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Grafted human induced pluripotent
stem cells improve the outcome

of spinal cord injury: modulation

of the lesion microenvironment
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Spinal cord injury results in irreversible tissue damage followed by a very limited recovery of function.
In this study we investigated whether transplantation of undifferentiated human induced pluripotent
stem cells (hiPSCs) into the injured rat spinal cord is able to induce morphological and functional
improvement. hiPSCs were grafted intraspinally or intravenously one week after a thoracic (T11)
spinal cord contusion injury performed in Fischer 344 rats. Grafted animals showed significantly better
functional recovery than the control rats which received only contusion injury. Morphologically, the
contusion cavity was significantly smaller, and the amount of spared tissue was significantly greater in
grafted animals than in controls. Retrograde tracing studies showed a statistically significant increase
in the number of FB-labeled neurons in different segments of the spinal cord, the brainstem and the
sensorimotor cortex. The extent of functional improvement was inversely related to the amount

of chondroitin-sulphate around the cavity and the astrocytic and microglial reactions in the injured
segment. The grafts produced GDNF, IL-10 and MIP1-alpha for at least one week. These data suggest
that grafted undifferentiated hiPSCs are able to induce morphological and functional recovery after
spinal cord contusion injury.

Spinal cord injury (SCI) is a devastating neurological condition with very limited recovery of function, which
diminishes the quality of life both the patient and his/her family'->. Treatment opportunities are limited and often
revolve around preventing further damage with interventions involving rehabilitation. The pathological changes
following SCI involve a primary and a secondary phase. The primary phase is the development of the initial
injury caused by the impact followed by a rapid and progressive secondary injury cascade. In this phase of SCI
a cascade of processes, such as oedema, neuroinflammation and excitotoxicity results in glial and neural death*.

Cell transplantation is one of the most promising strategies to induce functional improvement in SCI*°. Many
cell-based therapies have utilized various types of stem cells. Numerous stem cells and their derivatives have been
reported to modify the lesion environment and induce some regeneration of damaged neurons, remyelination of
axons, trophic support or a combination thereof’ . The use of human embryonic stem cell-based therapies often
raised ethical issues. Moreover, they proved to be allogenic, leading to immune rejection or requiring lifetime
immunosuppression. The establishment of human induced pluripotent stem cells (hiPSCs) opened new ways
on the horizon of regenerative therapies. The iPSCs can be produced from somatic cells such as dermal fibro-
blasts, keratinocytes or blood cells by transient overexpression of defined transcription factors, such as Oct3/4,
Sox2, Klf4, and c-Myc (known as OSKM factors)''2. Human iPSCs display similar morphology, proliferation
capacity, surface antigens expression, gene expression characteristics as embryonic stem cells''"'%. Moreover,
transplantation of iPSC derivatives reportedly does not generate significant host immune response'>®. Various
iPSCs-derived progenitors have been grafted into the injured spinal cord and considerable information has
been gained about their survival, proliferation, and unique differentiation profile following transplantation'®-,
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Nevertheless, more preclinical studies have yet to be performed to investigate the regenerative potential and
safety of hiPSCs. In our study we used the SB5 hiPSC line that exhibits the characteristics of pluripotent stem
cells, including the expression of embryonic stem cell markers and has the ability to differentiate in vitro into the
three germ layers as we published before??. Based on the properties of the SB5 hiPSC line, we hypothesized that
transplantation of these cells into a contused spinal cord may lead to considerable morphological regeneration/
tissue sparing and restoration of function after injury.

The aim of the present study was to investigate whether transplantation of undifferentiated hiPSCs into the
injured rat spinal cord may lead to secretion of a set of bioactive molecules—called “lesion induced secretome”—
which may support the repair of damaged tissue by modulating the local immune response, enhancing tissue
sparing and altering the lesion microenvironment to support axonal regeneration/plasticity.

Results
In vitro characterization of SB5 hiPSC line.  hiPSCs were characterized in vitro for pluripotency mark-
ers and their differentiation capacity. All colonies expressed the pluripotency markers NANOG, OCT3/4, SOX2
and SSEA-4 (Supplementary Fig. SIA). The hiPSCs were able to differentiate spontaneously into each embryonic
germ layer with high efficiency based on the expression of GATA4, PDX1 (endoderm), Brachyury, Tropomyosin
(TPM2) (mesoderm), Musashi-1 (MSI1), NESTIN, TUBB3 and MAP2 (ectoderm) as confirmed with immuno-
histochemical analysis (Supplementary Fig. S1B).

Cell viability assessment was performed before transplantation. Five minutes after harvesting the hiPSCs 100%
cell viability was detected. Twenty-five minutes later 99% of the cells proved to be viable (Supplementary Fig. S2).

Hind limb locomotor pattern has been improved following intraspinal transplantation of hiP-
SCs. Hind limb locomotor recovery was assessed using the BBB open field test and kinematic analysis meas-
ures (Fig. 1). During the first week, injured rats showed no weight supported stepping. At week 1, injured rats
were randomized into four experimental groups to ensure equivalent deficits across the groups. The animals
showed frequent to consistent weight supported plantar steps and occasional consistent weight supported plan-
tar steps at week 5 in all groups. At weeks 6 and 7 the stem cell-treated animals (SB5-iv, SB5-isp groups) showed a
slight increase in BBB score compared to their controls. Using the two-way repeated measures of ANOVA from 1
to 9 weeks after injury, we found a statistically significant interaction only between the SB5-isp and their controls
at weeks 6-8 after injury (p <0.05, n=8 in each group). These rats showed consistent weight supported plantar
steps and consistent fore- and hind limb coordination (Fig. 1A,B).

The kinematic analysis of transplanted and control rats was evaluated for metatarsus surface angle, tibia-
surface angle, lateral placing, knee flexion, tarsus off angle and ankle flexion. During pre-injury training, all rats
accurately accomplished the test. After SCI, all the four groups (medium-iv, medium-isp, SB5-iv and SB5-isp
animals; n=8 in each group) demonstrated deficits in hindlimb placements. Consistent with the BBB results,
all groups showed a non-significantly improvement up to week 5. From week 6 onwards the rats that received
hiPSCs treatment intraspinally (SB5-isp) progressively improved until week 8 (Fig. 1C). The kinematic analysis
assessments also revealed that the SB5-isp animals displayed a consistent improvement in the metatarsus surface
angle, tibia-surface angle, lateral placing knee flexion, tarsus off angle and ankle flexion in hindlimb placement
in contrast to control animals that displayed slight recovery after SCI. Only the intraspinally grafted animals
(SB5-isp) were able to approach the intact pre-training values and showed statistically significant improvement
compared with their controls (Fig. 1C).

