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Abstract 

Alzheimer’s disease is the most common neurodegenerative disease and is characterized by the accumulation of 
amyloid-beta peptides leading to the formation of plaques and tau protein tangles in brain. These neuropathological 
features precede cognitive impairment and Alzheimer’s dementia by many years. To better understand and predict 
the course of disease from early-stage asymptomatic to late-stage dementia, it is critical to study the patterns of 
progression of multiple markers. In particular, we aim to predict the likely future course of progression for individuals 
given only a single observation of their markers. Improved individual-level prediction may lead to improved clinical 
care and clinical trials. We propose a two-stage approach to modeling and predicting measures of cognition, func-
tion, brain imaging, fluid biomarkers, and diagnosis of individuals using multiple domains simultaneously. In the first 
stage, joint (or multivariate) mixed-effects models are used to simultaneously model multiple markers over time. 
In the second stage, random forests are used to predict categorical diagnoses (cognitively normal, mild cognitive 
impairment, or dementia) from predictions of continuous markers based on the first-stage model. The combination 
of the two models allows one to leverage their key strengths in order to obtain improved accuracy. We characterize 
the predictive accuracy of this two-stage approach using data from the Alzheimer’s Disease Neuroimaging Initiative. 
The two-stage approach using a single joint mixed-effects model for all continuous outcomes yields better diagnos-
tic classification accuracy compared to using separate univariate mixed-effects models for each of the continuous 
outcomes. Overall prediction accuracy above 80% was achieved over a period of 2.5 years. The results further indicate 
that overall accuracy is improved when markers from multiple assessment domains, such as cognition, function, and 
brain imaging, are used in the prediction algorithm as compared to the use of markers from a single domain only.
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1 Introduction
Prediction of future Alzheimer’s disease (AD)-related 
progression is extremely valuable in clinical practice 
and in medical research. In clinical practice, the ability 
to accurately predict the diagnosis of a patient can help 
physicians make more informed clinical decisions on 
treatment strategies  [1]. Clinical trials are more likely 
to be successful if the individuals selected for the trials 
are those most likely to benefit from the therapy. Many 

researches in the field contend that preventative strate-
gies initiated prior to the appearance of advanced symp-
toms are most likely to be successful  [2–4]. Therefore 
identifying candidates for therapies while they are still 
cognitively normal (CN) or mildly cognitively impaired 
(MCI) is key for clinical trials, and eventually clinical 
practice.

The pathology of AD is characterized by the accumu-
lation of amyloid plaques and neurofibrillary tangles in 
the brain beginning as early as middle age. The amyloid 
hypothesis posits that plaques caused by the gradual 
buildup of beta-amyloid ( Aβ ) peptides damage brain 
regions responsible for cognition thereby leading to 
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impairment. Recent studies have shown that the pathol-
ogy of the disease occurs several years before the onset of 
clinical symptoms, making the disease difficult to detect 
at an early stage  [5, 6]. In addition, prediction of the 
future diagnosis of an individual (CN, MCI, or dementia) 
is very challenging due to high subjectivity and individ-
ual-level variability in cognitive assessments and levels of 
biomarkers, which have typically been used for staging of 
AD. The assessment of an individual’s current diagnosis 
can vary from one clinician to the next, or from one day 
to the next.

Classification and prediction based on expert knowl-
edge, machine learning algorithms  [7, 8], regression-
based prediction models [9, 10] and some combinations 
of these  [11] have been proposed. Beheshti et al[12] 
recently developed a computer-aided diagnosis system 
to predict conversion from MCI to AD using magnetic 
resonance imaging (MRI) data. Zheng et al[13] sur-
veyed other automated techniques for classifying and 
predicting diagnosis with reasonable reliability using 
data from different imaging modalities. The reliability of 
these approaches is often assessed by the sensitivity and 
specificity of the methods, accuracy rate, and absolute 
error rates, among other criteria. Approaches with high 
accuracy rates and precision are desirable. The diagno-
sis of CN, MCI, or mild dementia by expert clinicians 
has traditionally relied on cognitive assessments such as 
the Mini-Mental State Examination (MMSE)  [14], Logi-
cal Memory  [15] and structured clinical assessments 
such as the Clinical Dementia Rating (CDR)  [16]. How-
ever, including multiple domains might help explain and 
more accurately predict the varying rates of decline that 
are typical. For example, it is common to find individuals 
who present with symptoms consistent with MCI or mild 
AD dementia, but who lack biomarker evidence of AD 
pathology. Such an individual might have other pathol-
ogy that will exhibit a different rate of progression. Going 
beyond the cognitive domain to multi-domain analysis is 
therefore appealing. Longitudinal cognitive assessments 
combined with neuroimaging and biomarkers can more 
easily facilitate diagnosis and increase prediction accu-
racy  [3, 17]. While multi-domain analyses are interest-
ing, intuitive and potentially more informative, they have 
been relatively uncommon due to modeling challenges.

The Alzheimer’s Disease Prediction Of Longitudinal 
Evolution (TADPOLE) Challenge [18] is a challenge that 
compares performance of algorithms at making future 
predictions of AD disease markers and clinical diagno-
sis using historical data form the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) study. Motivated by this 
challenge, we aim to propose a two-stage approach that 
can reliably predict an individual’s future course of dis-
ease, including transition to MCI and dementia, using 

only a single assessment (i.e., “baseline”). This empha-
sis on subject-level prediction from a single timepoint 
is distinct from much of the literature which focuses on 
group-level prediction and the relative importance of 
various predictors. In the first stage, we model continu-
ous disease markers using joint mixed-effects models.

