferate, rearrange the
cytoskeleton, and acquire the ability to migrate and phagocytose
(45). ATP and UTP stimulate P2X7 (P2X purinoceptor 7)
purinergic receptors. HMGB1 stimulates CD36 (cluster of
differentiation 36), TLR4 (Toll-like receptor 4) and TLR2
(Toll-like receptor 2), RAGE (receptor for advanced glycation
end products), and receptors for HSP60. Peroxiredoxins
stimulate TLR2 and TLR4 receptors (46–49). As a result of the
activation of the aforementioned receptors, the transcription
factor NF-kB (nuclear factor kappa B) triggers the expression
of genes encoding pro-inflammatory molecules, including IL-1b
(interleukin-1b), IL-6, IL-8 (interleukin 8), IL-18 (interleukin
18), and TNF-a. Another activated transcription factor involved
in the expression of pro-inflammatory genes is AP-1 (activator
protein 1), an important activator of IL-1 and TNF-a expression
and the promotion of the expression of some adhesion molecules
(50–52). The path from TLR4 receptors to NF-kB and AP-1
activation is mainly through the MyD88 protein (myeloid
differentiation primary response protein) (53, 54). Apart from
cytokines, chemokines such as: MCP-1 (CCL2; monocyte
chemoattractant protein-1), MIP-1a (CCL3; macrophage
inflammatory-1 alpha), CXCL2 (MIP-2, macrophage
inflammatory protein 2), RANTES (CCL5; regulated on
activation, normal T-cell expressed and secreted), CINC-1
(cytokine-induced neutrophil chemoattractant 1), fractalkine
(CX3CL1; C-X3-C motif chemokine ligand 1), and CXCL10
(IP-10; C-X-C motif chemokine ligand 10) are expressed in the
Frontiers in Immunology | www.frontiersin.org 4
ischemic area (55–57). The activation of microglial cells occurs in
the first minutes of a stroke. Microglial cells can damage neurons,
oligodendrocytes, astrocytes and blood vessels in the early phase,
releasing, e.g., ROS. However, in later stages, they may play a
protective or repair role (M2 population) due to the release of
TGF-beta1 (transforming growth factor beta 1), GDNF (glial cell
derived neurotrophic factor) and the anti-inflammatory IL-10
(interleukin 10) (58–60).

Pro-inflammatory processes make the ischemic environment
conducive to the migration of immune cells from peripheral blood
over time. The most abundant leukocytes to first make the passage
from the blood to the brain parenchyma are neutrophils.
Experimental studies have shown that neutrophils contribute to
the enlargement of the area of damage after infiltration by
releasing ROS and metalloproteinases, and by activating own
iNOS (inducible nitric oxide synthase) in response to the
presence of specific cytokines (61–63). Secondly, circulating
monocytes attracted by specific chemokines, penetrate the brain
damage through the weakness of BBB. Peripheral monocytes,
considering their role in post-ischemic inflammatory processes,
can be divided into pro-inflammatory, with the phenotype Ly-
6Chigh/CCR2+, releasing IL-1b and TNF-a, and anti-inflammatory
Ly-6Clow/CCR2-, releasing IL-10 (64, 65). Lymphocytes, another
class of leukocytes playing a complex role in the pathogenesis of
ischemic damage, appear in the ischemic area 24 hours after the
start of reperfusion and reach a peak after seven days. There are
several types of lymphocytes involved, of which, for example,
CD8+ T cells play a negative role, and gd T cells play a negative role
in the late but not the early phase of stroke, substantially through
the production of pro-inflammatory IL-17 (interleukin 17) and
thus supporting the influx of neutrophils (66, 67).

CD8+ T lymphocytes and Natural Killer cells (NK) enhance the
infiltration of the brain parenchyma by recognizing the IL-15
(interleukin 15) signal produced by activated astrocytes. The
increase in IL-15 expression during ischemia significantly
contributes to inflammatory processes and enlarges the area of
post-ischemic brain damage (68). The activation of astrocytes is
important and one of the first processes during ischemic
inflammation. During this activation astrocytes undergo
morphological changes, principally hyperplasia and hypertrophy,
and one of the molecular markers of this process is increased
expression of GFAP (glial fibrillary acidic protein) (69). Moreover,
changes in AQP4 expression are observed, whose directivity
depends on the timing of the ischemic cascade and on the
ischemic region location. There is a strong increase in the
expression of this protein at 1 hour of ischemia in the infarct
core and at 1 and 48 hour of ischemia in the penumbra, which
correlates with cytotoxic edema (70). In the core area of the
striatum 24 hours after ischemia/reperfusion, the perivascular
AQP-4 level was shown to be significantly decreased and had no
recovery tendency. In the ischemic core of the cortex, however, the
presence of AQP-4 is obviously reduced at 24 h and gradually
recovers at 72 h after reperfusion (71). Overall, an increase in
AQP4 expression is correlated with the cytotoxic edema of
astrocytes, and a decrease in AQP4 expression is correlated with
vasogenic cerebral edema (72).
November 2021 | Volume 12 | Article 782569
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From the above data, a very complex landscape of the
inflammation involved in the pathophysiology of ischemic
stroke emerges. In general, a clinically useful marker of the
advancement of the ongoing inflammatory processes is CRP
(C-reactive protein), and in stroke patients the concentration of
this marker is significantly elevated. On the one hand, this
increase in CRP indicates the presence of a serious disease, and
on the other hand, it is an important prognostic marker of the
outcomes of stroke treatment, probably also because CRP can
directly cause changes in the endothelium – such as increasing of
the expression of adhesion molecules, mediating the invasion of
peripheral leukocytes into the brain tissues (73–75).