Intraspinally grafted hiPSCs enhance tissue sparing. Histomorphometric analysis was performed to
quantify spinal cord tissue changes 9 weeks after SCI (n=4 in each group) (Fig. 2). Within the injured segment
alarge, centrally located cystic cavity was formed containing cellular debris or trabecula. The greatest amount of
intact-looking white matter localized to the ventral and ventrolateral parts of the spinal cord in the experimental
groups (Fig. 2A). Reduced cystic tissue was observed in the epicenter and 0.5 mm rostrally and caudally to the
injury epicenter in grafted animals. Significantly decreased lesion area was identified at 1 mm and 2 mm ros-
trally and at 1.5 mm and 2 mm caudally to injury in the spinal cord of animals in the SB5-isp group (SB5-isp vs.
medium-isp group, p <0.05; Fig. 2B). Quantification of spared tissue in injured spinal cords based on cresyl-violet
staining indicated that a significantly greater amount of tissue was preserved in the animals of the intraspinally
grafted group compared with its controls (SB5-isp vs. medium-isp group, p <0.05; Fig. 2C).

hiPSCs treatment leads to improved connections as revealed by retrograde tracing. Next, we
evaluated whether axonal regeneration/sparing was promoted by the grafted hiPSCs. Labeling of propriospinal
and supraspinal neurons in the spinal cord and brain was evaluated by placing the retrograde tracer (Fast Blue)
caudally to the injury into the right L3 segment, the numbers of retrogradely labeled neuronal somata in the
spinal cord, brainstem and brain were determined (n=4 in each group). These data refer to the number of neu-
rons above the injury site which axons take up the tracer in the caudal spinal cord segment. Significantly higher
numbers of FB-labeled propriospinal neurons were found in the Th5, Th1, C6 and C2 spinal segments in animals
treated with hiPSCs (both SB5-iv and SB5-isp) than in their controls (Fig. 3A, Supplementary Fig. S3A-E). It
should be noted that the number of retrogradely traced neurons decreased with the distance from the labeled
segment.

We also identified retrogradely labeled neurons in the brainstem (particularly in the reticular formation, raphe
nuclei) and in the somatomotor cortex. Following intraspinal implantation of hiPSCs significantly higher number
of retrogradely labeled neuronal somata were found in the different brain regions. In the case of systemic (iv)
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Figure 1. Intraspinal hiPSC transplant improves locomotor function. (A) Open field locomotor test (BBB) shows significant
improvement of intraspinally grafted animals (SB5-isp) compared with their controls, although the SB5-iv animals showed no
significant recovery of their locomotor pattern from week 6 onwards. (B) Enlarged view of the graphs in A from week 6 onwards.
Asterisks represent significant difference between intraspinally grafted (SB5-isp) group and its control group at various time points. (C)
Kinematic analysis of the animals in the various groups after injury. Note the significantly improved parameters of the grafted animals
(SB5-isp) compared with their controls. Data are expressed as mean + SEM (n=8 in each group) *significant difference between

the intraspinally grafted animals (SB5-isp) and its control (medium-isp). p values: BBB-test (p=0.012 at week 6, p=0.022 at week 7,
p=0.016 at week 8), metatarsus-surface angle (p=0.048 at week 8), tibia-surface angle (p=0.046 at week 8), lateral placing (p=0.047 at
week 6, p=0.049 at week 7, p=0.002 at week 8), knee flexion (p=0.048 at week 8), tarsus-off angle (p=0.005 at week 8), ankle flexion
(p=0.036 at week 7, p=0.003 at week 8).
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Figure 2. Intraspinally grafted hiPSCs promote tissue sparing. (A) Representative images taken at 100 pm
rostral to the SCI lesion epicentre. (B) Quantification of cystic area shows that intraspinal hiPSC treatment
resulted in considerably reduced size of injury following SCI. (C) Improved tissue sparing is seen rostro-
caudally to the injury epicenter in the intraspinally grafted group (SB5-isp). Significantly more tissue sparing was
detected in the intraspinally treated group (SB5-isp group) compared with its control (medium-isp). Data are
expressed as mean + SEM. (n=8 in each group) *significant difference between the intraspinally grafted animals
(SB5-isp) and its control. Scale bar: 500 pm.

delivery of hiPSCs (SB5-iv), non-significantly higher number of FB + neurons were found in these supraspinal
locations compared with their controls (Fig. 3B).

hiPSC treatment promotes preservation/sprouting of serotonergic fibers caudally to the
injury.  Since hiPSC treatment promoted tissue/axonal sparing, we further examined the descending sero-
tonergic pathway, which is a multiple descending tract from the brainstem and is known to regulate the spinal
locomotion?***. In the control group (medium-isp), 5-HT-positive fibers could be observed in close vicinity to
the rostral end of cavity (Supplementary Fig. S4A-C). Numerous aborted endings could be detected around
the lesion, suggesting the abortive regeneration of 5-HT-positive fibers (Supplementary Fig. S4C’). In the SB5-
isp group we observed sprouting of the 5-HT-positive fibers rostrally to the cavity in a small boundary while
serotonergic innervation of certain neurons was well preserved (Supplementary Fig. S4B-D’). Caudal to the
lesion, we also found 5-HT-positive fibers in both groups (medium-isp, SB5-isp), although to a lesser extent than
rostrally to the injury. In control animals, the presence of serotonergic fibers was weaker caudally to the lesion
compared to treated rats (Supplementary Fig. S4E-H'). In grafted animals, considerable higher density of 5-HT-
positive fibers could be found caudally to injury (Supplementary Fig. SIF-]J). Close to caudal end of the lesion
(500 pm away from the caudal end), animals in the SB5-isp group showed 3.31+1.42 fold increase in 5-HT
expression compared to injured value (Supplementary Fig. S4K). The level of 5-HT expression in the spinal cords
of the SB5-isp group also remained significantly higher than in the control group 1000 and 1500 um caudally to
the lesion (Supplementary Fig. S4K). The striking difference in the density of 5-HT-positive fibers between the
groups may be due to preservation of serotonergic axons and it was likely supported by hiPSC treatment.

hiPSC treatment influences the astroglia and microglia/macrophage reaction. Next, we inves-
tigated whether the hiPSC treatment has the potential to alter the microenvironment of the lesion rendering it
permissive for regenerating axons. Therefore, we examined and quantified the densities of astrocytes and micro-
glia/macrophages and the deposition of chondroitin sulphate proteoglycan (CSPG) 9 weeks after the injury
around the lesion cavity (n=4 in each group). Analysis of the immunostained sections showed differences in the
amount of GFAP, CS-56 and GSA-B4 expression among the groups (Fig. 4A,C,E). Both intraspinal and intrave-
nous application of hiPSCs induced significant reduction of astrocytosis indicated by significantly lower GFAP
densities in these cords compared with controls (SB5-isp, SB5-iv vs. their controls, p <0.05, Fig. 4B). While hiPSC
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Figure 3. Morphometric analysis of the connections between the segments caudal to the lesion and various
cranial parts of the CNS. (A) Numbers of neurons retrogradely labeled from the right L3 hemisegment are
shown. Note the significantly higher numbers of labeled cells in the spinal cord of the hiPSC treated animals
(SB5-iv, SB5-isp) compared with their controls (medium-iv, medium-isp). The greatest number of retrogradely
labeled cells was always found in the intraspinally treated animals. (B) Significantly greater numbers of traced
neurons are found in the brainstem, reticular formation, the raphe nuclei and the somatomotor cortex of
intraspinally transplanted animals as compared with their controls. Note the limited regenerative capacity in the
case of intravenous delivery of stem cells. Data are expressed as mean = SEM. (n=4 in each group) *significant
difference between the intraspinally or intravenously grafted animals with the control ones in A. *significant
difference between the intraspinally grafted animals and its control in B.

treatment altered the GFAP immunointensity, marked reduction of CS-56 immunoreactivity could be observed
compared to controls (SB5-isp, SB5-iv vs. their controls, p <0.01, Fig. 4D). Similarly, microglia/macrophages in
the lesion sites of grafted animals showed significantly reduced microgliosis (GSA-B4, lectin histochemistry)
compared with the control groups (SB5-isp, SB5-iv vs. their controls, p <0.01 Fig. 4F). However, grafting of hiP-
SCs induced significantly decreased microglia/macrophage densities at week 8 after grafting compared with the
intravenous hiPSC treatment (SB5-isp vs. SB5-iv, p<0.01).

