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Universal Poisson Statistics of mRNAs with Complex Decay Pathways
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ABSTRACT Messenger RNA (mRNA) dynamics in single cells are often modeled as a memoryless birth-death process with a
constant probability per unit time that an mRNA molecule is synthesized or degraded. This predicts a Poisson steady-state dis-
tribution of mRNA number, in close agreement with experiments. This is surprising, since mRNA decay is known to be a complex
process. The paradox is resolved by realizing that the Poisson steady state generalizes to arbitrary mRNA lifetime distributions.
A mapping betweenmRNA dynamics and queueing theory highlights an identifiability problem: ameasured Poisson steady state
is consistent with a large variety of microscopic models. Here, I provide a rigorous and intuitive explanation for the universality of
the Poisson steady state. I show that the mRNA birth-death process and its complex decay variants all take the form of the
familiar Poisson law of rare events, under a nonlinear rescaling of time. As a corollary, not only steady-states but also transients
are Poisson distributed. Deviations from the Poisson form occur only under two conditions, promoter fluctuations leading to tran-
scriptional bursts or nonindependent degradation of mRNA molecules. These results place severe limits on the power of single-
cell experiments to probe microscopic mechanisms, and they highlight the need for single-molecule measurements.
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The small volume of living cells and the small number of
many important biological molecules forces us to adopt a
discrete description of biochemical reactions. Randomness
or stochasticity arises as an immediate consequence: when
we move from concentrations to molecule numbers, we
move from reaction rates to reaction probabilities per unit
time. As a result, for any molecule of interest, isogenic cells
in identical conditions will have a broad distribution of
molecule number. The variance of the distribution—the
extent of deviation from the deterministic value—is partic-
ularly large for macromolecules such as messenger RNA
(mRNA) and proteins, which are synthesized rarely and
exist in small numbers.

The influence of stochasticity on gene expression, often
referred to as intrinsic noise in the transcription of mRNA
and the translation of proteins, has been well studied both
theoretically and experimentally (1–3). Simple birth-death
models of transcription and decay predict that steady-state
mRNA numbers, m, should follow a Poisson distribution
whose variance, s2m, is equal to its mean, mm (4). Measure-
ments of mRNA expression at an inducible promoter in
the bacterium Escherichia coli showed that variance did
scale with the mean, though the Fano factor, s2m=mm, was
~4 rather than unity (5). A comprehensive analysis of
mRNA numbers for over a thousand E. coli promoters found
that variance scaled with the mean over two orders of
magnitude, and that the median Fano factor, s2m=mm , was
~1.6 (6), close to the Poisson expectation. Inferred mRNA
fluctuations based on protein abundance measurements in
the yeast Saccharomyces cerevisiae suggested that mRNAs
were Poisson distributed (7). Finally, direct single-RNA
counting experiments in S. cerevisiae showed that mRNA
distributions of many housekeeping genes were of the Pois-
son form (8).

In these analyses, the term Poisson is used in three related
but distinct ways. First, a Poisson process is a memoryless
process in which events occur with a constant probability
per unit time, implying an exponential distribution of inter-
event intervals. Second, a Poisson distribution is the distri-
bution of the number of events generated by a Poisson
process in a fixed time interval, a result also known as the
law of rare events. Third, the steady-state distribution of
the number of molecules when birth and death are Poisson
processes coincidentally also takes the mathematical form
of the Poisson distribution, often called the Poisson steady
state.