Inflammatory processes are a double-edged sword and play
both a positive and negative role in the development of ischemic
cerebral damage, depending on their phase, the type of actually
involved inflammatory cells, and the patient’s health history.
This presents a challenge for research into the mechanisms and
future therapy of ischemic stroke. However, there are valid
immunological goals for research on neuroprotection and
vasculoprotection. The penetration of leukocytes from blood
into the damaged brain involves several stages, mainly
determined by: 1) the appearance of pro-inflammatory
cytokines and chemokines in damaged tissues, and 2) the
expression of adhesion molecules in microvascular endothelial
cells and their presentation on the surface of the cell membranes.

The negative effects of leukocyte invasion into the ischemic
brain may cause secondary damage within the penumbra. Several
mechanisms of secondary brain injury have been proposed.
Three of them that appear to be the most important are a
secondary reduction in cerebral blood flow during reperfusion,
the permeabilization of blood vessels, and the production of
oxygen (ROS) and nitrogen (RNS – reactive nitrogen species)
free radicals causing general tissue damage. Secondary reduction
of blood flow in the vessels of the microcirculation (no-reflow
effect) may be, on the one hand, an effect of cytotoxic swelling of
astrocytes and the compression of their foot-ends on arterioles,
and, on the other hand, a result of leukocyte adhesion to the
inner surfaces of blood vessel walls, in particular the endothelial
cells of venules. The adherence of leukocytes and platelets to each
other causes the formation of a specific network inside the lumen
of the vessel, which is additionally strengthened by fibrin, which
immobilizes erythrocytes. In this way, conglomerates/aggregates
of blood cells, or platelet-leukocyte aggregates (PLAs), are
formed, and their adherence to the inner walls of the
microvessels narrows the vascular lumen, disrupting blood
microcirculation as a result. PLAs may also detach from the
site of their formation and enter the general bloodstream (76).
Therefore, it seems that when the therapy achieves only the
elimination of the occlusion of a larger, blood-supplying vessel,
which is the cause of ischemia, incomplete restoration of
penumbral microcirculation may significantly weaken
the treatment.

Activated inflammatory cells, mainly neutrophils and
macrophages, release large amounts of metalloproteinases, in
particular, gelatinases: MMP-9, MMP-2 (metalloproteinase-2),
which is also released by activated astrocytes, and collagenase:
Frontiers in Immunology | www.frontiersin.org 5
MMP-13 (metalloproteinase-13). These enzymes have
neurotoxic properties, and they degrade the integrity of the
BBB, among other ways, by digesting the basal membrane of
the vessels. This can lead to HT during reperfusion, contribute to
the enlargement of the developing vasogenic cerebral edema, and
further increase the influx of leukocytes into the brain. These
processes significantly reduce the clinical capabilities of using
tissue plasminogen activators and the mechanical recanalization
of the plugged artery (77, 78).

Free radicals, including ROS, are produced in high
concentrations by leukocytes to fight microorganisms.
Although the post-ischemic inflammatory process develops
under sterile conditions, stimulated leukocytes produce ROS,
similar to their native response to pathogens. One of the most
reactive free radicals is the superoxide anion radical (O−

2 ). The
major O−

2 producing enzyme system found in inflammatory cells
such as neutrophils, lymphocytes and macrophages is NOX (79,
80). As mentioned, NOX is also widely abundant in the
endothelial cells of blood vessels and may be stimulated by
cytokines. Superoxide anion radicals and NO (nitric oxide)
show strong mutual chemical affinity. During ischemia/
reperfusion, iNOS is stimulated because of the presence of
inflammatory IL-1b and TNF-a molecules in ischemic tissues
– which increases the expression of the iNOS isoform in
endothelium and infiltrating neutrophils, producing high
concentrations of NO (62, 81). Other types of NO synthases
are additionally stimulated during a stroke, e.g., endothelial
isoform (eNOS) is stimulated by an increase in the
intracellular concentration of Ca2+ ions, which is considered a
protective phenomenon as it may improve the blood flow in the
penumbra (82). NO and O−

2 react with each other to form
peroxynitrite (ONOO-), a very chemically reactive free radical
with a long half-life. Similar to other free radicals, peroxynitrite
damages, e.g., nucleic acids, proteins and lipids. It has been
observed that microvessels located in the ischemia/reperfusion
region have numerous zones containing products of reaction
with ONOO-, such as 3-nitrotyrosine, a marker of protein
nitrosative damage (this type of damage is also observed in
other brain tissues affected by ischemia/reperfusion). Moreover,
the formation of ONOO- reduces the bioavailability of NO,
which is the reason for the disturbance in the NO-dependent
mechanism of regulation of the tension of the vascular wall and is
a marker of endothelial dysfunction (83, 84).

2.2.2 Adhesion Molecules – Their Role in Ischemic
Neuroinflammation
In response to ischemia/reperfusion, activated endothelial cells
begin to express adhesion molecules and, within a few hours,
display them in large numbers on their cellular membrane; as a
result, they start to recruit large numbers of myeloid cells to their
surface, mainly neutrophils as well as, in a smaller number,
macrophages, which then pass into post-ischemic tissues during
reperfusion. The endothelium can be activated by IL-1b and
TNF-a molecules (85, 86). Leukocyte capture and rolling on the
endothelial surface, firm adhesion and transmigration through
the blood vessel wall (diapedesis) constitute three stages of the
November 2021 | Volume 12 | Article 782569
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process of entering the tissues, which is determined by the
expression of adhesion molecules on the membranes of
endothelial cells and white blood cells.