Intraspinally grafted iPSCs differentiate preferentially along a neuronal lineage. To examine
the feasibility of hiPSCs transplantation as a therapeutic tool for SCI, we grafted the cells into an injury cavity
1 week after SCI. One, two, four and eight weeks after transplantation, immunohistochemical analyses were per-
formed to examine the survival, migration, proliferation and differentiation patterns of the grafted hiPSCs in the
injured spinal cords. hiPSCs were mapped for expression of human SC-121 (reacts with a human cytoplasmic
protein) and SC-101 (reacts with any human cell nucleus) in adjacent sections. At these early survival times, the
hiPSCs did not migrate yet away from the graft (Figs. 5 and 6).

The engrafted hiPSCs survived remarkably, expressed SSEA-4, proliferated within the injured spinal cord and
formed clusters or showed disperse distribution patterns (Fig. 5A-G”). The intensity of SC-121 immunostain-
ing was stronger within the clusters formed by grafted cells than in their vicinity (Fig. 5E-G). The proliferation
capacity of the clusters was evaluated with Ki-67 immunostaining and appeared to be low (Fig. 5E’). In contrast,
around the clusters more Ki-67 + cells were displayed at both survival time points (Fig. 5E’-F’). Quantitative
analysis showed that 1 and 2 weeks after transplantation, 26-29% of the SC-121-positive and 29-33% of the
SC-101-positive grafted cells were Ki-67 positive (n=4 in each time point) (Fig. 5H, Supplementary Fig. S5).

Using cellular markers, we investigated the differentiation pattern of hiPSCs in the SB5-isp group at these
early survival time points (Fig. 6). Our findings demonstrated that the majority of the transplanted hiPSCs dif-
ferentiated along a neuronal lineage as demonstrated by TUBB3/SC-121 and TUBB3/SC-101 co-expression at
both experimental time points (TUBB3/SC-121: ~66% at 1 week and ~ 73% at 2 weeks; TUBB3/SC-101: ~ 62%
at 1 week and ~74% at 2 weeks; n=4 in each time point; Fig. 6A-E, Supplementary Fig. S5). These findings
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Figure 4. Modulation of the lesion environment. (A,C,E) Low magnification images of parasagittal spinal cord
sections show the GFAP, CS-56 and GSA-B4 reactivity 9 weeks after the injury around the lesion area in the
various experimental groups. (B,D,F) Quantification of GFAP, CS-56 and GSA-B4 reactivities in the sagittal
sections of the spinal cord revealed a decreased level of all examined markers in hiPSC-treated groups (SB5-iv,
SB5-isp) compared with the control groups (medium-iv, medium-isp). Data are expressed as mean+SEM (n=4
in each group). *p <0.05 *significant difference between the intraspinally (SB5-isp) or intravenously (SB5-iv)
grafted animals and the control animals in B. ***p <0.01 ***significant difference between the intraspinally or
intravenously grafted animals with the control animals in D and E. %%%p <0.01 *significant difference between
the intraspinally grafted animals (SB5-isp) and the intravenously treated animals (SB5-iv) in D and E Scale bar
in A: 200 um.

suggest that grafted hiPSCs promote preferential differentiation toward the neuronal lineage. We did not observe
any hiPSC-derived cells expressing GFAP 1 week after transplantation (Fig. 6F-G). We also examined whether
grafted hiPSCs had the potential to myelinate the host axons after transplantation. Confocal microscopic imag-
ing revealed no MOG immunoreactive grafted cells, indicating that grafted cells had limited if any potential to
differentiate into myelinating oligodendrocytes (Supplementary Fig. S6A-B).

To further determine the fate of the grafted cell population, we used various markers (SC-121 and SC-101 for
human cells, GFAP for astrocytes and TUBB3 for neurons) at 4 and 8 weeks after transplantation. At 4 weeks after
hiPSC transplantation, sporadically observable SC-121-positive or SC-101-positive profiles were present in the
grafted area (Supplementary Fig. S7). Interestingly, immunohistochemical analysis revealed intense TUBB3 and
GFAP immunoreactivity associated with neurons and astrocytes surrounding the SC-121- or SC-101-positive
profiles that had failed to express neuronal or glia marker. At 8 weeks after grafting, phagocytosed SC-121 + cel-
lular fragments were readily observed in GSA-B4-positive macrophages (Fig. 7F).
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Figure 5. Transplanted hiPSCs proliferate within the injured spinal cord. Low and high-power images show the
extent of hiPSC survival within the injured spinal cord 1 and 2 weeks after transplantation. (parasagittal sections
A-G"). (A-C) Expression of the embryonic stem cell marker SSEA-4 by the grafted hiPSCs 1 and 2 weeks after
transplantation. (D) Cell quantification proved that the engrafted hiPSCs had a pluripotency fate identified by
SSEA-4 expression (44.5%+ 5.1 and 40% +2.4; 1 week or 2 weeks after grafting, respectively). (E) The grafted
hiPSCs displayed high Ki-67 positivity in the contusion cavity 1 and 2 weeks after grafting. (E') Some engrafted
hiPSCs form clusters (asterisks) while others remained dispersed. The enlarged figures in F and F’ show the
grafted hiPSCs (SC-121+, in red) with their DAPI-labeled nuclei, out of these many display Ki-67 positivity
(green). (G-G") The transplanted cells (SC-121, red) showed high proliferative capacity (Ki-67, green) 2 weeks
after transplantation. Arrowheads in the boxed area point to Ki-67 + nuclei associated with SC-121 + cells

within the cluster. (H) Bar diagram shows the proliferative activity of grafted hiPSCs. Note that 26.5% + 5.5 and
29.2%+ 1.5 (1 week or 2 weeks after grafting, respectively) of SCS-121 +hiPSCs were positive for Ki-67. Data

are expressed as mean+ SEM. (n=4 in each time point) h, host; g, graft. Scale bars: (A) 250 um, (C) 25 pm, (E)
500 pum (E’) 250 pm, (F') 50 pum, (G) 25 pm, (G") 250 pm.

Clearance of intravenously delivered hiPSCs. To determine the fate of hiPSCs after intravenous
administration (SB5-iv), tissue samples from certain organs—spinal cord, liver, lungs and spleen—were obtained
7 days after the intravenous transplantation. Grafted hiPSCs were mapped by SC-121 and DAPI co-staining
under an epifluorescent microscope which allowed the determination of the presence or absence of the hiPSCs
in the organs. In the examined time point no SC-121-positive cells were found in the various organs (Supple-
mentary Fig. $8). This finding indicates the rapid clearance of the intravenously administered hiPSCs.