It has been suggested that measured mRNA and protein
distributions can be used to probe the underlying micro-
scopic synthesis and decay dynamics (9). Taking the Pois-
son steady state as a null model, it is assumed that any
deviations can be attributed to ‘‘non-Poissonian mRNA
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FIGURE 1 Synthesis and decay of mRNA. We sample mRNA

molecules at time t ¼ 0. Vertical ticks show mRNA synthesis

events. Horizontal lines show the persistence and decay of sin-

gle mRNAmolecules.We keep track of synthesis events for mol-

ecules that survive at the sampling time (bold, tall ticks). Those

that have decayed are ignored (short ticks). (A) The scenario

where all mRNA molecules have the same lifetime, t, is equiva-

lent to having a constant rate of synthesis in the interval ð�t;0Þ.
(B) The scenario where mRNA molecules have a distribution of

two lifetimes (also shown in Fig. 2, right). At the sampling

time, all new mRNAs survive, but only long-lived old mRNAs

survive. The effective synthesis rate thins out as we move to

the past. This can be compensated for by a nonlinear change

of variables to a new time variable, T, squeezing the time axis.

This restores an effective constant rate of synthesis in an inter-

val of width hti, the mean mRNA lifetime.
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production or degradation’’ (6). Conversely, it is assumed
that Poisson scaling ‘‘reflects fluctuations in mRNA levels
that arise from the random birth and death of individual
mRNA molecules’’ (7). Both claims are too strong. Tran-
scriptional bursts or more complicated promoter dynamics
(10,11) indeed generate non-Poisson steady-state mRNA
distributions. However, complex models of decay such as
senescence generate Poisson scaling (12,13). These results
hint that there might be a deeper reason why observed
mRNA distributions for E. coli (5,6) and S. cerevisiae
(7,8) are close to Poisson, though mRNA decay is known
to be a regulated multistep process in both bacteria and eu-
karyotes (14–16).

Here, I give a proof of the universality of the Poisson
steady state for mRNAs with Poisson synthesis dynamics
but arbitrarily complex decay pathways. This follows
from a fundamental one-to-one correspondence between
these dynamics and the law of rare events, under a
nonlinear rescaling of time. I emphasize the identifiability
problem: a large class of distinct microscopic models have
Poisson steady states and therefore cannot be distinguished
by single-cell measurements. Finally, I characterize the
precise conditions under which we expect deviations
from the Poisson steady state. This discussion is self-con-
tained, but throughout the text I highlight connections
with results from queueing theory (see Gross et al. (17)
and Kleinrock (18) for a description of queueing notation),
which can be used as a starting point for more complex
derivations.

We start with the usual birth-death process (the M=M=N
queue) where B represents the empty set, M represents
mRNA, and m is the number of mRNA molecules at some
time:

B/
a
M/

g
B: (1)

The stochastic chemical-kinetic system in Eq. 1 has a
Poisson steady state with mean hmi ¼ ahti, where
hti ¼ 1=g is the mean mRNA lifetime under exponential
decay (4):

PðmÞ ¼ hmim
m!

e�hmi: (2)

We now extend this to the case where mRNA synthesis is
an inhomogeneous time-dependent Poisson process, and
decay is a multistep, potentially branching and looping pro-
cess through a variety of intermediate states M0, M00, ...
Here, m represents the total number of mRNA molecules
across all such states. The decay reaction propensities could
be constant, or could themselves be drawn from time-depen-
dent statistical distributions. Schematically,

B / M / / / M0

aðtÞ [ fgðtÞg Y Y
M00 ) / / B

: (3)
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It is a surprising and powerful result that the transient
mRNA distribution of the complex system in Eq. 3 has pre-
cisely the Poisson form of Eq. 2, where hmi is now the
(possibly time-dependent) mean mRNA number (19,20).
If a steady state does exist, then hmi ¼ ahti, where hti is
the mean mRNA lifetime under any stationary model of
decay. Here, I attempt to convey the fundamental mathemat-
ical origins of the Poisson distribution within this diverse
class of models.