Among the adhesion molecules, three classes can be
distinguished: the selectins, which include, e.g., P-selectin, E-
selectin and L-selectin; the integrins, which include, e.g., CD18/
CD11a (LFA-1, lymphocyte function associated antigen 1),
CD18/CD11b (Mac-1, macrophage-1 antigen), CD18/CD11c
(integrin alpha X beta 2), a4ß1 (VLA-4, very late antigen-4)
and integrin a6ß4; and the immunoglobulin superfamily, which
include, e.g., ICAM-1 (intercellular adhesion molecule 1),
ICAM-2 (intercellular adhesion molecule 2), VCAM-1
(vascular cell adhesion molecule 1), PECAM-1 (platelet
endothelial cell adhesion molecule-1), and MAdCAM-1
(mucosal vascular addressin cell adhesion molecule 1) (87).

Selectins mediate non-tight interactions (mainly rolling)
between the endothelium and leukocytes. P-selectin is
expressed in endothelium and platelets. In endothelial cells, P-
selectin is deposited in Weibel-Palade bodies, and in platelets, it
forms cytoplasmic alpha granules. E-selectin is expressed only in
the endothelium, while L-selectin is expressed in the
endothelium and leukocytes. Leukocytes express the SLeX
oligosaccharide antigen (Lewis-X sialyl), which binds to P- and
E-selectin, conditioning the rolling stage (88). Experimental
work on models of focal cerebral ischemia has shown that
blocking P-selectin or E-selectin with monoclonal antibodies or
the knockout of the genes of these molecules reduced post-
ischemic brain damage and improved the motor skills of tested
animals. P-selectin blockade with specific monoclonal antibodies
also reduced the number of no-reflow phenomena during
reperfusion. In addition, the overexpression of P-selectin or
E-selectin magnified post-stroke injury (89, 90). However, in
the global cerebral ischemia model, the blockage of P-selectin
with specific monoclonal antibodies increased the mortality of
the animals used in the experiment (91). These inconsistencies
perhaps result from differences between experimental stroke
models. Leukocytes have a specific antigen for P-selectin –
PSGL-1 (P-selectin glycoprotein ligand-1) deployed to their
cell membranes. This interaction likely participates in the
formation of PLA aggregates and the secondary activation of
both types of cells (92). The use of sCRsLex, an inhibitor
of platelet-leukocyte adhesion interactions, reduced the volume
of post-stroke cerebral infarction in experimental animals (93).
Very promising observations of a reduction in post-stroke
damage have been made by administering E-selectin
intranasally to spontaneously hypertensive stroke-prone rats
prior to focal cerebral stroke with reperfusion. In addition, a
decrease in the incidence of spontaneous strokes has been
demonstrated in this strain of rats after the intranasal
administration of E-selectin (94, 95). Thus, there is expectation
for the development of a specific vaccine that could, for example,
improve prognosis in patients at risk. However, in some studies
of patients with ischemic stroke to date, inconsistent results in
measurements of serum E-selectin levels have been obtained. In
the study of patients with stroke symptoms, an increase in the
concentration of E-selectin was observed for 24 hours, while in
Frontiers in Immunology | www.frontiersin.org 6
other studies, no such phenomenon was observed (96).
Inconsistencies also appear in experimental research.
Experiments in rats with spontaneous hypertension have
shown that functional blocking of the E-selectin molecule
reduced post-stroke damage in a model of transient but not
permanent focal cerebral ischemia (97). The role of L-selectin in
stroke is unclear. L-selectin has been shown to mediate the
process of neutrophil rolling, but the blockade of L-selectin
with monoclonal antibodies did not result in neuroprotection
in a focal stroke model in rabbits (98, 99).

Another class of adhesion molecules are integrins, which are
heterodimeric cell membrane glycoproteins consisting of two
subunits: a and b, bounded by weak interactions. There are
several b subunit subtypes, e.g., b1, b2, b3, and b4, which
represent a specific subclass of molecules within which the a
subunit changes (100). Examples of integrins containing b1 and
b4 subunits are a1b1, expressed in microvascular endothelia and
astrocytes, and a6b4, found at the perivascular end-feet of
astrocytes. These integrins play a very important role in the
brain, taking part in the formation of neurovascular units. a1b1
integrins contact the endothelium with its extracellular matrix;
similarly, a6b4 integrins stabilize the contact of astrocyte
projections with the laminin-5 of the microvascular matrix. b2
integrins mainly mediate the adhesive interaction of leukocytes,
while b3 integrins (cytoadhesins), including platelet glycoprotein
aIIbb3 (glycoprotein IIb-IIIa), are involved in the formation and
stabilization of a blood clot. In response to brain ischemia, a1b1
and a6b4 integrins disappear very quickly in the ischemic
region, which is explained by a decrease in their biosynthesis.
Neurovascular units in this situation disintegrate (101, 102).
According to the main structural pattern, integrins found in
leukocytes consist mainly of those with the a and b2 subunits.
The b2 subunit (also referred to as CD18) is homogenous, but
there are a number of types of a subunits, e.g. 11a, 11b, and 11c.
Thus, we can distinguish diverse types of CD18 integrins on the
basis of their a-subunit. CD18/CD11a integrin is expressed in all
leukocytes, and CD18/CD11b is expressed in neutrophils,
monocytes and NK cells (100, 103, 104). These are the two
leukocyte integrins most studied for their role in cerebral
ischemia/reperfusion. Leukocyte activation increases the
affinity of integrins for specific ligands on the surface of
activated endothelia. Factors activating the expression of
leukocyte integrins are IL-8 and MCP-1. The binding of an
integrin to a ligand causes a conformational change in its
intracellular domain, which interacts with elements of the
cytoskeleton, giving the cell the opportunity for tight adhesion
and migration through the vessel wall (100). In experimental
studies on animals, it has been shown that the administration of
antibodies against CD11a and CD18 reduced the extent of post-
stroke damage and reduced the number of infiltrating
neutrophils (105). It has also been shown that the expression
of CD11a and CD18 in leukocytes was significantly increased in
patients with stroke and transient ischemic attack. On the other
hand, some studies have shown no increase in CD11b expression
in stroke patients, and that the use of integrin-targeting therapy
(anti-CD18/CD11b antibodies) in patients was not effective (103,
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106, 107). Similar results were also obtained in studies
concerning alpha-4 integrins (a4), which are crucial for the
transvascular egress of lymphocytes T. Initially, using antibody
blockade of a4, animal experiments showed promising
outcomes, including a significant reduction in the size of the
brain post-ischemic damage in normotensive and hypertensive
rats (108). However, subsequent experimental studies yielded
negative results (109). Finally, clinical trials (ACTION and
ACTION II) with the use of monoclonal antibodies targeting
a4 within the VLA-4 molecule (natalizumab) showed no
therapeutic effect in patients with ischemic stroke (110, 111).