Microglia/macrophage react to the grafted hiPSCs. In order to determine whether host microglia/
macrophages invaded the territory of the grafted hiPSCs, a co-labeling with SC-121 immunostaining and GSA-
B4 lectin histochemistry was performed in the instraspinally grafted group (SB5-isp). Seven days after grafting,
increased activation of microglia/macrophages could be detected around the graft in the host cord (Fig. 7A,A").
Few GSA-B4-positive macrophages appeared at the graft-host interface suggesting that differentiation of the
grafted cells exerts an attraction of macrophages to the cell differentiation zone (Fig. 7A,A"). Increased densi-
ties of the activated microglia/macrophages (GSA-B4-positive cells) could be observed in the graft 14 days after
transplantation (Fig. 7B). Microglia/macrophage cells appeared around the graft-derived cells suggesting that the
presence of antigens on the surface of grafted cells results in cell recognition and elimination by macrophages.
On week 4 after grafting, the microglial/macrophage activity was significantly increased in the grafted area and
a marked reduction of grafted cells were observed (Fig. 7C,C’). The majority of engrafted hiPSCs appeared as of
nonviable SC-121-positive profiles and most of them appeared to have been incorporated by GSA-B4-positive
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Figure 6. Neuronal differentiation of the intraspinally grafted hiPSCs in the injured rat spinal cord 1 and

2 weeks after transplantation. (A,A’) Differentiation of intraspinally grafted hiPSCs in the contusion cavity

1 week after grafting leads to the appearance of stem cell-derived neuronal populations in the graft. Host
neurites around the lesion site were localized within or very close to the graft. (A’) Boxed area taken from the
graft region shows the mixture of neurites of both host and graft origin. (B-B"") Confocal images demonstrate
differentiation of hiPSCs (red) along a neuronal lineage identified by TUBB3 (green) expression. (C) Notable
TUBB3 (green) immunoreactivity was observed within the graft 2 weeks after grafting. (D-D") Colocalization
of hiPSCs (red) cells with TUBB3 protein (green) 2 weeks after transplantation. (E) Our quantitative analysis

1 and 2 weeks after transplantation showed that the grafted cells mainly expressed TUBB3 (66.1% +6.7 and
73.3% % 5.5, one and two weeks after grafting, respectively; n=4 in each time point). (F-F") The grafted hiPSCs
did not show any GFAP immunoreactivity 1 week after grafting. GFAP-positive immunoreactivity can be seen
among the GFAP negative transplanted cells close to the host—graft interface. (G) Higher magnification clearly
shows presence GFAP-positive processes among the grafted hiPSCs. Dashed line indicates the graft-host border.
In A-B" and D-D" arrows show SC-121-positive grafted cells (red) that were colocalized with TUBB3 (green)
and TUBB3 + host-derived neurites in (C). Data are expressed as mean = SEM. (n=4 in each group) g, graft, h,
host; Scale bars: (A): 500 um, (A"): 250 um, (B'): 25 um, (C) 250 um, (D’): 25 pm, (F) 500 pm, (F’) 100 pm; (G)
10 pym.

cells (Fig. 7D). GSA-B4-positive cells could be observed in small groups around the cavity at 8 weeks after graft-
ing (Fig. 7E,E’). The nonviable SC-121-positive cellular fragments could only be detected in GSA-B4-positive
cells, suggesting that microglia/macrophages might be actively phagocytosing the grafted hiPSCs.

Protein expression pattern of neurotrophic factors and cytokines in the grafted cells 1 week
after transplantation. To determine the “secretome” of SB5 cells in vitro, first we analyzed the expres-
sion of 10 factors (IL-1-alpha, IL-6, IL-10, BDNE, GDNE TNF-alpha, MIP-1-alpha, NT-4/5, VEGE, PDGFA), a
selection based on our earlier results*~%. Strong immunoreactivity of GDNF, TNF-alpha and VEGF was found
in vitro in undifferentiated SB5 cells (Supplementary Fig. S9).

Three out of the ten factors were found to be expressed in the graft (IL-10, GDNF and MIP-1-alpha) (Fig. 8).
None of these factors was found to be expressed in the host spinal cords (Fig. 8A,AC,C’E,E’). The expression of
the factors was characterized by granular appearance. IL-10 showed similar distribution pattern to that of GDNF
while weak MIP-1-alpha expression was confined to the grafted cells (Fig. 8B D’E’'G). Interestingly, controls or
SB5-iv group showed no expression of the various factors within injured cords 2 weeks after the injury (data
not shown).

Increased TUBB3 and NF-200 expression around the graft. Previous reports demonstrated an
injury-induced plasticity within the injured spinal cord®. To test whether intraspinal hiPSC treatment exerts
an effect on the density of TUBB3 immunoreactive fibers following SCI, we further examined the TUBB3
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1 week after grafting

4 weeks after grafting

8 weeks after grafting

Figure 7. Microglia/macrophage reaction against grafted hiPSCs. (A,A") Epifluorescence image of parasagittal
longitudinal section of hiPSC treated spinal cords 1 week after intraspinal grafting shows the presence of
GSA-B4-positive activated microglia/macrophages (blue) around the grafted area (red). (B) On week 2 after
transplantation the activated microglia/macrophages showed higher density within the graft. (C,C’) On week 4
after grafting strong reactions of the activated microglia/macrophages could be detected in the grafted area. (D)
Confocal immunostaining revealed intense engulfing of nonviable SC-121-positive profiles (red) by GSA-B4
positive macrophages/microglia. (E, E') On week 8 after grafting decreased microglia/macrophage reactions
were observed in the injured spinal cord. (F) Confocal image shows tiny SC-121-positive profiles in GSA-B4-
positive cells. Scale bars: (A,C,E) 500 um, (A’,B,C’) 100 pm, (D,F) 10 pm, (E'): 50 um.

expression in the host tissue and the grafted area. The control group (medium-isp) showed moderate TUBB3
immunoreactivity around the lesion site 2 weeks after injury (Fig. 9A,A’). On the other hand, strong TUBB3
immunohistochemical reactivity was observed in the close vicinity of the grafted area in contrast to control
animals suggesting that the increased plasticity of the host TUBB3-positive neurites was principally governed
by grafted hiPSCs (Fig. 6AC and Fig. 9A,B’). Numerous host neurites were also seen in close proximity of SC-
121-positive cells (Fig. 9B,B’). A less dense TUBB3-positive fiber staining was apparent in grafted group (SB5-
isp) around the cavity 9 weeks after the injury (Fig. 9C). Next, we measured the TUBB3 immunoreactivity in
both groups (medium-isp, SB5-isp). Comparison of immunoreactivity of TUBB3 across the control (medium-isp,
2 and 9 weeks after the injury) and grafted (SB5-isp, 2 and 9 weeks after injury) experimental groups revealed a
significant increase in TUBB3 expression (4.1+0.19-fold increase in TUBB3 immunoreactivity in medium isp
2 weeks and 3.8 £0.19-fold increase in TUBB3 immunoreactivity in medium isp 9 weeks) in the host tissue of the
grafted group (Fig. 9D).

We also evaluated the presence of NF-200kD-positive neurites in the host tissue around the lesion area. In the
control group (medium-isp), NF-200kD-positive fibers appeared in the vicinity of lesion and only few axons could
be observed within the lesion area 2 weeks after the injury (Fig. 9E,E'). In contrast, increased NF-200kD-positive
immunoreaction were seen in grafted group (SB5-isp) 2 weeks after the injury. NF-200kD-positive fibers were
also found at graft host interface, but these were not colocalized with the grafted cells, suggesting SC-121 + cells
were not able to express NF-200kD (Fig. 9EF'). At 9 weeks after the injury, grafted spinal cords (SB5-isp) showed
slightly reduced NF-200kD expression (Fig. 9G,G’).