In the first stage, the joint mixed-effect model allows 
the simultaneous modeling and prediction of multiple 
modalities such as cognitive and functional assessments, 
brain imaging, and biofluid assays with fixed effects for 
covariates like age, sex, and genetic risk. Joint models 
have the advantage of modeling the correlation among 
outcomes to improve prediction and precision of esti-
mates [19, 20].

In the second stage of prediction, a random forest algo-
rithm is used to categorize the panel of predicted contin-
uous markers into a diagnosis of CN, MCI, or dementia. 
Random forests combine many decision trees created 
from random sampling of the data and predictors  [21]. 
Each decision tree recursively partitions the predictors 
to classify individuals into one of the three diagnoses. 
While an alternative approach might view diagnosis as a 
random variable correlated with other disease markers, 
we view diagnosis as a deterministic categorization of the 
clinical presentation of each individual. That is, diagnosis 
should be algorithmically determined for given presenta-
tion of the continuous markers. The random forest model 
gives us an estimate of this algorithmic categorization. 
Overall performance is assessed using an independent 
validation set.

2  Data description
The two-stage approach is applied to data from the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI). ADNI 
is a prospective observational cohort study, which began 
in 2004 and continues to this day. The study is carried out 
across 55 research centers in the USA and Canada. Over 
1900 volunteers with normal cognition or impairment 
consistent with MCI or AD dementia were recruited for 
this study. The first cohort, referred to as ADNI-1, con-
sists of 800 individuals: 200 CN, 400 with late MCI, and 
200 with mild dementia. ADNI-GO, the second cohort, 
added about 200 additional individuals with early MCI. 
In ADNI-2, more participants at different stages of AD 
were recruited to monitor AD progression. ADNI-3 is 
presently enrolling additional individuals with CN, MCI, 
and dementia. At each new phase, prior cohorts were 
invited back for continued follow-up, with the exception 
of individuals enrolled with dementia, who were followed 
for a maximum of 2  years. Some ADNI-1 individuals 
have now been followed in excess of 10 years. Key objec-
tives of ADNI are to validate the use of markers of AD for 
diagnosis and clinical trials, and to study rates of change 
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in cognitive and functional assessments, brain imaging 
and a number of biomarkers. The inclusion and exclusion 
criteria, schedule of assessments, and other details can be 
found at http://adni.loni.usc.edu/. We focus on the fol-
lowing assessments: Alzheimer’s Disease Assessment—
Cognitive 13-item scale (ADAS13), Clinical Dementia 
Rating—Sum of Boxes (CDRSB), Mini-Mental State 
Examination (MMSE), Montreal Cognitive Assessment 
(MOCA), Rey Auditory Verbal Learning Test Immediate 
(RAVLT Immediate), Everyday Cognition (ECog)—total 
by participant (ECogPtTotal) and study partner (ECogSP-
Total) and Functional Assessment Questionnaire (FAQ). 
Brain imaging measures include volumetric Magnetic 
Resonance Imaging (MRI) summaries of entorhinal cor-
tical thickness, and ventricular and hippocampal volume 
normalized to intracranial volume (ICV); and fluorode-
oxyglucose positron emission tomography (FDG-PET) 
summaries of glucose metabolism. Baseline diagnosis, 
age, gender, and carriage of APOE e4 allele were included 
as covariates.

We also focus on a second set of analyses among indi-
viduals where beta-amyloid data were available. The 
buildup of beta-amyloid in the brain and in cerebrospinal 
fluid (CSF) is known to be strongly involved in AD [22, 
23]. For some patients in the ADNI study, florbetapir PET 
scans or CSF Aβ42 was acquired to detect amyloid lev-
els in brain. We classified individuals as having elevated 
amyloid (“amyloid positive”) if florbetapir PET standard-
ized uptake value ratio (SUVR) was above 1.10  [22, 24] 
or if CSF Aβ was less than 909.6 pg/ml; and as amyloid 
negative otherwise. The CSF Aβ cutoff was determined 
so that it yielded the same proportion of amyloid posi-
tives as the florbetapir cutoff. Amyloid elevation status 
was included as a predictor in this second set of analysis.

3  Methodology
We propose a two-stage approach for prediction of con-
tinuous disease markers and categorical diagnosis. For 
the first stage, we propose the traditional joint, or mul-
tivariate outcome, mixed-effects model; but we also 
consider two alternative approaches. We also consider 
a latent-time joint mixed-effects model and a Bayesian 
model averaging combining posterior estimates of the 
aforementioned joint models. In the second stage, the 
predicted markers are submitted to a random forest to 
further predict diagnosis. We next describe the first-stage 
model in greater detail.

3.1  Methods for predicting continuous markers
Suppose yijk represents k outcomes (k = 1, . . . , p) 
observed at time tij (j = 1, . . . , qi) for each individual, 
i (i = 1, . . . , n) , and xijk is a set of covariates for the ith 

individual at time j. The joint mixed-effect model is 
defined

where βk; k = 1, 2, . . . , p , are sets of fixed-effect regres-
sion coefficients, α0ik and α1ik are outcome- and individ-
ual-specific random intercepts and slopes, respectively. 
The random intercepts and slopes are assumed to fol-
low a multivariate normal distribution with mean vec-
tor, 0 and variance–covariance matrix, D for the entire 
2p-dimensional vector of random effects for each sub-
ject. The error term follows εijk ∼ N (0, σ 2

k ) . The assumed 
homogeneity is over time of the error term for a given 
outcome and across all subjects. We assume that the 
random components αik and εijk for k = 1, 2, . . . , p are 
independent. The random effects allow the model to 
accommodate both the temporal correlation and cor-
relation among the markers. A special case of this joint 
model is the independent mixed-effects model (IMM), 
which does not explicitly model the correlation among 
outcomes. This is similar to fitting separate mixed-effects 
model per outcome.