Immunoglobulin superfamily (IgSF) molecules mediate tight
interactions between leukocytes and endothelia. Among them, the
role of ICAM-1 has been the relatively most researched in the
pathophysiology of brain ischemia/reperfusion. ICAM-1 is a
molecule constitutively expressed in the endothelium, but its
expression significantly increases during stroke in response to
ischemic conditions and the stimulation of the endothelium with
cytokines (IL-1, TNF-a, gamma interferon), reaching peak
concentrations 12–24 hours after reperfusion (112, 113). Clinical
tests showed an increase in ICAM-1 concentration in the blood
serum and cerebrospinal fluid of patients after stroke (114).
Experiments in mice in which the ICAM-1 gene has been
knocked out showed an improvement in cerebra l
microcirculation, a decrease in the volume of post-stroke necrotic
tissue, and a decrease in the number of infiltrating leukocytes after
focal cerebral stroke with reperfusion compared to mice in the
control group. The blockade of ICAM-1 with specific antibodies
also reduced infarction and leukocyte infiltration of brain tissues in
rats and rabbits following experimental stroke (112, 115, 116).
Specific antigens for ICAM-1, such as LFA-1 andMac-1, are found
on the surface of leukocytes (117). In brain ischemia/reperfusion
experiments onmice with a nullmutation in the LFA-1 andMac-1
genes, no effect on the adhesion process of leukocytes 4 hours after
reperfusionwas shown,while suchaneffect appearedafter 24hours,
which correlated with the time of ICAM-1 peak density at the cell
membranes of endothelial cells (92, 118). Despite promising results
from preclinical studies, clinical trials using antibodies against
ICAM-1 (Enlimomab) and Mac-1 (LeukArrest) were
unsuccessful (119, 120). The roles of other molecules in the
immunoglobulin superfamily in ischemic stroke are very poorly
understood, and experimental studies have produced inconsistent
results. In patients with stroke, the concentration of VCAM-1 in
blood and its expression in endothelial cells and astrocytes in the
ischemic region of the brain were significantly increased (121).
However, experiments in rats and mice have shown that blocking
VCAM-1 molecules with specific antibodies did not reduce the
magnitude of post-stroke damage (122). Likewise, the role of
ICAM-2 in brain ischemia/reperfusion is unknown. This
molecule is expressed in activated endothelia and in nonactivated
and activated platelets. It is speculated that ICAM-2 may be
involved in the adhesion of platelets with leukocytes and the
formation of PLAs during reperfusion (123). The last considered
IgSF molecule – PECAM-1 is expressed in endothelial cells and
most leukocytes. It can be reasonably postulated, that this molecule
may be involved in the processes of adhesion and the
Frontiers in Immunology | www.frontiersin.org 7
transmigration of leukocytes through the endothelium during a
ischemic stroke, as has been observed that the concentration of
PECAM-1 increased significantly in the blood serum and
cerebrospinal fluid of patients 24 hours after stroke insult (124).
However, to date, there are few data on the role of PECAM-1 in
experimental ischemia/reperfusion models. In one experimental
study, PECAM-1 was found to control the transendothelial
migration of neutrophils in a experimental mouse model of
ischemic stroke, and antibody blockade of PECAM-1 during
reperfusion ameliorated stroke severity in these mice (125).

2.3 Stroke Comorbidities – Their
Associated Inflammation and
Neurovascular Dysfunction
2.3.1 Arterial Hypertension
Hypertension, defined as chronically elevated arterial blood
pressure, leads to numerous changes in the blood vessels of the
whole organism. Adaptive remodeling of the vascular walls or their
hypertrophy or stiffness, a reduction of vessel caliber and changes in
functional physiology, such as increased vascular resistance and
circulatory perturbations, occur (126). The brain is an organ
particularly affected by circulatory changes caused by
hypertension. Several key mechanisms regulating cerebral blood
microflowandmaintainingbrainenergyhomeostasis aredisturbed,
and therefore, the functions of NVUs are affected (127).