We next quantified the NF-200kD immunointensity around the lesion/grafted area. At 2 weeks after the
injury, NF-200kD intensity was significantly increased in spinal cords of SB5-isp group (2.6 + 0.36 fold increase)
compared to medium-isp group (1.02+0.11 fold increase; Fig. 9H). A considerably high level of NF-200kD
immunointensity remained in grafted animals (SB5-isp) at 9 weeks after the injury (3.57+0.70 fold increase).
These findings suggest that factors produced by grafted hiPSCs increased the plasticity of TUBB3-positive host
neurites and NF-200kD-positive host axons, respectively.
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Figure 8. Expression of the various factors produced by the intraspinally grafted hiPSCs 1 week after

grafting. Longitudinal sections of grafted spinal cord show the expression of IL-10, GDNF and MIP-1-alpha

1 week after transplantation within the graft. (A-B',C-D’) The grafted hiPSCs expressed IL-10 and GDNF
immunohistochemically detectable only in the graft. (E-F’) Relatively weak MIP-1-alpha expression could be
observed within the graft. Higher magnification clearly shows the presence of factors in the cytoplasm in the
boxed area of (B',D’,F'). (G) Quantitative analysis of the immunostainings in fluorescence images. The numbers
of IL-10, BDNF and MIP1-alpha immunoreactive pixels were normalized with DAPI positive pixels. Data were
expressed as percentage of marker/DAPI ratio + SEM. Scale bar: (A) 200 pm, (B) 100 pum.

Discussion

Our study provides strong evidence that intraspinal transplantation of undifferentiated hiPSCs is an effective
strategy to induce tissue sparing after SCI. While a large body of evidence supports the therapeutic potential of
iPSC-derived cell transplantation for subacute SCI'#2%*0:31 grafting of undifferentiated hiPSCs into a lesioned
spinal cord was not yet investigated. Our strategy, which uses undifferentiated hiPSCs transplants to decrease the
inhibitory properties of the glial scar and microglia/macrophage reaction, successfully promoted the functional
repair and plasticity of the spinal cord in a subacute SCI. The significant amount of spared tissue made it possible
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Figure 9. Increased TUBB3 immunoreactivity around the grafted area. (A-B) Representative images of TUBB3-
positive host neurites in the control and grafted groups (medium-isp and SB5-isp) at the rostral part of the affected
segment 2 weeks after the injury. (A") TUBB3-positive host neurites tended to approach the lesion area in the control
animal (medium-isp). (B") TUBB3-positive host neurites display robust plasticity around and within the grafted area
1 week after hiPSC transplantation (SB5-isp). (C) A lesser extent of plasticity of TUBB3-positive host neurites was
observed at 9 weeks after the injury in the grafted group (SB5-isp). (D) Quantification of TUBB3 immunointensity in
the paramedian sagittal sections of the spinal cord revealed an increased level of immunoreactivity in hiPSC-treated
group 2 and 9 weeks after the injury compared with the control group. (E, E’) Confocal images show NF-200kD-
positive axons in the control group (medium-isp) 2 weeks after the injury. (F,F’) Numerous NF-200kD-positive

host axons reached outside boundary of the graft. Quantification of NF-200 immunoreactivity demonstrated a
significant increase in NF-200kD immunodensity in the grafted group 2 and 9 weeks after injury. Data are expressed
as mean = SEM. (n=4 in both of the groups) *significant difference between the intraspinally (SB5-isp) with the
control (medium-isp) animals in D and H. Dashed line indicates the lesion area/cavity area and spared tissue in
(A,A',C,C"E,E,G,G’ or the graft-host border in (B,B’,F,F’). Arrows show TUBB3-positive host neurites (in A’ and B’)
and NF-200kD-positive host axons (in F'). Arrowheads point to TUBB3-positive grafted cells in B. g, graft; h, host;
Scale bars: A: 200 um, (A’) 100 um, (F') 30 pm.
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to recover the temporarily disrupted connections between the intact regions above and below the injury site.
The considerable tissue sparing yielded a higher number of retrogradely labeled neurons in the spinal cord and
the various brain regions of intraspinally grafted animals compared to the controls. Our locomotor assessments
also showed a beneficial effect of intraspinal iPSC treatment on functional recovery.

The intraspinal grafting also preserved and promoted axonal sprouting including serotonergic fibers. The
descending serotonergic tracts modulate directly the locomotor function®?. Disruption of the serotonergic path-
way following SCI prevents the activation of locomotor central pattern generator and results in a subsequent
depletion in 5-HT**. We found that intraspinal hiPSC treatment rescued the serotonergic innervation of neurons
caudal to the injury. This is in agreement with previous works that have shown that enhancing the plasticity of
serotonergic fibers leads to improved recovery of locomotion®**>.

Previous studies have shown that intravenous cell treatment is a promising strategy to induce both morpho-
logical and functional recovery following subacute SCI*”**-*. Intravenous infusion of stem cells for SCI had a
protective effect on blood vessels, reduced the area of spinal cord cavitation and promoted the restoration of
motor function”*”*-! In this study, the intravenous application of hiPSCs was also able to reduce the microglia/
macrophage reactions and deposition of chondroitin-sulphate, but no significant tissue sparing was observed
in the affected segment. Interestingly, intravenous hiPSC application uniquely increased the number of retro-
gradely labeled neurons in the spinal cord. These results suggest that intravenously applied SB5 cells may exert
their primary effects outside the spinal cord perhaps by altering the immune-mediated secondary pathological
events after spinal cord injury. Despite the higher number of retrogradely labeled neurons and decrease of glia
reaction and deposits of CSPGs in the injured spinal cords, we could detect only moderate locomotor recovery
in these animals.

Similarly to other studies, the intravenously administered cells did not settle in the organs due to the rapid
cell clearance?”?. It could be argued that this controversy between the morphological and functional data may
be partly due to the poor survival of human cells in immune-competent animals or a higher dose of hiPSCs is
required to improve the tissue-sparing after SCI. Further investigation is needed to elucidate the exact mechanism
and effects of systemic hiPSC treatment on the injured spinal cord.

In our study, human fibroblasts can be reprogrammed using the Sleeping Beauty (SB) transposon system,
offering an efficient, non-viral based method for producing hiPSCs. The hiPSCs are capable of generating all three
embryonic germ layers when they are cultured in media containing serum. These results confirm the pluripotency
of these cells that had been extensively investigated previously*>. Furthermore, in vitro results have provided
evidence for the production of GDNFE, TNF-alpha and VEGF by undifferentiated SB5 hiPSCs.

The injury environment and cell density of grafted cells influence cell fate and differentiation**~*. The endog-
enous environment of the injured spinal cord may contain inhibitory factors that make the environment unfa-
vorable for generating new neurons or myelinating oligodendrocytes from grafted cells**=*. In our study, the
grafted cells were located in the lesion area and did not migrate away from the graft. The transplanted cells
formed clusters of living cells within the graft area and approximately 27% of the grafted cells were positive for
Ki-67. The low proliferative rate in the cell clusters combined with vigorous proliferation in the periphery of the
graft suggested that the lack of cell migration and cluster formation may have induced extensive differentiation.
Further analysis with neuronal markers (TUBB3) showed that approximately 75% of grafted cells differentiated
into a neuronal lineage.

On the other hand, and in contrast to other studies no glial differentiation was found among the grafted
human iPSCs. Although we clearly observed the close association of transplanted cells with endogenous astroglial
processes at the graft-host border, no GFAP-positive grafted cells were detected. Our results suggest that the
transplanted hiPSC failed to differentiate into mature myelin-forming oligodendrocytes, too. These observations
suggest that the microenvironment of the injured spinal cord restricts the differentiation capacities of engrafted
iPSCs and the cell source is crucial for the fate of the transplanted cells*.

