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Predicting postoperative survival of lung cancer patients (LCPs) is an important problem of medical decision-making. However,
the imbalanced distribution of patient survival in the dataset increases the difficulty of prediction. Although the synthetic minority
oversampling technique (SMOTE) can be used to deal with imbalanced data, it cannot identify data noise. On the other hand,
many studies use a support vector machine (SVM) combined with resampling technology to deal with imbalanced data.
However, most studies require manual setting of SVM parameters, which makes it difficult to obtain the best performance. In
this paper, a hybrid improved SMOTE and adaptive SVM method is proposed for imbalance data to predict the postoperative
survival of LCPs. The proposed method is divided into two stages: in the first stage, the cross-validated committees filter
(CVCF) is used to remove noise samples to improve the performance of SMOTE. In the second stage, we propose an adaptive
SVM, which uses fuzzy self-tuning particle swarm optimization (FPSO) to optimize the parameters of SVM. Compared with
other advanced algorithms, our proposed method obtains the best performance with 95.11% accuracy, 95.10% G-mean, 95.02%
F1, and 95.10% area under the curve (AUC) for predicting postoperative survival of LCPs.

1. Introduction

Lung cancer (LC) is the deadliest cancer in the world. More
than 85% of lung cancer patients are diagnosed with non-
small-cell LC [1]. Surgical resection is the standard and most
effective treatment for LC stage I, stage II, and nonsmall cell
stage III A [1]. A major problem of the clinical decision on
LC operation is to select candidates for surgery based on
the patient’s short-term and long-term risks and benefits,
where survival time is one of the most important measures.
Accurately predicting a patient’s survival after surgery can
help doctors make better treatment decisions. At the same
time, it can help patients better understand their condi-
tions to have good psychological expectations and financial
preparation.

In recent years, more and more data-driven methods
have been used to predict the postoperative survival of LCPs.
In terms of statistical methods, Kaplan–Meier curves, multi-

variable logistic regression, and Cox regression are the three
most widely used statistical methods to predict survival or
complications for LCPs [2]. However, taking into account
the shortcomings of traditional statistical methods and the
incompleteness of medical data, data mining and machine
learning techniques are introduced in recent years. Mangat
and Vig [3] proposed an association rule algorithm based
on a dynamic particle swarm optimizer, and the classifica-
tion accuracy is 82.18%. Saber Iraji [4] compared the
accuracy of adaptive fuzzy neural networks, extreme learn-
ing machine, and neural networks for predicting the 1-year
postoperative survival of LCPs. The results show that
sensitivity (90.05%) and specificity (81.57%) of an extreme
learning machine are the highest, respectively. Tomczak
et al. [5] used the boosted support vector machine (SVM)
algorithm to predict the postoperative survival of LCPs.
This algorithm combines the advantages of ensemble learn-
ing and cost-sensitive SVM, and the G-mean can reach
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65.73%. As can be seen from the previous research, most of
them ignore the impact of imbalanced data distribution,
which may reduce the performance of classifiers.

Class imbalance refers to the phenomenon in which one
class of data in a dataset is much larger than the others [6].
Standard machine learning classifiers are effective for
balanced data, but they are not good for imbalanced data.
Specifically, with the progress of medical technology, the
number of long-term survivors after surgery for LCPs is
much larger than that of short-term deaths. This will lead
to higher prediction accuracy for survivors (majority class)
and poorer recognition for deceases (minority class). There-
fore, it is necessary to propose a method that has good
classification performance for both survivors and deceased
ones for predicting postoperative survival of LCPs.

During the past decades, the imbalanced data classifica-
tion problem has widely become a matter of concern and
has been intensively researched. The existing papers on
imbalanced data processing methods have two main
research directions: data level and algorithm level [7]. The
data-level processing methods create a balanced class
distribution by resampling the input data. Algorithm-level
processing methods mainly involve two aspects: ensemble
learning and cost-sensitive learning. Among these imbal-
anced data processing methods, the synthetic minority over-
sampling technique (SMOTE) is one of the most widely used
methods, as it is relatively simple and effective [8]. However,
it is likely to be unsatisfactory or even counterproductive if
SMOTE is used alone, which is because its blind oversam-
pling ignores the distribution of samples, such as the
existence of noise [9, 10]. To solve this problem, many
approaches are proposed to improve SMOTE. Ramentol
et al. [11] combined rough set theory with SMOTE and pro-
posed the SMOTE-RSB algorithm. SMOTE-RSB first uses
SMOTE for oversampling and then removes noise and out-
liers in the dataset based on rough set theory. SSMNFOS
[12] is a hybrid method based on stochastic sensitivity mea-
surement (SSM) noise filtering and oversampling, which can
improve the robustness of the oversampling method with
respect to noise samples. The CURE-SMOTE [13] uses
CURE (clustering using representatives) to cluster minority
samples for removing noise and outliers and then uses
SMOTE to insert artificial synthetic samples between repre-
sentative samples and central samples to balance the dataset.
However, most of these methods need to set the noise
threshold through prior parameters, which increases the risk
of misidentification of noise. In addition, some researchers
consider ensemble filtering methods, which have been
proven to be generally more efficient than single filters
[14]. In this paper, we propose to use the cross-validated
committees filter (CVCF) to detect and remove noise before
applying SMOTE and record this method as CVCF-SMOTE.
CVCF is an ensemble-based filter, which can reduce the risk
of error in the threshold setting of prior parameters [15].

In addition, SVM as one of the most advanced classifiers
has not been well used to predict postoperative survival of
LC. In the previous research, SVM has been widely used in
statistical classification and regression analysis due to its
excellent performance [16]. Considering the limitations of

SVM on imbalanced data, some studies combine resam-
pling technology and SVM to deal with imbalanced data.
D’Addabbo and Maglietta [17] proposed a method com-
bining parallel selective sampling and SVM (PSS-SVM)
to process imbalanced big data. Experimental results show
that the performance of PSS-SVM is better than that of
SVM and RUSBoost classifiers. Huang et al. [18] designed
an undersampling technique based on clustering and com-
bined it with optimized SVM to deal with imbalanced
data. The classification performance of SVM is improved
by the linear combination of SVM based on a mixed kernel.
Fan et al. [19] proposed a hybrid technology combining prin-
cipal component analysis (PCA), SMOTE, and SVM to diag-
nose chiller fault. Experimental results prove that this hybrid
technology can improve the overall performance of chiller
fault diagnosis.