The dysfunction of the endothelium in the course of
hypertension may be of various origins. One of the pro-
dysfunctional pathways may be the production of oxygen free
radicals by vascular systems: NOX (especially the NOX2
isoform), XO and the mitochondrial respiratory chain. It has
been shown that the activity of NOX2 and XO is increased in
hypertensive vessels (128). ROS react with NO to form
peroxynitrite, thereby reducing the bioavailability of NO and
causing an imbalance between this important vasodilator and the
vasoconstrictors; disturbing the regulation of vascular wall tone
and causing significant circulatory/energy deficits; and damaging
proteins, lipids and nucleic acids (129). Systemic inflammation
and neuroinflammation also play an important role in the
pathophysiology of hypertension. Ongoing processes of ROS
production and neuroinflammation likely damage various cells,
which therefore release DAMPs signals (130). These molecules
are well-known activators of TLR4. TLR4 receptors were the first
TLRs proposed in the etiology of vascular inflammatory damage
in hypertension (131). The activation of endothelial TLR4 leads,
through the MyD88 protein, to the activation of the transcription
factors AP-1 and NF-kB, which further enhance ongoing
inflammation (132).

Although, it is difficult to state whether inflammatory
processes are one of the primary or secondary causes of
hypertension, it can now be assumed that inflammatory
processes result from both primary and secondary causes of
hypertension. The inhibition of NF-kB counters the increase in
blood pressure that normally occurs in spontaneously
hypertensive rats (SHRs), and decline high blood pressure in a
neurogenic model of hypertension induced by deoxycorticosterone
acetate administration in rats fed a high-sodium diet (133, 134). It is
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known that hypertension-linked inflammation most often occurs at
a low-grade level, notwithstanding causing a number of unfavorable
changes in the brain.

The inflammation marker considered to be significantly
correlated with hypertension is CRP, and it has been confirmed
that prehypertensive and hypertensive patients have elevated levels
of CRP in blood serum (135). CRP molecule can stimulate
circulating monocytes to express IL-6, IL-13 (interleukin 13)
and TNF-a, and the expression of ICAM-1 and VCAM-1
adhesion molecules in the endothelium, including via activated
NF-kB and AP-1. It has been shown that CRP can directly
stimulate endothelial and smooth muscle cells to increase
activation of NF-kB and AP-1 (136, 137). Moreover, elevated
levels of chemokines, e.g., RANTES, were found in the serum of
hypertensive patients (138, 139). The expression of some other
adhesion molecules, e.g., P-selectin in platelets and endothelium
and its antigen, PSGL-1 in the endothelium, may also take place
through the action of the pro-hypertensive angiotensin II on the
AT1R receptor (angiotensin II type 1 receptor) (140). Also
immune cells residing in the brain – microglia/macrophages are
sensitive to ongoing hypertension. As a result of the action of
hypertension on microvessels in the brain, microglia are activated,
expressing IL-1b and other pro-inflammatory molecules, such as
IL-6 and TNF-a (141). Additionally, the specific class of
macrophages residing in the vicinity of arterioles and venules,
called perivascular macrophages (PVMs), plays a very important
role in NVU dysfunction. Many studies on this issue have shown
that the deletion of AT1R in PVMs partially attenuates BBB
dysfunction, which results from NOX2 activity elevation. In
contrast, the downregulation of AT1R in cerebral endothelial
cells completely prevented BBB disruption. The results indicate
that while endothelial AT1R, mainly in arterioles and venules,
initiates BBB disruption in hypertension, PVMs are required for
the full expression of the dysfunction (142). Another important
molecule involved in hypertension and BBB damage is the CD36
receptor. In stroke-prone SHRs, increased expression of CD36 in
microglia and associated BBB lesions were demonstrated,
indicating a pro-inflammatory role of CD36 in the brain under
hypertensive conditions (143). Importantly, CD36 receptor may
be involved in the activation of astrocytes following brain
ischemia, contributing significantly to the progression of
inflammatory phenomena after a stroke onset (144).

The pro-inflammatory environment, formed in the brain as a
result of the above processes (i.e., the accumulation of ROS,
DAMPs, pro-inflammatory cytokines and chemokines; BBB
weakening; and the activation of resident and systemic
immune cells), promotes the formation of subsequent changes
in brain tissues. Under the described conditions, the
transmigration of systemic leukocytes may be promoted by an
overestimated expression of PECAM-1, which in turn distinctly
intensifies the weakening of the BBB (145). In hypertensive
patients and in animal hypertension models, elevated
concentrations of MMP-9 were also found, which indicates
ongoing processes of leukocyte infiltration into the tissues
(146). Inflammatory processes are also often associated with
vasogenic edema. However, during low-grade neuroinflammation,
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the activation of astrocytes, astrocytic AQP4 overexpression and the
development of mild cytotoxic edema should be taken into
account – as has been confirmed that astrocytes in SHRs have
been shown to increased expression of GFAP (147). Moreover,
overexpresion of AQP4 in SHR brains was also detected (148).

All the above changes indicate a significant activation of
astrocytes, a tendency toward cytotoxic edema, possible
pressure on microvessels and disturbed communication with
neurons. In this situation, the functions of NVUs (i.e.,
neurovascular coupling, NVC) will undoubtedly be disturbed,
and there is numerous experimental evidence confirming this
assumption; for a detailed review, see (149). Several experimental
studies also indicate a significant increase in post-ischemic brain
damage in hypertensive animals (150–153).