The iPSC-derived neural stem/progenitor cells are characterized by low expression level of immune-related
proteins and immunosuppressive effects. In vivo experiments have shown that the survival of such transplanted
cells is higher in the injured spinal cord than in the intact environment!#*. Several attempts have been made to
remove potentially tumorigenic cells before! or after transplantation®?, or promote the differentiation process
of transplanted hiPSCs-derived neural stem/progenitor cells*”. The optimal time of transplantation and the cell
differentiation stage reportedly leads to the inhibition of cellular overgrowth, which may cause compression or
destruction of the host tissue resulting in further motor deficits®. Tumorigenesis following hiPSC-derived neural
stem/progenitor cells was reported in murine SCI models®***, but without the use of immunosuppressants the
transplanted cells died after numerous weeks of survival. Interruption of immunosuppressive treatment resulted
in the complete rejection of iPSCs-derived cell masses. Infiltration of microglia/macrophage cells and lympho-
cytes was observed during the course of rejection of tumor-like cells, along with apoptosis of iPSC-derived cells*.
Similarly to these studies, our xenografted hiPSCs survived up to 2 weeks in the injured cord. In this early phase,
the grafted iPSCs underwent a relatively fast differentiation process, accompanied by an intense and increasing
microglial/macrophage response, resulting in elimination of the grafted iPSCs by week 4 after grafting. It could
be argued that this fast cell differentiation is associated with the early exposure of cell surface antigens, leading
to the rapid elimination of the grafted cells by the host immune system. These results are in agreement with our
previous studies showing an augmented microglia/macrophage reaction against grafted iPSCs in a motoneuron
injury model*.

Our earlier study has shown that neuroectodermal cells grafted into the injured spinal cord were able to
induce functional recovery due to a secretion mechanism by the transplanted cells*>*”*. The effect was exerted
by the undifferentiated stem cells soon after grafting in a narrow time window of a few days. In the present study
we found a similar phenomenon, ie. intraspinally grafted hiPSCs produced the neurotrophic factor GDNE, the
anti-inflammatory cytokine IL-10 and the proinflammatory chemokine MIP1-alpha 1 week after grafting. The
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expression of these factors by grafted hiPSCs indicates a strong signaling and modulatory process in the injured
spinal cord.

GDNF and IL-10 have a potent survival effect on injured neurons after spinal cord injury and reduce second-
ary damage inflammation and improve motor function®*-°!. Previous reports have shown, that cellular GDNF
delivery promotes sensory and proriospinal axonal elongation following spinal cord injury and GDNF overex-
pression by graft hiPSC-derived NPCs increased the differentiation toward a neuronal fate®>-*>. Here we provided
evidence for considerable axon sprouting in the close vicinity of the graft or among the transplanted cells 1 week
after grafting. Moreover, IL-10 treatment reportedly induces functional improvement following SCI, promotes
neuronal survival and increases axon sparing> . The exact role of MIP1-alpha is not fully understood in the
injured CNS, however, results from our laboratory earlier suggested that it may have a modulatory effect after
SC126,27.

Earlier our laboratory and others have shown that stem cells have a functional multipotency feature that
allows them to adapt to the lesion environment?-2%¢7%_Qur findings support our previous observations that
the grafted cells are able to change the factor production after a short period of time following grafting and this
suggests the presence of a strong communicative interaction between the injured host tissue and the grafted cells,
leading to the release of a “lesion-induced secretome” by the grafted cells.

Materials and method

Statement of ethical approval. The experiments were carried out with the approval of the Committee
for Animal Experiments at the University of Szeged regarding the care and use of animals for experimental pro-
cedures. All the procedures were carried out in full accordance with the Helsinki Declaration on Animal Rights.
Adequate care was taken to minimize pain and discomfort. Animals were given food and water ad libitum.

Maintenance of SB5 hiPSC line. In this study the SB5 hiPSC line was used?, at passage 13 (p13) in the
transplantation experiments. Cells were grown on Matrigel (BD Biosciences) coated 6-well plates (Nunc) in
mTESR-1 medium (Stem Cell Technologies), following the manufacturer’s instructions. Cells were cultured at
37 °C in humidified atmosphere containing 5% CO, and passaged once every week using Dispase (Stem Cell
Technologies) treatment.

Immunocytochemistry of pluripotency and lineage markers. The expression of pluripotency and
germ layer markers was analysed using conventional immunocytochemical staining protocol. The cells were
fixed in 4% PFA (20 min, RT), permeabilized with 0.1% Triton X-100 (5 min) and blocked in 1% bovine serum
albumin (BSA) containing PBS (1 h, RT). The cells were incubated with primary antibodies overnight at 4 °C:
goat anti-NANOG (1:100, AF1997, R&D Systems), mouse anti-OCT3/4 (1:50, sc-5279, Santa Cruz Biotechnol-
ogy), goat anti-SOX2 (1:100, sc-17319, Santa Cruz Biotechnology), mouse anti-SSEA4 (1:50, sc-59368, Santa
Cruz Biotechnology), rabbit anti-PDX1 (1:500, ab47267, Abcam), mouse anti-GATA4 (1:50, sc-25310, Santa
Cruz Biotechnology), rabbit anti-Brachyury (1:50, sc-20109, Santa Cruz Biotechnology), mouse anti-Tropomy-
osin (TPM2) (1:400, T2780, Sigma-Aldrich), rabbit anti-Musashi (MSI1) (1:200, AB5977, Merck-Millipore),
mouse anti-NESTIN (1:500, MAB5326, Merck-Millipore), rabbit anti-TUBB3 (1:500, PRB-435P, Covance),
mouse anti-MAP2 (1:500, MAB3418, Merck-Millipore). The immune reaction was completed by Alexa Fluor
568 donkey anti-mouse IgG (1:2000, A10037, Thermo Fisher Scientific), Alexa Fluor 568 donkey anti-rabbit
(1:2000, A10042, Thermo Fisher Scientific) and Cy3-conjugated donkey anti-goat (1:100, 705-165-147, Jackson
Immuno Research). For nuclei counterstaining 0.2 ug/ml DAPI (20 min, RT) was used. The cells were observed
under a fluorescence microscope equipped with a 3D imaging module (AxioImager system with ApoTome, Carl
Zeiss Microlmaging) controlled by AxioVision 4.8.1 Microscope software (Carl Zeiss Microlmaging).

Cell viability assessment. Cell viability was determined by using Trypan Blue solution (T8154, Sigma-
Aldrich), and Countess II FL Automated Cell Counter (Thermo Fisher Scientific). Harvested cells were resus-
pended in 1 ml mTESR-1 medium, then 10 pL cell suspension was removed and mixed with 10 uL of Trypan
Blue and the mixture was pipetted into a disposable Countess chamber slide and counts were determined. Cell
viability was measured 5 and 30 min after cell harvest.

Spinal cord injury model.  All together 80 female Fischer 344 rats (Biological Services, University of Sze-
ged, 180-220 g body weight) were used. This rat strain has poor susceptibility for developing inflammatory
reactions®, so ideal for xenotransplantation experiments.