We also consider the latent time joint mixed-effects 
model (LTJMM) [25]:

The model is similar to  1, but introduces individual-
specific latent time shifts, δi , representing “long-term” 
disease time. The model also includes outcome-specific 
slopes γk > 0 with respect to δi . The δi are assumed 
to be normally distributed with zero mean and vari-
ance, σ 2

δ  . The random components, δi , αik and εijk for 
k = 1, 2, . . . , p are also assumed to be independent. An 
extension of this model to allow heterogeneous latent-
time (i.e., the variability of the latent-time is made to vary 
across individuals) is described in [26].

Estimation of the joint models is by Markov Chain 
Monte Carlo (MCMC). Posterior draws are obtained 
from the posterior distributions of the joint models given 
respectively by:

where the variance–covariance matrix, D is decomposed 
as D = V�V . For numerical stability, the Cholesky fac-
torization is applied to the correlation matrix, � = LL

′ , 
where L is a lower triangular matrix. For the latent time 
joint mixed-effects model, θ = (βk ,αi,k , γk , δi)

′ and 
τ = (D, σ 2

k )
′ . The component, V is a diagonal matrix of 

(1)yijk = x
′
ijkβk + α0ik + α1ik tij + εijk

(2)
yijk = x

′
ijkβk + γk(tij + δi)+ α0ik + α1ik tij + εijk .

P(θ |Y) ∝ P(Y|θ)P(θ |τ )

P(βk ,αi,k |yijk) ∝ P(yijk |βk ,αi,k ,D, σ 2
k )P(βk)

× P(αik |D)P(D)P(σ 2
k )

http://adni.loni.usc.edu/


Page 4 of 18Iddi et al. Brain Inf.             (2019) 6:6 

standard deviations (square-root of diagonal entries of 
D ). Furthermore, the random component, αik is stand-
ardized to z ∼ N (0, I) , where I is the identity matrix and 
the random effects are then calculated as VLz . Prior dis-
tributions are placed on the hyperparameters. A weakly 
informative normal prior, N (0, 102) is placed on βk , and a 
weakly informative half-Cauchy prior, Cauchy(0, 2.5) , is 
assumed for the components of V, σk , γk and σδ . Finally, 
the LKJ prior is placed on the Cholesky factors of � [27]. 
MCMC sampling is done using the R software package, 
RStan  [28]. We used 5000 iterations, and the first 2500 
warmup iterations are discarded. Two MCMC chains 
were used and thinned by a factor of 5. Predictions of 
biomarkers and their corresponding credible intervals 
were based on posterior draws. We apply Bayesian model 
averaging to the multivariate mixed models for the 
selected continuous biomarkers [29, 30]. The predictions 
of future values of biomarkers and the corresponding 
credible intervals are obtained after combining all poste-
rior prediction estimates of all the models (model averag-
ing). Suppose y∗ijk is the prediction of outcome k for 
individual i at future time j. The posterior distribution of 
the prediction given the data, D is the average of poste-
rior distribution of the models weighted by the posterior 
model probabilities and is given by

where Ms, s = 1, 2, . . . , S represents the models. The pos-
terior distribution of the models is expressed as

where P(D|Ms) =
∫

P(D|θ s,Ms)P(θ s|Ms)dθ s and θ s is 
the vector of parameters under model s. The predicted 
mean and variance are obtained from the posterior dis-
tribution of the predictions.

The JMM, and LTJMM were fit to training data 
described in Sect. 4. To demonstrate the benefit of joint 
modeling, single or independent mixed-effects (IMM) 
model were fit to the data for comparison. For the JMM 
and IMM models, age, gender, APOEe4, and baseline 
diagnosis were included as covariates. The latent-time 
models did not include baseline diagnosis since includ-
ing this would make the model parameters uninterpret-
able due to the presence of the latent-time component 
(see  [25] for details). Two common model selection cri-
teria are applied, the widely applicable information crite-
rion (WAIC) or the leave-one-out information criterion 
(LOOIC)  [31]. Models with lower values of WAIC and 
LOOIC are preferred.

The models described above are fitted to the training 
dataset in order to make follow-up prediction for subjects 

P(y∗ijk |D) =

S
∑

s=1

P(y∗ijk |Ms,D)P(Ms|D).

P(Ms|D) ∝ P(D|Ms)P(Ms)

in the test dataset. However, in fitting these models to 
the training data, we propose to include baseline data 
for subjects in the test data to allow for the estimation of 
random effects for these subject. The estimated outcome-
specific random intercepts and slopes for each subject 
are required to make the subject-level predictions. The 
resulting follow-up predictions are then used as inputs 
in the random forest for the next stage of algorithmically 
predicting diagnosis status.

