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High altitude has diverse systemic and ophthalmic effects 
on individuals. Ophthalmic effects include changes in the 
conjunctiva, cornea, lens, retina, optic nerve, and intraocular 
pressure (IOP).[1,2]

IOP at high altitude has been a topic of controversy for 
many years. Some studies have found IOP to be reduced under 
natural[3,4] or simulated[5] high altitude conditions, while others 
have found it to be raised[6-8] or normal.[1,9] The increased level 
of IOP at simulated hypobaric hypoxic conditions returns to 
nearly previous level when the subject descends to ground 
level.[6]

The mechanism of IOP changes that occur under high 
altitude conditions remains unclear.[4,9] It is known that IOP 
measurements can be affected by changes in central corneal 
thickness (CCT).[10,11] Furthermore, recent studies found that 
hypobaric hypoxic exposure can cause an increase in CCT,[12,13] 
however, in our study this CCT increase was not enough to 
explain the change in IOP.[14]

It has been shown that brain natriuretic peptide (BNP) 
can reduce IOP.[15,16] In rabbits, intravitreally injected BNP has 

been found to increase cGMP concentration in the aqueous 
humor, resulting in an increase in outflow.[17] In porcine eyes, 
BNP-like immunoreactivity-containing nerve fibers are found 
in the aqueous humor outflow pathway, ciliary processes, and 
anterior ciliary muscles.[18] In rat eyes, there is also expression 
of BNP mRNA in the retina, choroid, and ciliary body.[19] These 
studies suggest that BNP may have a role in the regulation of 
IOP.

Plasma levels of BNP have been found to increase 
during hypoxia.[20] In addition to extended exposure to 
hypobaric hypoxia itself (10-91 days), endurance training 
in hypobaric hypoxic conditions leads to a marked early 
increase in ventricular and atrial BNP mRNA levels.[21] As 
for the physiologic effects that can be produced by elevated 
plasma BNP levels, Klinger et al., found that in rats, BNP 
infusion attenuated the development of hypoxic pulmonary 
hypertension.[22] The authors suggested that this finding 
supports the hypothesis that endogenous BNP plays a role in 
modulating the pulmonary hypertensive responses seen in 
chronic hypoxia. Since we found in our previous study that the 
changes in CCT in hypobaric hypoxic conditions have minor 
effect on the changes in IOP,[14] we planned the current study 
by reapplying some data of the previous study to evaluate the 
relationship between IOP and plasma BNP levels. To the best 
of our knowledge, such an association has not been explored 
in the past. We hypothesized that the changes in IOP which 
occur under hypobaric hypoxic conditions might be associated 
with plasma BNP levels. We hypothesized that the change 
in IOP under hypobaric hypoxic conditions, which has been 
shown previously, may be compensated and returned to 
normal values with the increasing BNP under these conditions. 
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We aimed to examine whether the increased IOP caused by 
hypobaric hypoxic exposure is compensated by plasma BNP 
level changes. 

Materials and Methods
The study group comprised 26 male pilots (52 eyes) with a 
mean age of 23.1 6 1.6 years (range, 21-34 years). The study 
was conducted in accordance with the Helsinki Declaration 
and was approved by the local institutional ethics committee. 
For each participant, a full ophthalmic examination, including 
refraction, a slit-lamp examination, gonioscopy, and assessment 
of the posterior segment was carried out. None of the subjects 
had a history of ocular disease.

Measurements of IOP were made in both eyes in each 
participant under topical anesthesia with proparacaine 
hydrochloride. A Tono-Pen XL tonometer (Medtronic-Solan, 
Jacksonville, USA) was utilized to measure IOP. The mean of 
three consecutive measurements of IOP was recorded for each 
eye. The Tono-Pen XL® has been reported to be unresponsive 
to alterations in ambient barometric pressure.[1,5,6]

An altitude chamber (ETC, Philadelphia, USA) with a 
capacity of 10 trainees and two inside observers was used for 
hypobaric hypoxic simulation.