However, these studies usually require a manual setting
of SVM parameters, which may lead to failure to obtain
the best experimental results. The standard SVM has a
limitation that its performance depends on the selection of
initial parameters. Some studies optimize the parameters of
SVM through evolutionary calculations which have achieved
good results. In these optimization algorithms, the particle
swarm optimization- (PSO-) optimized SVM has been widely
used with promising results due to its simplicity and fast con-
vergence [20]. With the development of PSO technology,
some improved PSO algorithms are used to optimize SVM.
Wei et al. [21] proposed a binary PSO-optimized SVM
method for feature selection, which overcomes the problem
of premature convergence and obtained high-quality features.
A switching delayed particle swarm optimization- (SDPSO-)
optimized SVM is proposed to diagnose Alzheimer’s disease
[22]. Experimental results show that the proposed method
outperforms several other variants of SVM and has obtained
excellent classification accuracy. However, these methods
often require parameter settings for PSO or improved PSO,
such as particle size and inertial weight. In general, getting
the best settings is complicated and time-consuming. If the
PSO parameters are set improperly, it will even reduce the per-
formance of the SVM.

In recent years, many new metaheuristics techniques
have been proposed, such as Monarch Butterfly Optimiza-
tion (MBO) [23], slime mould algorithm [24], Moth Search
(MS) [25], Hunger Games Search (HGS) [26], and Harris
Hawks Optimizer (HHO) [27]. However, most of these
methods require users to tune parameters to achieve satis-
factory performance. Fuzzy self-tuning PSO (FPSO) is a
kind of setting-free adaptive PSO proposed in recent years
[28]. The advantage of FPSO is that every particle is
adaptively adjusted during the optimization process without
any PSO expertise and parameter settings. Moreover, exper-
imental results show that FPSO is better than several previ-
ous competitors in convergence speed and finding optimal
solution aspects. Based on the above considerations, the
FPSO algorithm is exploited to optimize the parameters of
SVM, which leads to a novel FPSO-SVM classification
algorithm.

Based on the improved SMOTE and FPSO-SVM, we pro-
pose a two-stage hybrid method to improve the performance
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of the postoperative survival prediction of LCPs. In the first
stage, CVCF is used to remove noise samples to improve the
performance of SMOTE. Then, SMOTE is adopted to handle
the imbalanced nature of the dataset. In the second stage, we
apply FPSO-SVM to predict the postoperative survival of
LCPs. The experimental results show that the proposed hybrid
method outperforms other comparative state-of-the-art algo-
rithms. This hybrid method can effectively improve the
accuracy of survival prediction after LC surgery and provide
reliable medical decision-making support for doctors and
patients. Our contributions are summarized as follows:

(i) A novel hybrid method that combines improved
SMOTE with adaptive SVM is proposed for predict-
ing postoperative survival of LCPs

(ii) We apply CVCF to clean up data noise to improve
the performance of SMOTE

(iii) FPSO is used to optimize the parameters of SVM
and achieve an adaptive SVM

(iv) The proposed hybrid method not only performs
higher predictive accuracy than other compared
algorithms for predicting postoperative survival of
LCPs but also has better G-mean, F1, and area
under the curve (AUC)

The rest of this paper is as follows: Section 2 shows the
materials and methods. The experiment design, perfor-
mance metrics, and experimental results are described in
Section 3. A brief summary is described in Section 4.

2. Materials and Methods

2.1. Data Description. In this paper, the thoracic surgery
dataset in Zięba et al. [5], is selected to predict the postoper-
ative survival of LCPs. Data were collected from the Wroc-
law Thoracic Surgery Center. These patients underwent
lung resection for primary LC from 2007 to 2011. It contains
470 samples with an imbalance rate of 5.71. There are 400
patients who survived more than one year and 70 patients
who survived less than one year in this dataset. Table 1
shows the features of the dataset. These features were
selected from 36 preoperative predictors by the information
gain method and were used to predict the postoperative sur-
vival expectancy. Our task is to predict whether the survival
time in patients after surgery was greater than one year.

2.2. Data Preprocessing

2.2.1. CVCF for Noise Cleaning. Although SMOTE is one of
the most widely used methods for imbalanced data process-
ing, it has some drawbacks in dealing with data noise. A
major concern is that SMOTE may exacerbate the presence
of noise in the data, as shown in Figure 1. Given the good
performance of CVCF, we consider using it to improve
SMOTE.

The CVCF algorithm is a well-known representative of
an ensemble-based noise filter [29]. It induces multiple
single classifiers by means of cross-validation. Afterward,

samples mislabeled by all classifiers (or most classifiers) will
be marked as noise and removed from the dataset. Choosing
an appropriate base classifier is a key operation to ensure the
excellent performance of CVCF. In this paper, we choose the

Table 1: Feature details of the thoracic surgery dataset.

Feature ID Description
Type of
attribute

1
Size of the original tumor, from OC11

(smallest) to OC14 (largest)
Nominal

2
Diagnosis (specific combination of

ICD-10 codes for primary and secondary
as well multiple tumors if any)

Nominal

3 Forced vital capacity Numeric

4 Pain (presurgery) Binary

5 Age at surgery Numeric

6 Performance status Nominal

7 Weakness (presurgery) Binary

8 Dyspnoea (presurgery) Binary

9 Cough (presurgery) Binary

10 Haemoptysis (presurgery) Binary

11 Peripheral arterial diseases Binary

12 MI up to 6 months Binary

13 Asthma Binary

14
Volume that has been exhaled at the end
of the first second of forced expiration

Numeric

15 Smoking Binary

16 Type 2 diabetes mellitus Binary

17 1-year survival period (true value if died) Binary

Majority class
Minority class

Noise/Outlier
Syntheticnoise/Outlier 

Figure 1: Using SMOTE alone may indiscriminately aggravate
the noise.
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C4.5 algorithm as the base classifier of CVCF because it has
better robustness to noise data and suitability for ensemble
learning [30, 31].