3.2  Method for predicting clinical diagnosis
The random forest algorithm is an ensemble learning 
method for classification and regression. It operates by 
generating several classification or regression trees and 
aggregating them. Each tree in the forest is constructed 
using bootstrap samples of the data. The algorithm, imple-
mented in the R package “randomForest” [30], is fitted to 
the training dataset using 100 trees. In particular, diagnosis 
which was re-evaluated at every visit by clinicians was used 
as the target feature for the random forest, and predicted 
follow-up continuous markers and baseline predictors 
of subjects as input features. Observation times are also 
included as a continuous predictor. A number of individu-
als had incomplete assessments at some study visits, which 
the random forest algorithm is not able to accommodate. 
To avoid discarding these incomplete visits entirely when 
fitting the random forest, we apply an imputation method, 
the “MissForest” algorithm [32], to impute the missing val-
ues. This algorithm, implemented in the R package “miss-
Forest”, imputes missing values for mixed-type data (e.g., 
continuous and categorical) using a nonparametric ran-
dom forest methodology. The method can flexibly accom-
modate mixed-type outcomes, complex interactions and 
nonlinear relationships among variables. In addition, it 
does not require the specification of a parametric model or 
distributional assumptions. To determine variables which 
are important for predicting the response, we use the 
variable importance plot, which depicts the influence of 
each variable characterized by the mean decrease in node 
impurity (Gini Index [21]).

3.3  Model performance metrics
To evaluate the quality of the predictions of the continu-
ous markers, we use two performance metrics. The first 
metric, the mean absolute error (MAE), is calculated as

where N is the observation count, P̂i represent the pre-
dicted or forecasted future values, and Pi is the observed 
value of the marker for an individual i in the test data. 
The second metric, which takes confidence interval 

MAE =
1

N

N
∑

i=1

|P̂i − Pi|,
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widths into account, is the weighted error score (WES). 
It is the weighted sum of the absolute difference between 
the predicted and actual values for each continuous 
marker in the test data at each time point. That is,

where the weights, Ĉi , is the inverse of the width of the 
confidence interval of predicted estimates for each indi-
vidual. High values of MAE and WES denote poor pre-
dictive performance of the model.

The diagnoses provided by site clinicians is used as 
the ‘gold standard’ in assessing the accuracy of the pre-
dictions of diagnosis from the random forest algorithm. 
Performance is assessed on the basis of the overall accu-
racy and balanced classification accuracy (BCA). Overall 
accuracy is defined as the percentage of correct predic-
tions out of all the predictions made. This metric tends 
to work better for data with balanced classes (e.g., equal 
number of CN, MCI, or dementia) but can provide a mis-
leading assessment of performance for data with imbal-
anced classes. To account for possible class imbalance, 
we also use the overall BCA. The balanced classification 
accuracy for class, ℓ = 1, 2, . . . , L is obtained from

where TPℓ is the number of true positives, FNℓ is the 
number of false negatives, TNℓ is the number of true 
negatives, and FPℓ is the number of false positives. That 
is, for each class, ℓ , TP is the number of cases that are 
correctly predicted by the model and TNℓ is the number 
of cases in class, ℓ , which are incorrectly classified into 
any of the other classes. Similarly, TNℓ for class, ℓ repre-
sents the number of cases in the other classes correctly 
labeled as belonging to class, ℓ , and FPℓ is the number of 
cases which actually belong to the other classes but are 
wrongly classified to class, ℓ . These balanced accuracies 
are aggregated to obtain the overall BCA score as follows:

Higher value of overall accuracy or BCA is indicative of 
good performance.

4  Application and model validation
4.1  Descriptive statistics and data preparation
The ADNI data consist of 1737 individuals enrolled in 
ADNI-1, ADNI-GO and ADNI-2, 19.7% of whom have 
dementia, 30.1% are CN and 50.2% are MCI at baseline. 

WES =

∑N
i=1 Ĉi|P̂i − Pi|
∑N

i=1 Ĉi

,

BCA ℓ =
1

2

[

TPℓ

TPℓ + FNℓ

+
TNℓ

TNℓ + FPℓ

]

,

BCA =
1

L

L
∑

ℓ

BCA ℓ.

About 44.9% are females, and 55.1% are males. All fol-
low-up data on ADNI-1 and ADNI-GO participants who 
did not continue into the ADNI-2 phase, form part of the 
training dataset. In addition, baseline data from individu-
als in ADNI-2 are included in the training data to allow 
estimation of their random effects for individual-specific 
predictions. The training data consist of 273 ADs, 154 
CNs and 414 MCIs. The validation dataset consisted of 
currently available longitudinal data for ADNI-2 (i.e., the 
ADNI-1 and ADNI-GO who continued into ADNI-2, 
and additional newly enrolled subjects). This validation 
data consist of 7.7% ADs, 41.2% CNs and 51.1% MCIs. 
Figure 7a, b, in “Appendix”, shows the number of individ-
uals at each visit in the training and test sets, respectively. 
To impose a minimum standard for visit completion, 
time points where CDRSB was not observed are omit-
ted from the analysis dataset. As expected, the number 
of observations decreases over time from baseline due to 
attrition and administrative censoring. Summary meas-
ures of baseline outcomes for each diagnosis group are 
presented in Table 1.

Figure  8a depicts the individual observed trajectories 
per outcome and also shows the length of years of fol-
low-up. Figure 8b shows the individual trajectories after 
missing values have been imputed. It can be seen that the 
imputation algorithm appears to generate plausible val-
ues of missing data. Before fitting the models to the data, 
the original values of the outcomes were transformed 
into percentiles using a weighted empirical cumula-
tive distribution function so that all outcomes are on a 
common scale. The weights were constructed using the 
inverse of the proportion of disease category for each 
outcome. The predicted values on the transformed scale 
are then back transformed into the original scale.

Next, we apply the two-stage approach to the data. Fig-
ure  1 shows a schematic diagram depicting the inputs 
and outputs at each modeling stage.