IOP was measured at local ground level, which is 792 m 
(2598 ft) above sea level, 10 min before participants entered the 
hypobaric chamber (prehypoxic condition). At this altitude the 
partial pressure of oxygen (pO2) is 145  mmHg and alveolar 
pO2 is 135  mmHg. Denitrogenation was achieved by breathing 
100% O2 with a tight-fitting pilot mask for 30 min. This mask 
covered just the mouth and nose, not the eyes. In the chamber, 
the temperature was approximately 24°C and relative humidity 
was 32% at ground level conditions. Then the chamber was 
decompressed to a simulated altitude of 30000 ft (9144 meters) 
in 20 min, which decreased the pO2 to 50.5  mmHg and 
alveolar pO2 to 41  mmHg. The temperature decreased to 22°C 
at the simulated altitude. This altitude was chosen because 
30000 ft is the regular flight altitude for most airline transport 
aircraft. Aviators or passengers may get exposed to this level 
of low pressure due to a cabin pressure loss or an increase 
in altitude without cabin pressurization. At the simulated 
target altitude, participants removed their oxygen masks and 
breathed ambient air for 1-3 min. When their performance of 
the pen-paper (orientation) test was observed to be impaired 
(hypobaric hypoxia), the mask was donned immediately and IOP 
measurements were performed. At a simulated altitude of 30000 
ft with 100% oxygen, arterial oxygen saturation is maintained 
at 97%, but it immediately goes down to 66% or below—even 
at lower altitudes—where subjects show the signs of cognitive 
impairment.[23] IOP measurements were repeated at ground level 
about 10 min after participants left the chamber (posthypoxic 
condition). All IOP was measured in the sitting position with 
the same instrument for all participants and instrument was 
calibrated before each session. The timeline of the procedures 
in the hypobaric chamber is illustrated in Fig. 1. 

For plasma BNP measurements, blood samples were drawn 
30 min before the participants entered the chamber, and 
immediately after they left the chamber. BNP levels during 
hypobaric hypoxic conditions were not measured due to the 
difficulty in drawing blood during hypoxia training. Because 

of the long plasma half-life of N-terminal pro-brain natriuretic 
peptide[24] we considered that the value after the chamber 
session also reflected the hypoxic value. Plasma BNP levels 
were measured with an Elecsys 1010 (Roche, Switzerland).

All statistical analyses were performed with the use of 
SPSS for Windows, Version 13.0 (Chicago, USA). Unless 
otherwise stated, results were expressed as mean  6  standard 
deviation. P values of less than 0.05 were considered statistically 
significant. Repeated measures ANOVA and the Wilcoxon test 
(two related samples tests) were used as appropriate. 

Results
All subjects had normal ophthalmologic findings and 
best‑corrected visual acuity was 20/20 or better in each eye.

In the 52 eyes of the 26 participants the mean prehypoxic IOP 
was 15.66  6  2.10  mmHg (range, 10-22  mmHg); hypobaric 
hypoxic IOP was 18.00  6  3.70  mmHg (range, 11‑26  mmHg), 
and posthypoxic IOP was 16.1  6  2.63  mmHg (range, 
10‑23  mmHg). IOP under hypobaric hypoxic conditions 
was significantly greater than both prehypoxic (P , 0.001) 
and posthypoxic (P  5  0.001) IOP. There was no significant 
difference between pre- and posthypoxic IOP levels (P 5  0.136). 

Before the participants entered the chamber for hypobaric 
hypoxic exposure, their mean plasma BNP level was 
26.8  6 15.7 pg/ml (range 6.2-67.9 pg/ml). Immediately after 
exit from the chamber, the mean plasma BNP level was 
24.2  6 17.4 pg/ml (range 6.1-81.3 pg/ml). These pre- and post-
exposure BNP levels did not differ significantly from each other 
(P 5  0.461).

Discussion
The research literature regarding the effects of hypobaric 
hypoxic exposure on IOP has not yet provided a clear picture 
of the mechanisms involved. Another complicating factor 
is that CCT, which can change in response to hypobaric 
hypoxic conditions,[12,13] can thereby lead to artifactually high 
measurements of IOP. In our previous study we have found that 
the change in CCT was not enough to explain the increase in 
IOP in hypobaric hypoxic conditions.[14] The reason why the IOP 
returns to the pre-exposure values at the end of the hypobaric 
exposure is not clear, either. The rationale for this study was 

Figure 1: The timeline of hypobaric chamber flight
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therefore to assess the validity of BNP as a possible factor in 
the regulation of IOP under hypobaric hypoxic conditions. 