2.3.2 Diabetes Mellitus
Diabetes mellitus is a chronic metabolic disease caused by
insufficient insulin production (type 1 diabetes mellitus, T1DM)
and/or a decrease in the tissue response to available insulin (type 2
diabetes mellitus, T2DM). This results in an elevation of blood
glucose concentration, and in T2DM, also of insulin. The role of
insulin resistance in the course of T2DM and the resulting
hyperglycemia and hyperinsulinemia have been studied
intensively in terms of causing dysfunction and damage to blood
vessels at the level of the endothelium. Diabetic vascular
complications affect many organs, including the brain-cerebral
circulatory system and also the cerebral parenchyma (154). The
brain is an organ that is significantly sensitive to inadequate blood
glucose levels and to circulatory disturbances (155). A remodeling,
stiffening of the vascular walls, and reduction of vessel caliber with
changes in cerebral perfusion occur during diabetes (156).

The etiology of these diabetic complications is complex, alike as
it is in the case of arterial hypertension andhyperlipidemia. Possible
pathways of endothelial damage may involve ROS production and
inflammatory processes. The production of ROS can take place in
blood vessels through the activity of NOX, XO and the
mitochondrial respiratory chain (157, 158). The decrease in NO
bioavailability due to the generation of ROS/peroxynitrite and
damage to biomolecules are important consequences leading to
endothelial dysfunction. Oxidative stress and low-grade
inflammation are recognized as important factors in the
progression of T2DM and its vascular complications. Affected
endothelial cells can release DAMP molecules, activating TLR4
and further potentiating inflammation (159). The specific DAMP
signal – the peculiar effect of hyperglycemia is the formation of
AGEs (advanced glycation end products), including proteins or
lipids that, when exposed to an elevated glucose concentration,
become covalently glycated. AGEs can stimulate RAGE, CD36 and
TLR4 receptors, the pathways of which significantly contribute to
the progression of inflammation in diabetes, particularly through
NF-kB activity (160, 161).Additionally, the activation ofMMP-9 in
the brain and osmotic disturbances resulting from abnormal blood
glucose levels weaken the BBB (162).

Inflammatory processes during diabetes are manifested by an
increase in the CRP concentration in blood serum, the production
of pro-inflammatory molecules, and the activation of immune
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system cells. CRP exerts a direct pro-inflammatory effect on
endothelial and smooth muscle cells, inducing NF-kB and the
expression of adhesion molecules (136, 137, 163). During
hyperglycemia, NF-kB is significantly active in both types of
tissues, resulting in the transcription of pro-inflammatory
cytokines and an increase in leukocyte adhesion (164, 165). The
expression of adhesion molecules in the endothelium in animal
models of diabetes and in diabetic patients was found to be
enhanced compared to nondiabetic control groups. Additionally,
pro-inflammatory proteins such as IL-6 and MCP-1 show higher
serum levels in diabetic patients (166, 167). It has been
demonstrated in excellent study targeting neuroinflammation
and BBB disorders (using T1DM and T2DM murine models)
that diabetic hyperglycemia enhances BBB permeability and
memory loss (Y maze and water maze tests) and elevated
expression of inflammatory molecules in the brain, a.o.: MMP-9,
VCAM-1, E-selectin, TNF-a, and CXCL2. Activation of microglia
has also been shown (168). Brain microglia play an important role
in diabetic cerebral injury. In murine models of diabetes mellitus,
the activation and proliferation of microglia were observed in the
brain, and activated microglia largely contributed to
neuroinflammation and oxidative stress (169).

As in the case ofhypertension, diabetes also causes the activation
of cerebral astrocytes, which is manifested by the increased
expression of GFAP by these cells. However, unlike in
hypertension and hyperlipidemia, astrocytic AQP4 levels are
lower in diabetic animals than in normoglycemic ones (170).
Both of these results indicate the possibility of communication
disorders between astrocytes, blood vessels and neurons, which,
combined with the abovementioned processes of ROS andDAMPs
production, endothelial damage, the release of inflammatory
molecules, microglial activation, indicates the creation of an
environment that strongly promotes NVUs dysfunction in the
brain. NVC abnormalities in the brain have been detected in both
an animal models of diabetes and in diabetic patients (171). The
initial diabetic NVUs dysfunctions, may be a significant cause of a
worsen stroke outcomes,whichhasbeen shown in several studies in
experimental models of cerebral ischemia (150, 172–174).

2.3.3 Hyperlipidemia
Hyperlipidemia is most commonly defined as elevated plasma
cholesterol levels, which may be associated with elevated
plasma triglycerides. Lipids are transported by the plasma in
the form of lipoproteins (e.g., LDL – low-density lipoprotein);
hence, hyperlipidemia is most commonly diagnosed in patients
based on elevated levels of plasma lipoproteins. Both
hypercholesterolemia and hypertriglyceridemia can cause the
dysfunction of the whole body vasculature, including cerebral
blood vessels (10, 175).

In experimental research, one of the frequently used animal
models of hyperlipidemia is the apolipoprotein E-deficient murine
model (Apoe-/-, apolipoprotein E is one of the protein components
of lipoproteins such as LDL and is involved in lipid transport to
tissues). In interesting studies on these mice fed a high-fat diet
(HFD), elevated plasma lipid levels disturbed the regulation of
cerebral blood flow. Cerebral microcirculation responses to
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hypercapnia and functional stimulation (NVC) were impaired,
while no atherosclerotic plaques were found in these animals
(176). In other experiments in the same mouse model, a decrease
in themicrocirculatory response to acetylcholinewas shown,which
was improved with the use of a free radical scavenger or NOX
inhibitor (177). In another hyperlipidemiamodel, after 10 weeks of
HFD feeding in mice, both cerebral macrovessels and microvessels
underwent remodeling, including an increased cerebrovascular
tortuosity index and decreased arterial inner diameters. This
remodeling could be mediated, at least in part, by MMP-9, as an
HFD induced similar levels of hyperlipidemia in MMP-9-deficient
mice, but there was no cerebrovascular remodeling (178).
Nevertheless, the exact mechanistic insights into how elevated
plasma lipids damage cerebral blood vessels and impair
neurovascular coupling are not fully clear.