All of the operations were carried out under deep ketamine-xylazine anaesthesia (ketamine hydrochloride
[Ketavet, 110 mg/kg body weight]; xylazine [Rompun, 12 mg/kg body weight]) and sterile precautions. The
surgical area was shaved and disinfected with 70% ethanol and povidone-iodine (Betadine). A midline inci-
sion was made at the caudal thoracic area (T6-T12), and the skin and superficial back muscles were retracted.
Laminectomy was performed at the T11 vertebral level, the dura mater was exposed and the spinal cord was
contused using an Infinity Horizon impactor (IH-0400, PSI LLC), applying 150 kdyn force (moderate injury,
Supplementary Fig. $10). The wounds were then sutured in layers and the animals were given postoperative
analgesia and saline (0.9%; 5 ml) to prevent dehydration and received meloxicam (Metacam; 0.5 mg/kg body
weight, Boehringer Ingelheim Vetmedica). Animals were allowed to recover and housed in standard rat cages at
a controlled room temperature. Their bladders were manually expressed three times daily until return of reflexive
bladder control. All animals were allowed to survive 2, 3, 5 or 9 weeks after injury.
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Transplantation of hiPSCs and the experimental groups. At 7 days after injury, all injured rats were
block randomized into four experimental groups based on their Basso, Beattie, and Bresnahan open field loco-
motor score (BBB analysis’’) to ensure equivalent deficits across the experimental groups before starting the
treatment. One week after injury, SB5 hiPSCs were transplanted intravenously or intraspinally (depending on
the experimental setup). One-week delay of the transplantation was applied based on the results of Péron et al.
This study has shown that such delay of the transplantation significantly enhances the survival and prolifera-
tion of the grafted cells”. In the case of intravenous administration 1x 10° cells (delivered in 250 pl mTESR-1
medium) were injected in the tail vein, while intraspinally 5x 10° cells (in 2 pl mTESR-1) were slowly deliver
into the lesion cavity, through the use of Hamilton pipette. Control animals received mTESR-1 medium only
intravenously (250 pl) or intraspinally (2 ul) one week after injury. The following experimental groups were set
up in this study (Supplementary Fig. S11):

group 1) medium-iv medium injected intravenously 1 week after injury (control) n: 12
group 2) medium-isp medium injected intraspinally 1 week after injury (control) n: 16
group 3) SB5-iv hiPSCs transplanted intravenously 1 week after injury n: 24
group 4) SB5-isp hiPSCs transplanted intraspinally 1 week after injury n: 28

Retrograde labeling. Eight weeks after injury four animals in each group were deeply anaesthetized as
described above. laminectomies were made at the T13-L1 vertebral level (corresponding to the L2-L4 spinal
level) to expose the upper lumbosacral enlargement. The L3 spinal segment was identified and a right hemisec-
tion was performed. Fast Blue (FB) crystals (Dr. Illing Plastics GmbH) were placed into the gap, the dura flap was
placed to the hemisection area and the wound was closed in. Rats were kept alive for seven days after the labeling,
then they were re-anaesthetized and perfused transcardially. Cryostat sections taken from the brain, brainstem
and spinal cord were mounted onto gelatinized slides. The number of FB-positive cells was determined using an
epifluorescent microscope (BX-41, Olympus).

Sacrifice of animals and tissue preparation. At the end of each experimental paradigm (2, 3, 5 and
9 weeks after injury), rats were euthanized by overdose of ketamine-xylazine and perfused transcardially with
saline containing heparin followed by 4% paraformaldehyde (PFA) in 0.1 mol/l phosphate buffer (pH 7.4) (all
from VWR International). The spinal cord, brainstem and the brain of the animals were carefully dissected and
placed into 4% buffered PFA for one day. The fixed tissues were cryoprotected in 30% sucrose in PBS containing
0.01% sodium-azide at 4 °C until being embedded in Shandon Cryomatrix gel (Thermo Fisher Scientific). Paral-
lel or serial transverse (25 um or 30 um thick) and longitudinal (16 um thick) sections were cut on a cryostat
(CM 1850, Leica) and mounted onto gelatine-coated glass slides. These methods were according to our previous
publications*%’.

Quantitative assessment of the retrogradely labeled neurons. The number of retrogradely
labeled neurons was determined according to the method published by Bunge et al.”? Serial transverse Sec-
tions (30 pum thick) were taken from the T5, T1, C6 and C2 spinal segments and every 5th or every 10th coronal
Sections (30 pm thick) was used from the brainstem or from the cerebral cortex, respectively. In the case of the
spinal cord serial sections, the FB-labeled neurons were mapped and their location was compared to that of the
labeled neurons in the neighbouring sections. Thus, double counting of the same neuron was avoided.

Quantification of cystic area and tissue sparing. Every second transverse section from the T7-L1
segments containing the lesion cavity was stained with cresyl-violet (1% aqueous cresyl-violet solution, C-1791,
Sigma-Aldrich) (n=4 in each group).

The border between the intact tissue and the lesion cavity composed of small cysts was defined. The whole
cystic cross-sectional area (lesion cavity area) at the level of the epicentre was determined as follows: the number
of pixels of the reference area (1 mm?) and that of the cystic area was computed through the use of the NIH
Image]J analysis software (imagej.nih.gov/ij). The pixel number of the cystic area was divided by that of the ref-
erence area and the result was expressed in mm?. The percentage of spared tissue was determined in a similar
manner. Briefly, the number of pixels of the spared tissue was measured at the epicentre (0) and 0.5, 1.0, 1.5, and
2.0 mm rostrally and caudally from it. Identical spinal cord segments of intact animals were used as reference
values. The amount of spared tissue in the lesioned animals was given as percentage of intact spinal cord values.

Immunocytochemistry, immuno- and lectin histochemistry. Nonspecific binding sites were sub-
sequently blocked with 3% normal donkey, goat or horse serum. Primary antibodies and lectin were used as
follows: mouse anti-SSEA4 stage-specific embryonic antigen-4, 1:200, MAB1435, R&D Systems), mouse anti-
SC-101 (human nuclear marker, 1:500, Y40400, Clontech Laboratories), mouse anti-SC-121 (human cytoplas-
matic marker, 1:500, Y40410, Clontech Laboratories), rabbit anti-Ki-67 (1:500, ab1667, Abcam), rabbit anti-
TUBB3 (1:500, ab18207, Abcam), mouse anti-TUBB3 (1:500, ab7751, Abcam), rabbit anti-NF200kD (1:500,
ab8135, Abcam), rabbit anti-GFAP (1:400, 18-0063, Thermo Fisher Scientific), rat anti-MOG (1:200, MAB2439,
R&D Systems), goat anti-5-HT (1:500, ab66047, Abcam), mouse anti-CS-56 (1:200, C8035, Sigma-Aldrich),
biotinylated Griffonia Simplicifolia isolectin B4 (GSA-B4, 1:200, B1205, Vector Laboratories), rabbit anti-BDNF
(1:200, ab72439, Abcam), rabbit anti-GDNF (1:200, ab18956, Abcam), rabbit anti-IL-1-alpha (1:150, 250,715,
Abbiotech), mouse anti-IL-6 (1:250, ab9324, Abcam), rabbit anti-IL-10 (1:150, E92171, Enogene), rabbit anti-
MIP-1-alpha (1:200, ab9781, Abcam), rabbit anti-TNF-alpha (1:150, ab6671, Abcam), rabbit anti-NT-4/5 (1:200,
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250,792, Abbiotech), rabbit anti-VEGF (1:100, sc-507, Santa Cruz Biotechnology) and rabbit anti-PDGF-A
(1:100, sc-7958, Santa Cruz Biotechnology). The following secondary antibodies were used: biotinylated goat
anti-rat IgG (1:200, BA-9400, Vector Laboratories). The immune reaction was completed by Alexa Fluor 594
donkey anti-mouse (1:600, A21203, Thermo Fisher Scientific), Alexa Fluor 488 goat anti-rabbit (1:600, A11008,
Thermo Fisher Scientific), Alexa Fluor 546 donkey anti-rabbit (1:600, A11040, Thermo Fisher Scientific), Alexa
Fluor 488 donkey anti-goat (1:600, A11055, Thermo Fisher Scientific), Streptavidin Alexa Fluor 488 Conjugate
(1:600, S-11223, Thermo Fischer Scientific), Streptavidin Alexa Fluor 405 Conjugate (1:600, S-32351, Thermo
Fischer Scientific,). The sections were covered using Vectashield mounting medium containing DAPI (1.5 pg/
ml; H-1000-10, Vector Laboratories), which labeled the nuclei of the cells. Negative controls for the secondary
antibodies were performed by omitting the primary antibodies. Immunoreactive sections were viewed by a
BX-41 epifluorescent microscope equipped with a DP-74 digital camera or Olympus FV-10i-W compact confo-
cal microscope system (Olympus).