This study is consistent with some previous studies[6-8] 
which demonstrated that hypobaric hypoxia results in a 
significant increase in IOP. Some studies concluded that IOP 
measurements were affected by high altitude environmental 
conditions. Ortiz et al.[25] reported that cold air led to a drop in 
IOP due to a fall in episcleral venous pressure. Passo et al.[26] 
showed that exercise and fatigue caused a fall in IOP. Since our 
study has been conducted in a hypobaric chamber, the effect 
of cold air, fatigue and exercise was not present. 

Natriuretic peptides are known to have effects on IOP.[16] 
In a study by Takashima et al.,[17] BNP was found to induce a 
significant reduction in IOP when injected intravitreally into 
the rabbit eye. The injected BNP led to an increase in cGMP 
concentration in the aqueous humor, and to increased aqueous 
outflow. Fernández-Durango showed that intracamerally 
injected BNP stimulated guanylate cyclase activity and 
decreased IOP.[16] Under chronic hypoxic conditions, plasma 
levels of BNP have been found to increase.[20] In addition to 
extended exposure to hypobaric hypoxia itself (10-91 days), 
endurance training in hypobaric hypoxic conditions leads to 
a marked early increase in ventricular and atrial BNP mRNA 
levels.[21] As for the physiologic effects that can be produced 
by elevated plasma BNP levels, Klinger et al., found that in 
rats, BNP infusion attenuated the development of hypoxic 
pulmonary hypertension.[22] The authors suggested that this 
finding supports the hypothesis that endogenous BNP plays 
a role in modulating the pulmonary hypertensive responses 
seen in chronic hypoxia. With these findings in mind, we 
hypothesized that under hypobaric hypoxic conditions, 
endogenous BNP might serve to compensate the rise in IOP 
resulting from exposure to these conditions, because we were 
anticipating a significant change in BNP due to hypoxia. In 
our study, plasma BNP levels did not change after short-
term hypobaric hypoxic exposure, because of this, there has 
not been any compensation against the IOP increase which 
probably has been caused by some other systemic factors. 
One possible reason for the lack of significant change in BNP 
levels might be the relatively short period of exposure to the 
hypobaric hypoxic conditions. As the hypobaric hypoxic 
conditions were reversed, IOP decreased to normal levels. 
When considering other factors that could have acted in the 
IOP increase, one should take into account the physiological 
responses to acute hypoxia. The hypoxia induces both general 
and regional changes in the cardiovascular and respiratory 
systems. The heart rate increases as the partial oxygen 
pressure decreases, and it is doubled even below 30000 ft. 
There is also a proportional increase in cardiac output. The 
systolic pressure and the pulse pressure are raised too. By the 
increasing altitude, respiratory rate shows an increase and 
decrease at mild to moderate hypoxia, but minute volume 
increases steadily. The hyperpnea, tachypnea, increased heart 
rate and increased cardiac output are mainly the results of 
carotid and aortic chemoreceptor stimulation. [24] In addition, 
it is known that plasma cortisol levels cause the diurnal 
variation in IOP[27] and exposure to hypobaric hypoxia 
influences cortisol levels.[28] These systemic changes might 
be possibly causing the increase in IOP. Probably, as these 
factors are restored after the end of hypoxic exposure, IOP 
returns to normal levels.

To the best of our knowledge, this is the first study to evaluate 
the relation between plasma BNP and changes in IOP due to 
hypobaric hypoxic exposure. Therefore, it is not currently 
possible to compare our data directly with those of other studies.

Conclusion
Short-term hypobaric hypoxic exposure did not cause an 
increase in plasma BNP levels, probably the increased IOP 
levels are compensated by some local or systemic factors other 
than BNP levels. IOP decreased to normal levels as the ambient 
pressure returned to normal conditions. Further studies are 
needed to determine the exact factors and compensation 
mechanisms causing the IOP increase in hypobaric hypoxic 
conditions. 
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