4.2  Stage 1
The joint mixed-effects models were trained on longi-
tudinal data from ADNI-1, ADNI-GO, and only base-
line data from ADNI-2. We then assessed the ability of 
the proposed methodology to accurately predict follow-
up observations of individuals in ADNI-2. Table 2 sum-
marizes WAIC and LOOIC. Based on these results, the 
JMM model seems to be the best fitting model, followed 
closely by the LTJMM model. Figure 2 shows the corre-
lations between random intercepts (above anti-diagonal) 
and random slopes (below anti-diagonal) from the JMM. 
Cognitive outcomes share strong correlations [0.7–0.9) 
with other cognitive measures except for Everyday Cog-
nition (ECog) by participant. There are generally moder-
ate correlations [0.5–0.7) among cognitive measures and 
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FDG-PET but weaker correlation [0.3–0.5) between cog-
nition and structural MRI measures. There are generally 
moderate correlations among slopes for structural MRI 
measures.

We also performed a Bayesian model averaging to 
combine predictions from the JMM, LTJMM and IMM. 
Furthermore, the joint mixed-effect model was fitted 
to cognitive and function outcomes (JMMCognitive), 

and imaging markers (JMMImage) to demonstrate 
how these marker domains perform individually. Lon-
gitudinal predictions on the validation dataset were 
obtained from these fitted models. Figure  3 shows the 
observed data and predicted trajectories for five ran-
domly selected individuals for each model (in Fig. 9, we 
show plots for subject #315 and subject # 4263 where 
the models are all in the same panel, and subjects are 

Table 1 Summary measures at baseline for raw and imputed data

ADAS13 Alzheimer’s Disease Assessment Scale, CDRSB Clinical Dementia Rating—Sum of Boxes, EcogPtTotal everyday cognition participant, EcogSPTotal everyday 
cognition study partner, FAQ Functional Assessment Questionnaire, FDG FluoroDeoxyGlucose, MMSE Mini-Mental State Examination, MOCA Montreal Cognitive 
Assessment, RAVLT Rey Auditory Verbal Learning Test, ICV intracranial volume, CN control, MCI mild cognitive impairment, n number of observations, SE standard error

Diagnosis category Outcomes Imputed data Raw data

n Mean SE n Mean SE

Dementia ADAS13 342 29.91 0.43 330 29.87 0.44

CDRSB 342 4.39 0.09 338 4.41 0.09

EcogPtTotal 342 1.91 0.02 144 1.90 0.05

EcogSPTotal 342 2.75 0.03 145 2.74 0.05

MMSE 342 23.22 0.11 338 23.22 0.11

MOCA 342 17.52 0.20 142 17.12 0.38

RAVLT immediate 342 22.81 0.41 335 22.85 0.41

FAQ 342 13.14 0.38 337 13.18 0.38

FDG 342 1.07 0.01 242 1.07 0.01

Hippocampus/ICV(× 100) 342 0.38 0.00 272 0.38 0.00

Ventricles/ICV 342 0.03 0.00 315 0.03 0.00

Entorhinal (mm) 342 2829.35 33.72 254 2819.26 42.54

MCI ADAS13 872 16.53 0.23 862 16.53 0.23

CDRSB 872 1.52 0.03 866 1.52 0.03

EcogPtTotal 872 1.84 0.01 468 1.79 0.02

EcogSPTotal 872 1.84 0.02 465 1.72 0.03

MMSE 872 27.59 0.06 866 27.59 0.06

MOCA 872 22.66 0.09 465 23.41 0.15

RAVLT immediate 872 34.24 0.36 866 34.24 0.36

FAQ 872 3.18 0.14 862 3.17 0.14

FDG 872 1.23 0.00 665 1.25 0.01

Hippocampus/ICV(× 100) 872 0.44 0.00 737 0.44 0.00

Ventricles/ICV 872 0.03 0.00 836 0.03 0.00

Entorhinal (mm) 872 3497.43 24.18 733 3497.38 27.67

CN ADAS13 523 9.24 0.19 520 9.24 0.19

CDRSB 523 0.04 0.01 520 0.04 0.01

EcogPtTotal 523 1.41 0.01 290 1.41 0.02

EcogSPTotal 523 1.22 0.01 288 1.21 0.02

FAQ 523 0.24 0.04 520 0.24 0.04

MMSE 523 29.06 0.05 520 29.06 0.05

MOCA 523 25.54 0.09 287 25.76 0.14

RAVLT immediate 523 44.66 0.43 518 44.67 0.43

FDG 523 1.31 0.00 391 1.31 0.01

Hippocampus/ICV(× 100) 523 0.49 0.00 471 0.49 0.00

Ventricles/ICV 523 0.02 0.00 494 0.02 0.00

Entorhinal (mm) 523 3828.36 26.57 468 3840.29 29.09
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in different panels for easy comparison). The graph 
shows that the models’ predicted profiles appear to dif-
fer only slightly. It is worth noting that, the predicted 
values appear nonlinear because the models were fitted 
to transformed values of the outcome and back trans-
formed to the original scale.

We evaluated the performance of our model predic-
tions using metrics on both the continuous markers 
and the multi-class diagnosis. The metrics described 
in Sect. 3.3 are used. From Figs. 10 and 4, we observed 
that predictions from all the joint models performed 
quite well over 2  years, yielding lower mean abso-
lute errors and weighted error scores as compared 
to the other models. As expected, the MAE and WES 
increased beyond 2 years. All models yielded consistent 

performance over time with the JMMs occasionally 
out-performing the other models. The JMM that com-
bined both cognitive and imaging outcomes performed 
similar to the JMM from cognitive/functional outcomes 
(JMMCognitive) and JMM from imaging markers 
(JMMImage) in terms of weighted error scores. How-
ever, at time points where the models differed, JMM 
with both cognitive and imaging outcomes was gener-
ally more accurate than JMMCognitive and JMMIm-
age. The IMM performed worse for MCI and dementia 
subgroups.