C4.5 is an improved version of the ID3 algorithm [32].
It improves ID3 by handing numeric attributes and miss-
ing values and by introducing pruning. In addition, essen-
tially different from the ID3, the information gain ratio is
used to select split attributes in C4.5, which can be
denoted by

InfoGainRatio S, Að Þ = InfoGain S, Að Þ
SpiltInfo S, Að Þ , ð1Þ

where InfoGainRatioðS, AÞ represents the information gain
ratio of attribute A in dataset S. InfoGainðS, AÞ is the
information gain of dataset S after splitting through attri-
bute A and can be denoted by

InfoGain S, Að Þ = Info Sð Þ − Info S, Að Þ, ð2Þ

where InfoðSÞ is the entropy of dataset S. InfoðS, AÞ is the
conditional entropy about attribute A. SpiltInfoðS, AÞ denotes
the splitting information of attribute A and is expressed by

SpiltInfo S,Að Þ = −〠
m

i=1

Sij j
Sj j log2

Sij j
Sj j , ð3Þ

where jSj represents the number of samples of dataset S. jSij
indicates the number of samples of subset i after the original
dataset is divided into m subsets according to the attribute
value of A.

2.2.2. SMOTE to Balance Data. The core idea of SMOTE is
to insert artificial samples of similar values into the minority
class, thereby improving the imbalanced distribution of clas-
ses. More specifically, the sampling ratio is set firstly, and
then, the k nearest neighbors of each minority sample are
found. Finally, according to equation (4), one of the neigh-
bors is randomly selected to generate a synthetic sample that
is put back into the dataset until the sampling number
reaches the set ratio. The synthesized new sample is calcu-
lated as follows:

Xnew =X + ∂ Xi‐Xð Þ, ∂ ∈ 0, 1ð Þ, ð4Þ

where Xnew represents a new synthetic sample, X is the fea-
ture vector for each sample in the minority class, and Xi is
the i-th nearest neighbor of sample X. ∂ is a random number
between 0 and 1.

2.3. The Proposed FPSO-Optimized SVM (FPSO-SVM)

2.3.1. SVM. SVM is a supervised learning classifier based
on statistical theory and structural risk optimization [33].
SVM is not prone to overfitting and can handle high-
dimensional data well. The principle of SVM is to map
the original data to a high-dimensional space to discover
a hyperplane that maximizes the margin determined by
the support vectors. Suppose there is a dataset D = fðx1,

y1Þ, ðx2, y2Þ,⋯, ðxn, ynÞg. The optimal hyperplane of data-
set D can be expressed as

aTx + b = 0, ð5Þ

where aT is the weight vector and b represents the bias.
For nonlinear problems, the above-mentioned optimal

hyperplane can be transformed into

min
a,b

s:t:

( 1
2
aTa‐C〠

n

i=1
ζi,

yi aT ⋅ xi + b
� �

≥ 1 − ζi, ζi ≥ 0 i = 1, 2,⋯, n,
ð6Þ

where C is the penalty factor and ζi is the slack variable. The
above constrained objective function can satisfy the KKT
condition by introducing the Lagrange formulation. The
original objective function is transformed into

min
1
2
〠
n

i=1
〠
n

j=1
yiyjβiβj xi ⋅ x j

� �
− 〠

n

i=1
βi,

s:t: 〠
n

i=1
βiyi = 0, 0 ≤ βi ≤ C, i, j = 1, 2,⋯, n,

8>>>><
>>>>:

ð7Þ

where β is a Lagrangian multiplier. According to the previ-
ous experimental experience, a larger value of C means a
larger separation interval and a greater generalization risk.
Conversely, when the value of C is too small, it is easy to
have an underfitting problem.

Finally, the decision function is shown in

f xð Þ = sgn 〠
n

i=1
β∗
i yiK < xi ⋅ x j>+b∗

 !
, ð8Þ

Table 3: Defuzzification of w, csoc, ccog, η, and λ.

Output
Level

Low Medium High

w 0.3 0.5 1.0

csoc 1.0 2.0 3.0

ccog 0.1 1.5 3.0

λ 0.0 0.001 0.01

η 0.1 0.15 0.2

Table 2: Confusion matrix.

Actual positive Actual negative

Predicted positive TP FP

Predicted negative FN TN
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where β∗
i and b∗ are the optimal Lagrangian multiplier and

optimal value of b, respectively, and sgn ð⋅Þ represents a
symbolic function. K < xi ⋅ x j > is a kernel function. Usually,
the radial basis function (RBF) kernel function is selected for
SVM, which can be expressed as

K < xi ⋅ x j > = exp −γ xi − x j
�� ��2� �

, ð9Þ

where γ is the kernel parameter. The classification perfor-
mance of SVM depends heavily on the setting of penalty
factor C and kernel parameter γ. Therefore, parameter set-
ting is a key step in applying SVM.

2.3.2. FPSO-SVM Model. In order to make SVM have better
classification performance, we use FPSO to optimize the
penalty factor C and kernel parameter γ of SVM, called
FPSO-SVM. The classification accuracy is taken as the
fitness function of FPSO, which is defined as

Fitness = Accuracy =
TP + TN

TP + TN + FP + FN
, ð10Þ

where TP, TN, FP, and FN represent four different classifica-
tion results which are shown in Table 2.

FPSO is a fully adaptive version of PSO, which calculates
the inertia weight, learning factor, and velocity indepen-
dently for each particle based on fuzzy logic. The outstand-
ing advantages of FPSO are that it does not require any
prior knowledge about PSO and its optimization perfor-
mance and convergence speed are better than those of PSO.