Consider an idealized system in which every mRNA
molecule has precisely the same lifetime, thhti, (Fig. 1 A,
the M=D=N queue). At any sampling time t ¼ 0, the only
mRNA molecules present will be those created in the time
interval ð�t; 0Þ. This is the same as asking for the number
of synthesis events of a Poisson process with rate a in a
time interval of width t. The result, by the law of rare events
interpretation, is the Poisson distribution of Eq. 2. But what
if the mRNA molecules have a distribution of lifetimes RðtÞ
(which can be obtained by a first-passage-time analysis of
the decay pathways in Eq. 3)? In this case, the molecules
present at the sampling time could have been created



FIGURE 2 From lifetime distributions to rescaled time. (Lower)

The lifetime distribution RðtÞ ¼ �dSðtÞ=dt. (Middle) The sur-

vival probability, SðtÞ. (Upper) The rescaled time variable,

T ðtÞ ¼ R
Sðt0Þdt0. Integration by parts relates the functions

RðtÞ and T ðtÞ through Eq. 7. (Left) The standard birth-death pro-

cess with an exponential lifetime distribution. (Right) A system

in which each molecule can randomly have one of two possible

lifetimes, represented as delta functions, corresponding to the

dynamics shown in Fig. 1 B. Note that t measures time going

into the past.
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arbitrarily far back in time (Fig. 1 B), and there is no obvious
way to invoke a law of rare events interpretation.

To proceed, consider Eq. 3 with constant propensities of
synthesis and decay (Fig. 1 B; the M=G=N queue), and
consider the probability of survival of an individual
mRNA molecule for some time interval t since its syn-
thesis:

SðtÞ ¼
ZN

t

Rðt0Þdt0: (4)

An mRNA molecule created at time --t has a chance SðtÞ
of surviving to the sampling time t ¼ 0. It is only these sur-
vivors we need to consider; all the molecules that have
already decayed can effectively be ignored. This is the
same as looking at the result of an inhomogeneous Poisson
process with a time-dependent synthesis rate, aSðtÞ, and
ignoring decay altogether. The effective synthesis rate thins
out the farther back in time we go. Integrating into the past,
this generates a Poisson distribution with mean

hmi ¼
Z N

0

aSðtÞdt: (5)

The key observation is that we could equivalently rescale
time by the change of variables, jdT j ¼ jSðtÞdt j , so that
synthesis again becomes a Poisson process with constant
rate a. In effect, the thinning out of past synthesis events
is compensated for by nonlinearly squeezing the time axis
(Fig. 1 B). It only remains to fix what happens to the limits
of the integral in Eq. 5 (Fig. 2). We define

TðtÞ ¼
ZN

t

Sðt0Þdt0 (6)

so that TðNÞ ¼ 0, and through integration by parts,
Z N
Tð0Þ ¼ SðtÞt jN0 �
0

dSðtÞ
dt

tdt

¼
Z N

0

RðtÞtdthhti;
(7)

where the boundary term goes to zero by a version of Mar-
kov’s inequality, assuming only that RðtÞ has a finite mean

(21). The variable T maps the infinite past to 0 and the sam-
pling time to hti (Fig. 1 B). Therefore,

Z N

0

aSðtÞdt ¼
Z hti

0

adT ¼ ahti ¼ hmi; (8)

and we recover exactly a law of rare events picture in which

synthesis is a Poisson process with constant rate a in a time
interval of width hti, precisely as in Eq. 2.

In queueing theory, the rightmost equality of Eq. 8 is
known as Little’s law and relates various mean values
(17,18). We are more concerned with the leftmost equality,
which rescales the time variable t to a new time variable, T,
and contains information about the entire distribution. The
benefit of this point of view is that we can now extend the
model to more complex situations. If we can find a rescaled
time in which a law of rare events interpretation is valid, the
distribution must be Poisson.

For example, suppose we had started with zero mRNA
molecules and turned on synthesis at time �t0. Then, at
the sampling time t ¼ 0, we would still have a Poisson dis-
tribution such that

TðtÞ ¼
Z t0

t

Sðt0Þdt0
Z t0

0

aSðtÞdt ¼
Z Tð0Þ

0

adT ¼ aTð0Þ ¼ hmi;
(9)

even though the system had not yet reached steady state.