Some studies have shown an increased level of CRP in the
blood plasma of patients with hypercholesterolemia (179). This
result may indicate that these individuals have low-grade
background inflammation, similar to hypertension and
diabetes. Likewise, oxidative processes can also occur. There is
evidence of oxidative modification of LDL mediated by
lipoxygenase (expressed by macrophages) and/or myeloperoxidase
(expressed by neutrophils and monocytes), which generate the
product of LDL oxidation – oxidized LDL molecule (oxLDL)
(180). It should be emphasized that some authors assign oxLDL
to the category of DAMP molecules, there is also evidence pointing
to a pro-HMGBl action of oxLDL in cerebral vessels, which indicate
on the generation of an alarm signal to excite the effectors of the
immune system (181). OxLDL induces the assembly of the TLR 4/6
heterodimer, involves CD36, and consequently induces the NF-kB
and AP-1 pathways and the secretion of pro-inflammatory
molecules, e.g., cytokines and chemokines (182).

Low-grade inflammation in the course of hyperlipidemia is a
likely cause of NVUs dysfunction in the brain. Excellent
experimental studies in wild-type C57/BL6J mice fed a high-
cholesterol diet (HCD) showed a tremendous increase in rolling
and adherent leukocytes and in platelets in the cerebral venules.
P-selectin immunoneutralization attenuated the interactions of
leukocytes and platelets with endothelia. The same study also
showed that in mice in which one of the subunits of NOX had
been knocked out and fed an HCD diet, the number of rolling
and adherent leukocytes in the cerebral venules decreased
significantly compared to that in wild-type mice fed an HCD
diet (14). Moreover, it has been shown that oxLDL can induce
the expression of ICAM-1 and VCAM-1 adhesion molecules in
the human endothelium (183). Studies with HCD-fed Apoe-/-

and wild-type control mice showed a significant increase in IL-6
expression in the hippocampus and cerebral cortex in both strains
(184). In studies carried out on rats fed hypercholesterolemic
diets, an increase in the concentration of IL-1 and TNF-a in blood
plasma was detected after the first week, and an increase in GFAP
expression in the brain, while after the third week, a decrease in
expression of claudin-5 in the brain was detected (185). In other
studies carried out on rats fed an HFD, an increase in GFAP
expression as well as AQP4 and microglial activation were
detected (186). However, in studies in wild-type mice fed an
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HCD diet, no significant changes in GFAP expression in the brain
were detected after three months. The same result was obtained in
transgenic mice overexpressing transforming growth factor-ß1;
however, in these mice, the HCD diet caused spatial learning
deficits and increased the number of thinned blood vessels in the
internal capsule. The effects of the HCD on spatial learning and
the studied vascular morphology changes in these mice were
reduced when simvastatin, a drug that lowers blood cholesterol,
was administered during the diet (187). In other studies, HCD-fed
C57/BL6J wild-type mice showed an increase in GFAP expression
in the hippocampus and the cerebral cortex and AQP4 in the
hippocampus. There was no microglial activation (188). All of
the above studies were conducted on males, interesting results of
the influence of an HFD on inflammatory markers in the brains
of wild-type C57BL/6J female mice (10–12 weeks old) were
provided by the study of Peterson TC., et al., which showed
that 6 weeks of the HFD did not induce changes in GFAP
expression or microglial activation in the cerebral cortex (189).
The above differences in the results of studies on the impact of an
HFD on GFAP expression and microglia status may result from
differences between the experimental procedures and animal
models used. In the case of the study by Peterson TC., et al.,
one of the results was that the HFD had no effect on GFAP
expression, possibly due to the protective effect of female sex
hormones counteracting low-grade neuroinflammation.
Estrogens have both neuroprotective and anti-inflammatory
effects, e.g., 17b-estradiol has been shown to have an inhibitory
effect on GFAP expression in mice after traumatic brain injury
(190). Nevertheless, extensive studies in rats and mice fed an HFD
and observations of obese patients found that rodents had
increased GFAP expression in the hypothalamus and obese
patients had features of gliosis in the hypothalamus (191).

In summary, all the above study results strongly suggest that
processes that damage NVUs in the brain take place in the course
of hyperlipidemia. This initial disturbance in NVUs may impart
an important contribution to the pathophysiology of ischemic
stroke, as hyperlipidemia has been shown to increase post-
ischemic brain damage in experimental animal models of
cerebral ischemia (174, 192–194).
3 SUMMARY: CEREBRAL ISCHEMIA/
REPERFUSION CASCADE AND
COMORBIDITIES – THE INTEGRATED
PERSPECTIVE