In FPSO, first, the number of particle swarms is set to
N = 10 + 2

ffiffiffiffiffi
M

p
based on the heuristic [34, 35]. Here, M is

the dimension of the optimization problem. In this paper,
since there are two SVM parameters that need to be opti-
mized, M = 2 and N = 12 (round down). After initializing
the particles, we need to update them according to the posi-
tion and velocity of the particles. Let xki and vki be the veloc-
ity and position of the i-th particle at the k-th iteration,
respectively. At the ðk + 1Þ-th iteration, the velocity vk+1i

and position xk+1i of the i-th particle can be defined as

vk+1i =wk
i ⋅ vki + cksoci ⋅ r1 ⋅ xki − gk

� �
+ ckcogi ⋅ r2 ⋅ xki ‐bki

� �
, i = 1, 2⋯ , 12,

ð11Þ

Partition the dataset
into n subsets

n-fold cross-validated

C4.5 C4.5 C4.5

For each sample in the dataset, compare the real
class with the labels of the classifiers.

All labels ≠ Real class?
Remove

the sample

Retain the sample

N

SMOTE

Original dataset

Y

New dataset

If k = maximum
iteration?

......

......

n21 n21n21

n21 ...

... ... ...

Set the search range for the penalty
factor C and kernel parameter 𝛾 of SVM 

Evaluate the fitness of each particle
based on Eq.(10)

Initialize particle swarm

Calculate the linguistic values of inertia,
Social, Cognitive, 𝜂 and 𝜆 according to Eq.

(13)–Eq.(22).

Convert the language values of inertia,
Social, Cognitive, 𝜂 and 𝜆 into numerical

values based on Eq.(23) and table 2

Update the velocity and position of each
particle based on Eq.(11) and Eq.(12)

k = k+1

SVM with optimized parameters

Testing set Training set Y

N

Figure 2: Flowchart of the proposed hybrid method for predicting postoperative survival of LCPs.
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xk+1i = xki + vk+1i , ð12Þ

where wk
i is the inertia weight of particle i at the k-th itera-

tion and cksoci and ckcogi are social and cognitive factors of
particle i at the k-th iteration, respectively. In FPSO, unlike
conventional PSO, the values of wk

i , c
k
soci , and ckcogi are not

fixed but are calculated separately for different particles at
each iteration. r1 and r2 are two random vectors, respec-
tively. bki and gk are the position of the i-th particle and
the best global position in the swarm at the k-th iteration.

The maximum velocity (vmaxm) and minimum velocity
(vminm) of all particles in the m-th dimension are defined as

vmaxm = η ⋅ bmaxm − bminm

� �
, η ∈ 0, 1ð �: ð13Þ

vminm = λ ⋅ bmaxm − bminm

� �
, λ ∈ 0, 1ð �, ð14Þ

where bmaxm and bminm represent upper and lower bounds of
the m-th dimension for the optimization problem, respec-
tively. η and λ (η > λ) are two coefficients determined by
linguistic variables, in order to clamp vmaxm and vminm of
each particle.

In order to get the w, csoc, ccog, η, and λ values of each
particle in each iteration, two concepts are introduced: the
distance between each particle and the global optimal parti-
cle and the fitness increment of each particle relative to the
previous iteration.

The distance between any two particles in the k-th itera-
tion is expressed as

δ xki , x
k
j

� �
= xki − xkj
��� ���

2

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
2

m=1
xki,m − xkj,m
� �2s

, i, j = 1, 2,⋯, 12:
ð15Þ

Table 5: G-mean comparison for different algorithms with different preprocessing methods.

Algorithms NONE SMOTE SL-SMOTE SMOTE-TL B-SMOTE CVCF-SMOTE

FPSO-SVM 0 0.6942 0.6148 0.7203 0.8625 0.9510

PSO-SVM 0 0.5832 0.5628 0.6150 0.6567 0.8501

SVM 0 0 0 0.1537 0.1015 0.1659

RF 0 0.7092 0.6017 0.7385 0.8404 0.8868

GBDT 0.2938 0.6901 0.5835 0.7024 0.8154 0.9274

KNN 0 0.6572 0.5819 0.6874 0.7919 0.9000

AdaBoost 0.2059 0.6550 0.5552 0.6464 0.7597 0.9096

Table 6: F1 comparison for different algorithms with different preprocessing methods.

Algorithms NONE SMOTE SL-SMOTE SMOTE-TL B-SMOTE CVCF-SMOTE

FPSO-SVM 0 0.6612 0.5549 0.7059 0.8482 0.9502

PSO-SVM 0 0.5089 0.4995 0.5600 0.6022 0.8336

SVM 0 0 0 0.2823 0.0605 0.0536

RF 0 0.6834 0.5713 0.7458 0.8241 0.8889

GBDT 0.1333 0.6524 0.5470 0.7025 0.7950 0.9292

KNN 0 0.6545 0.5473 0.7094 0.7760 0.9035

AdaBoost 0.0645 0.6186 0.5101 0.6425 0.7323 0.9099

Table 4: Accuracy comparison for different algorithms with different preprocessing methods.

Algorithms NONE SMOTE SL-SMOTE SMOTE-TL B-SMOTE CVCF-SMOTE

FPSO-SVM 0.8440 0.7149 0.6385 0.7378 0.8679 0.9511

PSO-SVM 0.8440 0.6570 0.6217 0.6776 0.7267 0.8643

SVM 0.8440 0.5294 0.5561 0.4781 0.5493 0.5204

RF 0.8369 0.7149 0.6023 0.7388 0.8430 0.8869

GBDT 0.8156 0.7059 0.5864 0.7025 0.8213 0.9276

KNN 0.8227 0.6561 0.5833 0.6910 0.7905 0.9005

AdaBoost 0.7943 0.6652 0.5615 0.6458 0.7674 0.9095
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Figure 3: Stacked histograms of accuracy, G-mean, F1, and AUC for different algorithms under different preprocessing methods.

Table 7: AUC comparison for different algorithms with different preprocessing methods.