Analysis of the hiPSC differentiation engrafted in the spinal cord. These analyses were performed
based on previously described methods*®”. To quantify the differentiation pattern of engrafted cells (n=4 in
each transplanted group), we immunostained sagittal sections of the spinal cords containing hiPSCs and deriv-
atives at 1 and 2 weeks after transplantation. For Ki-67 labeling, we randomly selected three tissue sections
that were 90 um apart from each other. Images taken by confocal microscopy at 60x magnification were used
for quantitative analysis. The numbers of SC-101 or SC-121/DAPI-positive cells were counted in 5 randomly
selected fields per section. Next, those SC-101 or SC-121/DAPI-positive cells were counted that were colabeled
with Ki-67 or TUBB3 and their percentages were given. SSEA-4 quantifiaction, the number of DAPI-positive
cells were counted. Next the DAPI/SSEA-4-colabeled cells were counted and their ratio was given.

Analysis of biodistribution of intravenously applied hiPSCs.  The spinal cord, lungs, liver and spleen
were collected 7 days after cell injection (n=4). The tissues were postfixed for 1 day with 4% PFA, cryoprotected
and embedded in Shandon Cryomatrix gel. The 16 or 30 um thick tissue sections were stained with anti-SC-121
and DAPI. Images were taken with an Olympus BX-41 epifluorescence microscope equipped with a DP-74 digi-
tal camera using the Cell Sense software (Olympus).

Quantification of CS-56, GFAP, GSA-B4 expression after the injury. To assess the density of
GFAP +, GSA-B4 +and CS-56 + reactivities in spinal cords of injured and treated animals (n=4 in each group),
two sagittal Sects. (150 um apart from each other) containing the lesion cavity were analysed for each marker,
9 weeks after injury. Microphotographs were taken using an Olympus BX-41 epifluorescence microscope
equipped with a DP-74 digital camera and the whole spinal cord section area including the cavity and a 2 mm
long extension of the tissue rostrally and caudally from the cavity ends was analysed using Image] software. The
background intensity of unstained samples was individually subtracted from the intensity of treated sections. To
correct for interanimal variations in the immunolabeling efficiency, we normalized the intensity of the immuno-
labeled tissue to the same section (uninjured area) 4 mm rostral to tip of the lesion area/grafted area. Data were
expressed as fold increase immunointensity normalized to uninjured value.

Quantification of NF-200 and TUBB3 expression after the injury. In the case of NF-200kD and
TUBB3 we used the method as mentioned above (2 and 9 weeks after injury), but the extension was only
200 pum from the graft-host (in SB5-isp group) or the spared-lesion (in medium-isp group) border. The intensity
of immunolabeled area was normalized to the plain injured spinal cord. Data were expressed as fold increase
immunointensity normalized to plain injured value.

Quantification of 5-HT expression caudal to the injury. Two sagittal sections of the spinal cord
(medium-isp, SB5-isp and plain injured spinal cord) were photographed at 20x primary magnification using an
Olympus BX-51 epifluorescence microscope equipped with a DP-74 digital camera at four distances caudally
from the cavity ends (500, 1000, 1500 and 2000 um; in an area of 100 pm x 500 pm in each distance). Using
Image] Software (NIH), relative density of 5-HT immunoreactivity was measured in entire sagittal section of
the spinal cord. Background intensity unstained samples was subtracted from the intensity value to correct for
nonspecific reactions. The density of the immune-labeled tissue was normalized to the plain injured spinal cord
at all examined distances caudally to the lesion. Data were expressed as fold increase immunointensity normal-
ized to plain injured value.

Quantification of factors produced by the grafted cells. Quantification of the factor expression by
grafted cells was performed using Image] software according to Tieng et al.”*”> Briefly, images were taken by
confocal microscopy at 120x magnification. The numbers of IL-10-, GDNF- and MIP1-alpha-immunoreactive
pixels were measured in 5 randomly selected area/animal. Data was normalized with DAPI positive nuclei num-
ber. Data were expressed as percentage of marker/DAPI ratio.

BBB open field locomotor score. The Basso, Beattie, Bresnahan (BBB) locomotor rating scale’’ was per-
formed 3 days and every 1 week after injury up to 8 weeks (n=8 in each group). Two observers, unaware of
experimental procedures tested the animals. Rats were assessed in an open field (150 x 100 cm) for 4 min at a
similar time of day for each testing. We randomly allocated the injured animals into four experimental groups in
the manner that all groups consisted of animals with comparable range of BBB scores as well as group average.

Scientific Reports |

(2020) 10:22414 | https://doi.org/10.1038/s41598-020-79846-2 nature research



www.nature.com/scientificreports/

This randomization ensured the presence of equivalent locomotor deficits across the groups before the begin-
ning of treatment.

Analysis of locomotion pattern. Between the 4th and the 8th postoperative week video-based kinematic
analysis was carried out (n=8 in each group). The hair of the rats was shaved off from the hind limbs and the
skin was marked by a black pen above the major joints. We used a plexiglass runway equipped with a mirror
system to be able to record the position of the hind limb from both lateral and rear-view aspects. Two high
resolution and high-speed cameras (GoPro Hero 3 + Black Edition, GoPro; DFK 22AUCO03, The Imaging Source,
www.gopro.com) were used to during 3 to 4 step cycles. The animals were trained prior to the measurements to
walk from one end of the runway to the other reaching a shelter and were tested every week postoperatively. By
comparing specific single video frames we measured six different parameters to get detailed information on the
recovery. The lateral placing parameter is the angle enclosed by the axis of the tarsus and the longitudinal axis of
the animal. We measured this parameter from ventral mirror view. The Toe off angle (TOA) is the angle enclosed
by the floor plate and the line formed by the tarsal and metatarsal bones. Ankle flexion (AF) which is an angle
enclosed by the tarsus and the tibia was measured. Knee flexion (KF) has been determined as the angle enclosed
by the tibia and the femur at the first moment of the stance phase. We measured these last 3 parameters from
lateral view. The angle enclosed by the metatarsus and the surface and the tarsus-surface angle were observed
from rear-view aspect. A methodological manuscript detailing the description of the above set up’® and analysis
is currently being prepared for publication.

Image processing and statistical analysis. Graphs were created by Microsoft Office Pro Plus 2016
(Microsoft, www.office.com). Graphs and representative images were further processed using the GNU Image
Manipulation Program (GIMP 2.10.0, www.gimp.org).

All results were analyzed using SPSS version 24.0 (IBM). BBB scores and analysis of locomotion pattern
for each group were analysed using repeated measures two-way ANOVA. The Tukey’s all pairwise multiple
comparison procedure was used to correct for multiple comparisons. Comparisons of quantitative immuno-
histochemistry data were carried out by using the Student’s t-test or one-way ANOVA with Tukey’s post-hoc
test. Data are presented as mean + Standard Error of Mean (SEM), and p <0.05 was considered to be significant.
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