4.3  Stage 2
Table  3 shows the confusion matrix summarizing the 
within-sample classification accuracy of the random 
forest using observed continuous markers and baseline 
predictors in the training set. Predictors in the random 
forest classification algorithm included all continuous 
markers, years from baseline, and baseline characteris-
tics such as age, education, marital status, APOE4 status 
and gender. An overall out-of-bag (OOB) estimated error 
rate of 4.55% was achieved. The variable importance plot 
in Fig. 5 shows the influence of each variable in predict-
ing clinical status. The baseline diagnosis, CDR Sum of 
Boxes, Study Partner Everyday Cognition, Functional 

Steps in the Two-Stage Approach

      Inputs                       Outputs 

Continuous
longitudinal
outcomes: 

ADAS13, CDRSB
Ecog, MMSE
MOCA, RAVLT
FAQ, FDG,
Hippocampus,
Ventricles
Entorhinal

Baseline
characteristics:

Age, Gender, 
Baseline
diagnosis,
Years from
baseline

Stage 1
(Longitudinal models)

      Inputs                       Output 

Diagnosis at
all time points
(CN, MCI, AD)

Baseline
characteristics

Stage 1 Outputs

Stage 2
(Random Forest Classification)
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On training data
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MAE,WES
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On test data

BCA, Accuracy

Fig. 1 Schematic diagram showing the inputs and outputs of the two-stage approach

Table 2 Model selection criteria

WAIC widely applicable information criterion, LOOIC leave-one-out information 
criterion, IMM independent mixed-effects model, JMM joint mixed-effects 
model, LTJMM latent-time joint mixed-effects model

Model WAIC LOOIC

IMM 59,687.42 64,136.45

LTJMM 57,953.63 62,535.86

JMM 56,576.79 59,728.43
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Fig. 2 For each pair of outcomes, the correlations among random intercepts are above the anti-diagonal, and the correlations among random 
slopes are below the anti-diagonal. ADAS13 Alzheimer’s Disease Assessment Scale, CDRSB Clinical Dementia Rating—Sum of Boxes, EcogPtTotal 
everyday cognition participant, EcogSPTotal everyday cognition study partner, FAQ Functional Assessment Questionnaire, FDG FluoroDeoxyGlucose, 
MMSE Mini-Mental State Examination, MOCA Montreal Cognitive Assessment, RAVLT Rey Auditory Verbal Learning Test, ICV intracranial volume

Table 3 Confusion matrix

This confusion matrix summarizes the performance of the random forest algorithm for classifying diagnoses based on contemporaneous observations. The table 
compares actual diagnoses observed in the training set with diagnoses predicted by the random forest based on observed continuous data and baseline predictors

CN control, MCI mild cognitive impairment

Actual Predicted Row total Overall 
class 
errorCN MCI Dementia

CN 1218 (96.51%) 44 (3.49%) 0 (0.00%) 1262 0.035

MCI 29 (1.16%) 2382 (95.17%) 92 (3.68%) 2503 0.048

Dementia 0 (0.00%) 107 (4.84%) 2105 (95.16%) 2212 0.048

Column total 1247 2533 2197 5977 0.046
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Assessment Questionnaire, and Mini-Mental State 
Examination are the features with the highest impor-
tance. The random forest predictions using predicted 
longitudinal markers from the joint models as inputs 

along with time-varying age, APOEe4 status and gender, 
achieve overall accuracy and balanced classification accu-
racy above 80% for periods less than 2 years (see Fig. 6). 
Between 2 and 5  years, we achieve an overall accuracy 
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of between 60–80%. To facilitate overall comparisons, 
we computed BCA aggregated across all the time points 
and weighted according to the amount of data available 
at each time point. These weighted aggregate BCAs were 
88.9%, 85.2%, 86.6%, 87.4%, 87.7% and 85.7% for JMM, 

IMM, LTJMM, BMA, JMMCognitive and JMMimage, 
respectively. This reinforces the interpretation that the 
JMM with both cognitive and imaging markers performs 
better than the models with either cognitive or imaging 
markers only.

FDG Entorhinal Hippocampus_ICV Ventricles_ICV

FAQ MMSE MOCA RAVLT_immediat

ADAS13 CDRSB EcogPtTotal EcogSPTotal

0.0 2.5 5.0 7.510.0 0.0 2.5 5.0 7.510.0 0.0 2.5 5.0 7.510.0 0.0 2.5 5.0 7.510.0

0.00

0.25

0.50

0.75

1.00

4

8

12

16

0.0025

0.0050

0.0075

0.1

0.2

0.3

0.4

0.5

2

4

6

2e−04

4e−04

6e−04

0

1

2

3

1

2

3

4

200

300

400

500

600

700

5

10

0.0

2.5

5.0

7.5

10.0

0.04

0.08

0.12

0.16

Years from baseline

W
ei

gh
te

d 
er

ro
r s

co
re

Model
JMM

JMMCognitive

JMMImage

IMM

LTJMM

BMA

a CN.