Algorithms NONE SMOTE SL-SMOTE SMOTE-TL B-SMOTE CVCF-SMOTE

FPSO-SVM 0.5000 0.7265 0.6268 0.7400 0.8639 0.9510

PSO-SVM 0.5000 0.6426 0.6069 0.6754 0.7094 0.8631

SVM 0.5000 0.5000 0.5000 0.4993 0.5059 0.5138

RF 0.4958 0.7115 0.6038 0.7397 0.8411 0.8873

GBDT 0.5202 0.6993 0.5857 0.7052 0.8171 0.9281

KNN 0.4874 0.6581 0.5842 0.6919 0.7927 0.9010

AdaBoost 0.4891 0.6603 0.5582 0.6483 0.7621 0.9097
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The function ϕ represents the normalized fitness incre-
ment of particle i for the previous iteration, which is calcu-
lated as

ϕ xk+1i , xki
� �

=
δ xk+1i , xki
� �
δmax

⋅
min f xk+1i

� �
, f wor

� 	
−min f xki

� �
, f wor

� 	
f worj j ,

ð16Þ

where δmax is the diagonal length of the rectangle formed by
the search space. f wor is the worst fitness value.

The linguistic variable of function δ is defined as Same,
Near, and Far, which is used to measure the distance from
a particle to the global best particle. The trapezoid member-
ship function of Same is defined as

δ =

1, if 0 ≤ δ < δ1,
δ2 − δ

δ2 − δ1
, if δ1 ≤ δ < δ2,

0, if δ2 ≤ δ ≤ δmax:

8>>><
>>>:

ð17Þ

The triangle membership function of Near is defined as

δ =

0, if 0 ≤ δ < δ1,
δ − δ1
δ2 − δ1

, if δ1 ≤ δ < δ2,

δ3 − δ

δ3 − δ2
, if δ2 ≤ δ < δ3,

0, if δ3 ≤ δ ≤ δmax:

8>>>>>>>>><
>>>>>>>>>:

ð18Þ

The trapezoid membership function of Far is defined as

δ =

0, if 0 ≤ δ < δ2,
δ − δ2
δ3 − δ2

, if δ2 ≤ δ < δ3,

1, if δ3 ≤ δ ≤ δmax,

8>>><
>>>:

ð19Þ

where δ1 = 0:2 ⋅ δmax, δ2 = 0:4 ⋅ δmax, and δ3 = 0:6 ⋅ δmax.
The linguistic variable of function ϕ is defined as Better,

Same, andWorse, which is used to measure the improvement

of a particle’s fitness value for the previous iteration. The trap-
ezoid membership function of Better can be obtained by

ϕ =

1, if ϕ = −1,

−ϕ, if − 1 < ϕ < 0,

0, if 0 ≤ ϕ ≤ 1:

8>><
>>: ð20Þ

The triangle membership function of Same is expressed as
follows:

ϕ = 1 − ϕj j: ð21Þ

The triangle membership function of Worse is as follows:

ϕ =

0, if − 1 ≤ ϕ < 0,

ϕ, if 0 ≤ ϕ < 1,

1, if ϕ = 1:

8>><
>>: ð22Þ

According to the preset fuzzy rules, w, csoc, ccog, η, and λ

have three levels including Low, Medium, and High [28].
Table 3 shows the defuzzification values of w, csoc, ccog, η,
and λ, which are calculated by the Sugeno inference method
[36]. It is defined as follows:

output =
∑R

r=1ρrzr
∑R

r=1ρr
, r = 1, 2⋯ R, ð23Þ

where R represents the number of rules. ρr and zr are the
membership degree of the input variable and output value of
the r-th rule, respectively.

Table 8: Paired t-test results of CVCF-SMOTE+FPSO-SVM and the best performance under different preprocessing methods in terms of
accuracy, F1, G-mean, and AUC on the thoracic surgery dataset. For CVCF-SMOTE, the p value is the statistic of the best result and the
second best result.

Methods Accuracy F1 G-mean AUC

NONE 11.034 (0.000) 25.502 (0.000) 21.102 (0.000) 27.01 (0.000)

SMOTE 14.348 (0.000) 16.01 (0.000) 10.261 (0.000) 12.469 (0.000)

SL-SMOTE 29.947 (0.000) 25.764 (0.000) 30.349 (0.000) 31.255 (0.000)

SMOTE-TL 29.815 (0.000) 30.281 (0.000) 22.248 (0.000) 26.895 (0.000)

B-SMOTE 6.541 (0.000) 5.176 (0.001) 5.297 (0.000) 5.997 (0.000)

CVCF-SMOTE 5.237 (0.001) 4.994 (0.001) 4.67 (0.001) 4.719 (0.001)

Table 9: Comparative results with previous studies based on
accuracy.

Authors Methods Accuracy

Mangat and Vig [3] DA-AC 82.18%

Elyan and Gaber [46] RFGA 84.67%

Li et al. [47] STDPNF 85.32%

Muthukumar and
Krishnan [48]

IFSSs 88%

Saber Iraji [4] ELM (wave kernel) 88.79%

Our work CVCF-SMOTE+FPSO-SVM 95.11%
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Figure 4: ROC curve comparison of different algorithms under different preprocessing methods.
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Then, update the position of each particle based on the
obtained values of w, csoc, ccog, η, and λ. Finally, recalculate
the fitness of each particle, that is, accuracy of the SVM cor-
responding to each particle. Repeat the above process until
the maximum number of iterations is reached and output
SVM with the optimal parameters.

The time complexity of FPOS-SVM consists of two
parts: FPSO and SVM. In FPSO, the velocity and position
of each particle are calculated in each iteration. Therefore,
the computational complexity of FPSO is determined by
the number of iterations, the particle swarm size, and
the dimensionality of each particle. Thus, FPSO requires
OðTNmÞ time complexity, where T is the number of iter-
ations of FPSO, N is the particle swarm size of FPSO, and m
is the dimensionality of the optimization problem. For SVM,
the optimal hyperplane is obtained by computing the dis-
tance between the support vector and the decision boundary.
Then, the time complexity required for SVM is OðdnsvÞ,
where d is the input vector dimension and nsv is the number
of support vectors. In FPSO-SVM, the number of SVM com-
putations depends on the particle swarm size and the number
of iterations of FPSO. Therefore, the time complexity of
FPSO-SVM is OðTNm + TNdnsvÞ.