We next consider more complicated cases with time-

dependent rates. We assume that all functions of time are
shifted so that the sampling time is t ¼ 0. If the synthesis
propensity is time-dependent but decay propensities are
constant (the Mt=G=N queue (19)), we have

Z N

0

aðtÞSðtÞdt ¼
Z Tð0Þ

0

aðTÞdT ¼ hmi; (10)

which is an inhomogeneous Poisson process in the rescaled
time interval, whose mean depends on the sampling time.
For the classic birth-death process with time-dependent
Biophysical Journal 110(2) 301–305
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synthesis and decay rates (the Mt=Mt=N queue (20)), we
could first rescale time to make the decay rate constant.
This would then be a special case of the inhomogeneous
Poisson process in Eq. 10, and we recover a Poisson distri-
bution with time-dependent mean.

Finally, we consider the full-blown version of Eq. 3 with
time-dependent synthesis and decay (the Mt=Pht=N or
Mt=Gt=N queues (20)). All mRNAs synthesized at time t
would have the same lifetime distribution, RtðtÞ, and their
probability of survival would be

StðtÞ ¼
ZN

t

Rtðt0Þdt0: (11)

We now examine S�tðtÞ, the probability that an mRNA
synthesized at time --t survives to the sampling time.
Confusingly, S�tðtÞ need not decrease monotonically into
the past, though it must go to zero in the infinite past. For
example, an epoch of long-lived mRNAs followed by an
epoch of short-lived mRNAs would mean older mRNAs
had a greater chance of surviving to the present. Neverthe-
less, the rescaled time variable is a well-defined monotonic
function with a Poisson interpretation:

TðtÞ ¼
Z N

t

S�t0 ðt0Þdt0

Tð0Þ ¼ �
Z N

0

dS�tðtÞ
dt

tdt

Z N

0

aðtÞS�tðtÞdt ¼
Z Tð0Þ

0

aðTÞdT ¼ hmi:

(12)

Note that �dS�tðtÞ=dtsR�tðtÞ (the subscript in Eq. 11
is t, not t) so Tð0Þ does not have a simple interpretation as
the mean of some lifetime distribution.

Having discussed the large number of circumstances
where the Poisson distribution arises, I will mention where
it does not. Clearly, if the synthesis process is not Poisson
there is no time rescaling that can make it Poisson. This is
the situation when the promoter has fluctuating internal dy-
namics (the Pht=Pht=N queue (20)), or the transcripts arrive
in bursts (the MX=G=N queue (22)). More interestingly, if
mRNAs interact so that their decay is correlated, for
example, by saturating the degradation machinery (e.g.,
theM=G=k queue (17)), it is in general not possible to define
a state-independent lifetime distribution or rescaled time,
and mRNA numbers will not be Poisson distributed (how-
ever, see Grima (13) for some exceptions).

Ultimately, Poisson-distributed mRNA numbers are ex-
pected to be ubiquitous. The underlying argument is trans-
parent, requiring no master equations or recursion
relations, and it generalizes to complex decay pathways
and transients. For all models with Poisson-distributed tran-
sients or steady states, the entire distribution is parameter-
Biophysical Journal 110(2) 301–305
ized by the time-dependent mean, hmiðtÞ, which is the
solution of an ordinary differential equation. As such, it is
impossible to distinguish microscopic models using sin-
gle-cell-resolved measurements, so true single-molecule
measurements are warranted. For non-Poisson cases, mea-
surement of carefully chosen means and variances can be
used to probe microscopic details (22).

Does the squeezed time have any physiological correlate,
beyond its mathematical utility? Here, we find an intriguing
connection to psychophysics: the mRNA survival probabil-
ity is a past temporal discounting function, so the rescaled
variable T is subjective time (23): it is the cell’s perception
of the flow of recent events, as sampled by the mRNAs pre-
sent at some instant. This has implications for the notion of
memory in living systems.
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