FDG Entorhinal Hippocampus_ICV Ventricles_ICV

FAQ MMSE MOCA RAVLT_immediate

ADAS13 CDRSB EcogPtTotal EcogSPTotal

0.0 2.5 5.0 7.510.0 0.0 2.5 5.0 7.510.0 0.0 2.5 5.0 7.510.0 0.0 2.5 5.0 7.510.0

0.0

0.5

1.0

5

10

0.000

0.005

0.010

0.015

0.1

0.2

0.3

0.4

0.5

0.6

2.5

5.0

7.5

0.00025

0.00050

0.00075

0

2

4

6

3

6

9

300

500

700

5

10

15

20

0

5

10

15

0.1

0.2

Years from baseline

W
ei

gh
te

d 
er

ro
r s

co
re

Model
JMM

JMMCognitive

JMMImage

IMM

LTJMM

BMA

b MCI.

FDG Entorhinal ippocampus_IC Ventricles_ICV

FAQ MMSE MOCA RAVLT_immediat

ADAS13 CDRSB EcogPtTotal EcogSPTotal

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

0.1

0.2

0.3

2

3

4

0.001

0.002

0.003

0.004

0.005

0.2

0.3

0.4

1

2

3

4

0.00010

0.00015

0.00020

0.00025

0.00030

0.5

1.0

1.5

2.0

1.0

1.5

2.0

2.5

3.0

3.5

150

200

250

300

350

2

4

6

8

2

4

6

0.025

0.050

0.075

Years from baseline

W
ei

gh
te

d 
er

ro
r s

co
re

Model
JMM

JMMCognitive

JMMImage

IMM

LTJMM

BMA

c Dementia.

FDG Entorhinal Hippocampus_ICV Ventricles_ICV

FAQ MMSE MOCA RAVLT_immediate

ADAS13 CDRSB EcogPtTotal EcogSPTotal

0.0 2.5 5.0 7.510.0 0.0 2.5 5.0 7.510.0 0.0 2.5 5.0 7.510.0 0.0 2.5 5.0 7.510.0

0.00

0.25

0.50

0.75

1.00

5

10

15

0.003

0.006

0.009

0.1

0.2

0.3

0.4

0.5

2

4

6

2e−04

4e−04

6e−04

0

1

2

3

4

1

2

3

4

5

200

300

400

500

600

5

10

0.0

2.5

5.0

7.5

10.0

0.04

0.08

0.12

0.16

Years from baseline

W
ei

gh
te

d 
er

ro
r s

co
re

Model
JMM

JMMCognitive

JMMImage

IMM

LTJMM

BMA

d All.
Fig. 4 Validation set weighted error scores over time for each model by diagnosis. CN Control, MCI mild cognitive impairment, IMM independent 
mixed-effects model, JMM joint mixed-effects model, LTJMM latent-time joint mixed-effects model, BMA Bayesian model averaging, JMMCognitive 
JMM fitted to cognitive and function outcomes only, JMMImage JMM fitted to imaging markers only



Page 11 of 18Iddi et al. Brain Inf.             (2019) 6:6 

4.4  Sub‑analysis for subjects with amyloid pathology 
information

To explore the role of amyloid pathology, we applied our 
approach to a subset of the original data involving only 
individuals with amyloid information in both the training 
and test dataset as described in Sect. 2. Baseline amyloid 
elevation status was included as a predictor in both the 
random forest and multivariate mixed-effects models. 
To highlight the important role of amyloid status in the 
models, we compare the out-of-bag accuracy of the ran-
dom forest with versus without including baseline amy-
loid status as a predictor on the subset of the training set 
with observed amyloid status. The OOB estimate of error 
rates were 4.99% and 5.13% for analysis with and without 
amyloid information, respectively. Thus, there is a modest 

added benefit with the inclusion of amyloid elevation sta-
tus. This is not too surprising as the diagnostic classifica-
tion in ADNI is based solely on the clinical presentation 
done without the clinicians’ knowledge of any biomark-
ers. Figure  11a, b shows the predictive performance of 
the continuous longitudinal markers under each of the 
joint models for groups of elevated and non-elevated 
amyloid individuals, respectively. We observed that the 
models predict follow-up biomarkers outcomes better 
for the individuals with non-elevated amyloid, owing to 
the fact that these individuals are likely to be more sta-
ble over time. The joint mixed-effects model continues to 
outperform the other models in terms of accuracy. Clas-
sification accuracy of clinical diagnosis is also depicted in 
Fig. 12. The random forest based on predictions from the 
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Fig. 5 Random forest variable importance for categorical diagnosis (cognitively normal, mild cognitive impairment, or dementia). ADAS13 
Alzheimer’s Disease Assessment Scale, CDRSB Clinical Dementia Rating—Sum of Boxes, EcogPtTotal everyday cognition participant, EcogSPTotal 
everyday cognition study partner, FAQ Functional Assessment Questionnaire, FDG FluoroDeoxyGlucose, MMSE Mini-Mental State Examination, 
MOCA Montreal Cognitive Assessment, RAVLT Rey Auditory Verbal Learning Test, ICV intracranial volume, PTGENDER participant’s gender, PTMARRY  
participant’s marital status, PTEDUCAT  participant’s education, Year_bl years from baseline, DX_bl baseline diagnosis, APOE4 APOE e4 allele
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joint models and baseline characteristics again yields bal-
ance classification accuracy of above 80% for the first two 
and a half years and declined over time. Again, the joint 
mixed-effects model combined with the random forest 
algorithm consistently outperformed the others.