2.4. Specific Steps of the Proposed Hybrid Method for
Predicting Postoperative Survival of LCPs. Based on
improved SMOTE and FPSO-SVM, we propose a two-
stage hybrid method to improve the performance of the
postoperative survival prediction of LCPs. In the first stage,
CVCF is used to remove noise samples to improve the per-
formance of SMOTE. Then, apply SMOTE to balance data.
In the second stage, FPSO-SVM is adopted to predict post-
operative survival of LCPs. Figure 2 shows the flowchart of
the proposed hybrid method. The specific steps of the hybrid
method are presented as follows:

(1) Set CVCF to n-fold cross-validation. Then, the
original dataset is divided into n subsets

(2) Take a different subset from the n subsets each time
as the testing set and the remaining n − 1 subsets as
the training set. Therefore, a total of n different
C4.5 classifiers are trained. Then, all the trained
C4.5 classifiers will vote for each sample in the
dataset. In this way, each sample has a real class
label and n labels marked by C4.5

(3) For each sample, determine whether all (or most)
labels marked with C4.5 are different from the real
one. If all (or most) of them are different from the
real class label, the sample will be treated as noise
and removed from the dataset. On the contrary,
the sample is retained. Finally, all the retained sam-
ples make up a cleaned dataset

(4) Oversample from the cleaned dataset with SMOTE
until the class distribution of the dataset is balanced

(5) After data preprocessing with CVCF-SMOTE, the
new dataset is divided into a training set and a test-
ing set

(6) Set the search range for the penalty factor C and
kernel parameter γ. Initialize particle swarm

(7) Evaluate the fitness of each particle based on equa-
tion (10). Calculate the linguistic values of Inertia,
Social, Cognitive, η, and λ according to equations
(13)-(22)

(8) Convert the language values of Inertia, Social,
Cognitive, η, and λ into numerical values based
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Figure 5: Fitness curves of FPSO-SVM (a) and PSO-SVM (b) with CVCF-SMOTE.

Table 10: Details of Haberman and appendicitis datasets.

Datasets
Case

number
Attribute
number

Class
distribution

Haberman 306 3 225/81

Appendicitis 106 7 85/21
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on equation (23) and Table 3. Update the velocity
and position of each particle based on equations
(11) and (12)

(9) Determine whether the maximum number of itera-
tions has been reached. If it is reached, the opti-
mized SVM is output. Otherwise, return to steps
(7) and (8)

(10) Apply the optimized SVM on the testing set

3. Experiments and Results

3.1. Experiment Design. To evaluate our proposed hybrid
method, we compare it with several state-of-the-art algo-
rithms including PSO-optimized SVM (PSO-SVM), SVM,
k-nearest neighbor (KNN) [37], random forest (RF) [38],
gradient boosting decision tree (GBDT) [39], and AdaBoost
[40]. In addition, we consider six preprocessing approaches,
including CVCF-SMOTE, Borderline-SMOTE (B-SMOTE)
[41], Safe-Level-SMOTE (SL-SMOTE) [42], SMOTE-TL
[43], SMOTE, and no preprocessing (marked as NONE),
to explore the performance of our proposed CVCF-
SMOTE method. B-SMOTE, SL-SMOTE, and SMOTE-TL
are three representative SMOTE extensions, which can han-
dle imbalanced data with noise. In addition, in order to bet-
ter evaluate the effectiveness of the proposed hybrid method,
we tested its performance on two other imbalanced data.
The value range of penalty factor C and kernel parameter
γ is set to ½0, 30�, and the maximum number of iterations
is set to 30. All of these algorithms are programmed in the
Python programming language, except for CVCF-SMOTE
which is run in the KEEL software [44]. To eliminate ran-

domness, experiments are repeated 10 times and the average
performance is shown in this study.

3.2. Performance Metrics. In this section, we introduce the
selected widely used imbalanced data classification perfor-
mance metrics, including accuracy (defined by equation
(10)), G-mean, F1, and AUC. They can be calculated accord-
ing to the confusion matrix in Table 2.

G‐mean =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP
TP + FN

×
TN

TN + FP

r
, ð24Þ

F1 =
2 ∗ precision ∗ recall
precision + recall

, ð25Þ

where precision = TP/ðTP + FPÞ and recall = TP/ðTP + FNÞ.
Precision can be regarded as a measure of the exactness of
a classifier, while recall can be regarded as a measure of the
completeness of a classifier.

Table 11: Accuracy comparison for different algorithms with different preprocessing methods on the Haberman dataset.

Algorithms NONE SMOTE SL-SMOTE SMOTE-TL B-SMOTE CVCF-SMOTE

FPSO-SVM 0.7402 0.6890 0.6386 0.7396 0.7795 0.8205

PSO-SVM 0.7098 0.6435 0.6504 0.6538 0.6831 0.7205

SVM 0.7196 0.6291 0.6409 0.6423 0.6772 0.7165

RF 0.6989 0.6795 0.6142 0.7315 0.7559 0.7772

GBDT 0.6837 0.6606 0.6299 0.7252 0.7465 0.7764

KNN 0.7174 0.6630 0.6417 0.7000 0.7449 0.7992

AdaBoost 0.7163 0.6402 0.6331 0.6117 0.6819 0.7559

Table 12: AUC comparison for different algorithms with different preprocessing methods on the Haberman dataset.

Algorithms NONE SMOTE SL-SMOTE SMOTE-TL B-SMOTE CVCF-SMOTE

FPSO-SVM 0.5274 0.6813 0.6288 0.7310 0.7748 0.8206

PSO-SVM 0.5012 0.6131 0.6325 0.6669 0.6518 0.7121

SVM 0.5077 0.6096 0.6246 0.6598 0.6566 0.7035

RF 0.5731 0.6815 0.6132 0.7283 0.7588 0.7784

GBDT 0.5492 0.6607 0.6274 0.7226 0.7475 0.7765

KNN 0.5737 0.6649 0.6418 0.6997 0.7433 0.8009

AdaBoost 0.5809 0.6359 0.6293 0.6118 0.6779 0.7549

Table 13: Paired t-test results of CVCF-SMOTE+FPSO-SVM and
the best performance under different preprocessing methods in
terms of accuracy and AUC on the Haberman dataset.