The insufficient blood supply to the brain initiates the ischemic
cascade. In a focal stroke, tissues located in the ischemic core are
the first to be destroyed, as neurons located in this area undergo
necrosis within a few minutes due to the disruption to energy
and ion homeostasis, and the neurovascular units in this zone
decay. At the same time, harmful factors such as glutamic acid
and potassium ions, released in excessive concentrations from
the infarct core, reach the surrounding penumbral area and cause
gradual recruitment of the penumbra to the infarct core through
Frontiers in Immunology | www.frontiersin.org 10
excitotoxicity processes and recurrent peri-infarct depolarizations,
which cause the production of ROS and RNS, increased expression
MMP-9 and MMP-2, disturbances in communication between
components of the neurovascular units, and further hemodynamic
disturbances during reperfusion. Dead/dying cells release DAMPs
signals, leading to the mobilization of the innate immune system
through the activation of pattern recognition receptors (TLR4, RAGE,
and CD36) in microglia, astrocytes, endothelia, and peripheral
leukocytes recruited to the infarction. Intracranial edema, resulting
from changes in AQP4 expression (upregulation and/or
downregulation) and BBB weakening, strongly contributes to the
progression of cerebral damage and inflammation.

Concomitant stroke risk factors (as dealt with here: arterial
hypertension, diabetes mellitus and hyperlipidemia) strongly
drive these inflammatory processes; because these factors are
often present for a long time before a stroke, causing low-grade
background inflammation throughout the body and, as we have
seen, in the brain, negatively affecting the functioning of
neurovascular units. Figure 1 summarizes proposed pathways
along which the risk factors for stroke, clinically coexisting
severally or in clusters, contribute to the course of the cerebral
ischemic/reperfusion cascade, enhancing its progression and
destructive effects on the neurovascular units in the ischemic
penumbra. The key bridging factors proposed here are
inflammatory processes. Low-grade inflammation in the brain
before a stroke insult occurs through the activation of mostly the
same inflammatory pathways that are activated by the ischemia/
reperfusion cascade, i.e., the production of ROS/RNS, DAMPs
and the activation of TLR4, RAGE and CD36 receptors, leading
to an increase in the expression of MMP-9 and GFAP and
changes in AQP4 expression, which are important markers of
ongoing NVU-damaging processes. Hence, presensitized
neurovascular units are more easily disintegrated and become
dysfunctional in the face of damaging factors in the ischemic/
reperfusion cascade in the penumbra. Initial sensitization of
NVUs as well as driving and strengthening the processes of the
ischemia/reperfusion cascade are very likely causes of the great
difficulties in the treatment of acute stroke patients. What is
equally important is that these factors are also likely the cause of
the failure of attempts to introduce neuroprotectants into clinical
practice, as most of the in vivo studies were conducted on healthy
and young animals that did not show initial sensitization of
NVUs to the ischemia/reperfusion cascade.

As a conclusion, targets for immunomodulatory stroke
treatment that can be proposed in the context of the issues
reviewed include the pattern recognition receptors that recognize
DAMPs. This is because, as was suggested, they may constitute the
main bridge between the common stroke risk factors and the
ischemic cascade in the brain, and its activation is one of the first
stages of neuroinflammatory processes in the course of a stroke.
Therefore, reduction of their activation may be crucial for the
therapy. Such management may also prove to be safer than
typical immunosuppression strictly targeted cellular response, due
to the fact that it may increase potential infections, e.g. in the lungs.
Arguably, an effective treatment of a ischemic stroke should consist
of three elements progressing in succession: neuroprotection and
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immunomodulation applied as soon as possible before
recanalization of the plugged vessel, effective recanalization, and
then neuroprotective and immunomodulating treatment during
reperfusion (195). Neuroprotection and immunomodulation are
both important considering the classic concept of the hemodynamic
penumbra and the concept of the “inflammatory penumbra” (196,
197). The inflammatory penumbra spreads beyond the
hemodynamic penumbra, increasing the probability of more brain
damage by acting through inflammation in the brain.

In the context of the above-mentioned conclusions, there is
also a need for preclinical research using animal models that are
more relevant to the general health background-condition of
patients. Animal models should emphasize the coexistence of
several risk factors concerning a single patient, as they often
occur jointly (e.g. hypertension-diabetes-obesity), even if mild,
and on the duration of their impact on the body. Furthermore,
theoretical considerations when designing a therapy should also
Frontiers in Immunology | www.frontiersin.org 11
take into account this type of background and should be directed
at several components of the whole neurovascular unit (195).
Presumably, the treatment effectiveness confirmed on such
experimental models gives a greater chance of its success in
the clinic.
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FIGURE 1 | The diagram showing the hypothetical links between common stroke comorbidities (arterial hypertension, diabetes mellitus and hyperlipidemia),
inflammatory processes and the course of cerebral ischemia/reperfusion cascade. The comorbid risk factors enhance the influence of the inflammatory processes on
the course of the ischemia/reperfusion cascade, contributing to the processes leading to the damage and dysfunction of the neurovascular unit in the penumbra.
Inflammatory processes, together with the primary outcomes of the ischemic cascade, form a vicious cycle – where they constitute an amplifying point, and the
connecting bridge point, between risk factors and the ischemic cascade. The detailed description is provided in the text. ROS, reactive oxygen species; RNS,
reactive nitrogen species; DAMPs, danger associated molecular patterns; TLR4, toll like receptor 4; RAGE, receptor for advanced glycation end products; CD36,
platelet glycoprotein 4; MyD88, myeloid differentiation primary response protein (innate immune signal transduction adaptor); NF-kB, nuclear factor kappa B; AP-1,
activator protein 1; MMP-9, matrix metalloproteinase-9; GFAP, glial fibrillary acidic protein; AQP4, aquaporin-4; BBB, blood-brain barrier; ↑, upregulation; ↓, downregulation.
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