Methods Accuracy AUC

NONE 6.603 (0.000) 18.744 (0.000)

SMOTE 6.555 (0.000) 10.315 (0.000)

SL-SMOTE 15.959 (0.000) 15.806 (0.000)

SMOTE-TL 4.506 (0.001) 3.539 (0.006)

B-SMOTE 2.601 (0.029) 2.83 (0.02)

CVCF-SMOTE 4.669 (0.001) 4.392 (0.002)
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AUC is defined as the area under the ROC curve and the
coordinate axis. AUC is very suitable for the evaluation of
imbalanced data classifiers because it is not sensitive to
imbalanced distribution and error classification costs, and
it can achieve the balance between true positive and false
positive [45].

3.3. Result and Discussion. Tables 4–7 demonstrate the accu-
racy, G-mean, F1, and AUC values of different algorithms
under different preprocessing methods for predicting post-
operative survival of LCPs, respectively. The best experimen-
tal results of different preprocessing methods are marked in
bold. We can see from Tables 4–7 that the proposed CVCF-
SMOTE+FPSO-SVM model obtains the best performance
among all methods with 95.11% accuracy, 95.10% G-mean,
95.02% F1, and 95.10% AUC. This shows that our proposed
hybrid method can balance the classification accuracy of the
minority class and the majority class while ensuring overall
accuracy. That is, the proposed CVCF-SMOTE+FPSO-
SVM method has a higher recognition rate for patients
who survived after LC surgery for both longer than 1 year
and less than 1 year.

In addition, it is easy to see from Tables 5–7 that the G
-mean, F1, and AUC performances of different classifiers
for the original dataset without preprocessing are extremely
poor. However, it can be found from Table 4 that the classi-
fication accuracy of all the classifiers for the original dataset
is higher than the accuracy after SMOTE preprocessing. This
indicates susceptibility to imbalanced data; although the
classifiers perform well in the majority class, it performs very
poorly in the minority class. That is to say, these classifiers
fail to balance the classification accuracy of LCPs whose

survival time after surgery is longer than 1 year and less than
1 year.

For the performance after preprocessing with SMOTE,
we found that the G-mean, F1, and AUC values of most clas-
sifiers (except SVM) are higher than those of the original
dataset. However, as can be seen from Table 4, the accuracy
of all classifiers with SMOTE is lower than that of the origi-
nal dataset. This shows that although SMOTE can balance
precision and recall, it leads to a decrease in accuracy. For
the three SMOTE extensions SL-SMOTE, SMOTE-TL, and
B-SMOTE, we find that B-SMOTE has the most competitive
performance. B-SMOTE+FPSO-SVM obtained the experi-
mental results second only to CVCF-SMOTE+FPSO-SVM.

Figure 3 shows the stacked histograms of accuracy, G
-mean, F1, and AUC for different algorithms under different
preprocessing methods. It can be seen from Figure 3 that our
proposed CVCF-SMOTE+FPSO-SVM has the best perfor-
mance in predicting postoperative survival of LCPs. The
main reasons behind the experimental results are as follows:

Table 14: Accuracy comparison for different algorithms with different preprocessing methods on the appendicitis dataset.

Algorithms NONE SMOTE SL-SMOTE SMOTE-TL B-SMOTE CVCF-SMOTE

FPSO-SVM 0.8688 0.8792 0.8208 0.9381 0.9167 0.9511

PSO-SVM 0.8625 0.8713 0.7620 0.8104 0.8714 0.9277

SVM 0.8469 0.7979 0.7854 0.8310 0.8813 0.9021

RF 0.8438 0.8438 0.7271 0.8714 0.9083 0.9106

GBDT 0.8188 0.8479 0.7146 0.8690 0.8917 0.9085

KNN 0.8500 0.7708 0.7354 0.8476 0.8708 0.8957

AdaBoost 0.8031 0.8396 0.7458 0.8690 0.8896 0.9106

Table 15: AUC comparison for different algorithms with different preprocessing methods on the appendicitis dataset.

Algorithms NONE SMOTE SL-SMOTE SMOTE-TL B-SMOTE CVCF-SMOTE

FPSO-SVM 0.6878 0.8807 0.8167 0.9411 0.9135 0.9512

PSO-SVM 0.5893 0.7602 0.7708 0.9311 0.8917 0.9239

SVM 0.6674 0.7966 0.7832 0.8423 0.8788 0.8982

RF 0.6930 0.8475 0.7324 0.8755 0.9064 0.9070

GBDT 0.6460 0.8539 0.7207 0.8713 0.8909 0.9092

KNN 0.6885 0.7736 0.7374 0.8499 0.8676 0.8954

AdaBoost 0.6352 0.8461 0.7492 0.8685 0.8888 0.9102

Table 16: Paired t-test results of CVCF-SMOTE+FPSO-SVM and
the best performance under different preprocessing methods in
terms of accuracy and AUC on the appendicitis dataset.

Methods Accuracy AUC

NONE 6.591 (0.000) 15.628 (0.000)

SMOTE 4.562 (0.001) 5.176 (0.001)

B-SMOTE 3.024 (0.014) 3.373 (0.008)

SL-SMOTE 6.227 (0.000) 7.009 (0.000)

SMOTE-TL 1.089 (0.304) 0.785 (0.453)

CVCF-SMOTE 2.764 (0.022) 2.787 (0.21)
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first, CVCF identifies and removes noise to improve the data
quality so that blind oversampling can be reduced when
applying SMOTE. Second, FPSO-SVM can search the
optimal parameters of SVM adaptively, which improves
the classification accuracy of SVM.

In order to further test the difference between CVCF-
SMOTE+FPSO-SVM and other combination methods, a
paired t-test was conducted among CVCF-SMOTE+FPSO-
SVM and the best results under different preprocessing
methods. A p value less than 0.05 is considered to be statis-
tically significant in the experiment. From Table 8, it can be
seen that CVCF-SMOTE+FPSO-SVM achieves significantly
better results than the best results under different prepro-
cessing methods in terms of the accuracy, F1, G-mean, and
AUC at the prescribed statistical significance level of 5%.

We also compare the accuracy of our proposedmodel with
previous studies as shown in Table 9. We can see from Table 9
that the accuracy of the CVCF-SMOTE+FPSO-SVMmodel is
higher than that of other methods of the previous literature.
Finally, we compare the ROC curves of different algo-
rithms under different preprocessing methods, as shown
in Figure 4. The greater the AUC value, the better the classifier
performance. It can be seen that the AUC of our proposed
CVCF-SMOTE+FPSO-SVM is the largest, which means that
our proposed model is outperforming other comparison
methods for predicting postoperative survival of LCPs.

In order to further prove that the performance of our
proposed FPSO-SVM is superior to that of PSO-SVM, we
draw the fitness curves of these two algorithms.
Figures 5(a) and 5(b) show fitness curves of FPSO-SVM
and PSO-SVM with CVCF-SMOTE preprocessing. As can
be seen from (Figures 5(a) and 5(b)), we can clearly see that
compared with PSO-SVM, FPSO-SVM not only has a higher
fitting degree but also a faster convergence speed. This shows
that our proposed FPSO-SVM algorithm can identify the
optimal solution in the search space faster and more accu-
rately than PSO-SVM.

3.4. Works on Other Datasets. To show the generalization
ability of our proposed method, we apply CVCF-SMOTE
+FPSO-SVM to the other two imbalanced datasets collected
from KEEL (https://sci2s.ugr.es/keel/) [44]. Table 10 shows
the details of the two selected datasets.

Tables 11 and 12 show the accuracy and AUC of differ-
ent algorithms in different preprocessing methods on the
Haberman dataset. It can be seen from Tables 11 and 12 that
under different preprocessing methods, accuracy and AUC

of CVCF-SMOTE+FPSO-SVM are higher than those of the
comparison classifiers. As shown in Table 13, the results of
the paired t-test also show that CVCF-SMOTE+FPSO-
SVM is significantly better than the best experimental results
under different preprocessing methods on the Haberman
dataset. For the appendicitis dataset, it can be seen from
Tables 14 and 15 that CVCF-SMOTE+FPSO-SVM also
obtains the highest accuracy and AUC value compared to
other preprocessing methods and classifier combinations.
As can be seen from Table 16, for the appendicitis dataset,
CVCF-SMOTE+FPSO-SVM achieves significantly better
results than the best performance under NONE, SMOTE,
SL-SMOTE, and B-SMOTE. However, it is not a significant
difference for the best performance under SMOTE-TL.

From the experimental results, we see that CVCF-
SMOTE+FPSO-SVM outperforms the compared algorithms
for both the thoracic surgery dataset and the other two
imbalanced datasets. On the one hand, it is because CVCF-
improved SMOTE is well adapted to different datasets. On
the other hand, FPSO-SVM automatically adjusts the opti-
mal parameters according to different datasets, thus improv-
ing the generalization ability of the SVM.

3.5. Running Time Analysis. We compared the running time
of CVCF-SMOTE+FPSO-SVM with the algorithms with the
highest accuracy among all the compared methods. For the
three datasets thoracic surgery, Haberman, and appendicitis,
the algorithms with the highest accuracy among the compared
methods are CVCF-SMOTE+GBDT, CVCF-SMOTE+KNN,
and SMOTE-TL+FPSO-SVM, respectively. In addition, in
order to compare the running time of FPSO-SVM with that
of PSO-SVM, CVCF-SMOTE+PSO-SVM is also involved in
the comparison. The comparison results are shown in
Table 17. It can be seen from Table 17 that the running time
for CVCF-SMOTE+FPSO-SVM is less than that of CVCF-
SMOTE+PSO-SVM for the three datasets. However, the
running time of CVCF-SMOTE+FPSO-SVM is slower than
that of CVCF-SMOTE+GBDT, CVCF-SMOTE+KNN, and
SMOTE-TL+FPSO-SVM for the thoracic surgery, Haberman,
and appendicitis datasets, respectively. Considering the higher
classification performance of our proposed method, it can still
be considered superior to other algorithms.

4. Conclusion

In this work, we proposed a hybrid improved SMOTE and
adaptive SVM method to predict the postoperative survival

Table 17: Running time (in second) by CVCF-SMOTE+FPSO-SVM and state-of-the-art algorithms.

Datasets Algorithms

Thoracic surgery
CVCF-SMOTE+GBDT CVCF-SMOTE+PSO-SVM CVCF-SMOTE+FPSO-SVM

31.2 53.6 43.5

Haberman
CVCF-SMOTE+KNN CVCF-SMOTE+PSO-SVM CVCF-SMOTE+FPSO-SVM

18.8 27.5 24.5

Appendicitis
SMOTE-TL+FPSO-SVM CVCF-SMOTE+PSO-SVM CVCF-SMOTE+FPSO-SVM

13.8 22.2 17.3
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of LCPs. In our proposed hybrid model, CVCF is adopted to
clear the data noise to improve the performance of SMOTE.
Then, we use FPSO-optimized SVM to estimate whether the
postoperative survival of LCPs is greater than one year.
Experimental results show that our proposed CVCF-
SMOTE+FPSO-SVM hybrid method obtains the best accu-
racy, G-mean, F1, and AUC as compared to other compared
algorithms for postoperative survival prediction of LCPs.

Our proposed hybrid method can provide valuable med-
ical decision-making support for LCPs and doctors. Consid-
ering the excellent classification performance for the other
two imbalanced datasets, in the future, we will try to apply
the proposed method to other problems based on imbal-
anced data, such as disease diagnosis and financial fraud
detection. There are two limitations that need to be pointed
out: one is that we only consider the 1-year survival after
lung cancer surgery. In future studies, we will try to predict
survival at other time points, such as survival 3 or 5 years
after lung cancer surgery. The other is that the value range
of the parameters of SVM in FPSO-SVM needs to be set
manually, which may require some experience or experi-
mental attempts. Designing a setting-free SVM is our future
research direction.
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