5  Discussion and conclusion
In this study, we have investigated the use of a two-stage 
data-driven approach to modeling and predicting the 
progression of AD markers and clinical diagnosis. Lon-
gitudinal data were jointly modeled to take advantage 
of correlations among outcomes and within individuals. 
Random forests were used to derive an algorithm to cat-
egorize diagnoses. Predictions were assessed on an inde-
pendent validation set. The approach achieved overall 
accuracy and balanced classification accuracy of above 
80% for the first 2 years, but accuracy diminished precipi-
tously beyond 2 years. This finding supports the utility of 
our two-stage method for predicting disease course over 
a limited time frame. The findings also support the use 
of machine learning methods to derive algorithms which 
might help avoid subjectivity in diagnostic categorization.

A number of publications have addresses diagnostic pre-
diction at various stages of AD. For example,  Tierney  et 
al. [33] attempted to predict the onset of dementia at 5 and 
10  years based on an initial neurological test battery. By 

using a univariate logistic regression model, their approach 
yielded accuracies of 82% at 5 years and 71% at 10 years. 
Using a survival regression approach, Tabert et al. [34] pre-
dicted conversion from MCI to AD based on neurologi-
cal batteries used as inputs and adjusted for other study 
participants’ characteristics. Their approach resulted in 
a 3-year predictive accuracy of 86%. Time-to-event out-
comes generally have the ability to improve predictions 
over univariate logistic regression models. A more recent 
review by Rathore et al. [35] details how different classifi-
cation frameworks have been used as an effective tool for 
making individualized diagnosis and prediction. Classifi-
cation accuracies ranged from 70 to 95% for binary classi-
fication. These accuracies are impressive, but might not be 
comparable to the accuracies that we have reported. One 
reason for the incomparability is that the accuracies that 
we report are based on a held-out test that was not used to 
fit models. The accuracies we report also blend initial diag-
noses and consider all possible transitions (multinomial 
outcome) of disease status rather than the binary approach 
adopted by these authors. For example, the classifica-
tion approach by Tierney et al. [33] does not include MCI 
patients. However, it is generally more difficult to discrimi-
nate between adjacent diagnoses (e.g., cognitively normal 
and MCI) compared to non-adjacent diagnoses (e.g., cog-
nitively normal and dementia).
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The different approaches we considered for the “stage 
one” modeling each have their own strengths and weak-
nesses. The independent mixed model, for example, is 
easier to fit than the joint mixed-effects models and is 
also less cumbersome to interpret. However, this model 
ignores the correlations among outcomes which are 
generally known to be mild to strong for some pairs of 
AD markers. The correlation matrix of the random 
effects estimated in this study provides evidence of these 
between-outcome associations. On the other hand, joint 
models are complex, take more computational time, 
and can be challenging to interpret. In the presence of 
baseline diagnosis, the conventional joint mixed-effects 
model was preferred by the model selection criteria we 
considered. The latent-time joint mixed-effects model, 
motivated by the desire to predict long-term trajecto-
ries with short-term follow-up data, may be useful when 
baseline diagnosis is unknown. The Bayesian model aver-
aging, which aggregates the other models, is probably the 
most complex but helps to account for model uncertainty 
in the estimation of parameters and prediction.

Some modifications might improve the prediction 
accuracy of the proposed two-stage algorithm. Instead 
of relying on a single time point to predict future course, 
one could utilize run-in data from multiple time points, 
which would likely improve estimates of subject-specific 
trajectories. Also, our models only considered a simple 
linear time trend. And while nonlinear trends were not 
supported by the data at hand, it is possible that a more 
flexible mean structure might improve model perfor-
mance. Larger datasets and/or improved disease markers 
might also serve to enhance the quality of predictions in 
the future.

The approach can be applied to sharpen clinical trial 
inclusion and exclusion criteria to provide target popu-
lations with desired predicted longitudinal characteris-
tics, e.g., a cognitively normal population with increased 
risk of imminent progression to MCI. However, such an 
application might complicate and prolong the recruit-
ment process and eventual drug labeling.

In the clinic, these methods can be applied to improve 
the accuracy of prognosis. Improved prognostic accuracy 
can help physicians, patients, and families make more 
informed decisions regarding therapies and care through 
the transitions from healthy cognition, to mild impair-
ment, to dementia. Once effective therapies have been 
discovered, the proposed two-stage approach could be 
fit to clinical trial data to provide a more sophisticated 
model of treatment response. Such a treatment response 
model, would provide personalized “theragnoses,” or pre-
dictions of treatment response; and help make decisions 
on when, and to whom, to prescribe therapies.
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Appendix: Supplementary appendix
See Figs. 7, 8, 9, 10, 11 and 12.

Fig. 7 Number of individuals observed at each visit by initial diagnosis. CN Control, MCI mild cognitive impairment

Fig. 8 Observed and imputed values. The MissForest algorithm was used to impute missing values which appear to be plausible when compared 
to observed values at other visits. CN Control, MCI mild cognitive impairment
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Fig. 9 Observed values (points) versus predicted lines (lines) based on only their baseline data for each of the four modeling approaches for 
subject#314 and for subject#4263. IMM Independent mixed-effects model, JMM joint mixed-effects model, LTJMM latent-time joint mixed-effects 
model, BMA Bayesian model averaging, ADAS13 Alzheimer’s Disease Assessment Scale, CDRSB Clinical Dementia Rating—Sum of Boxes, EcogPtTotal 
everyday cognition participant, EcogSPTotal everyday cognition study partner, FAQ Functional Assessment Questionnaire, FDG FluoroDeoxyGlucose, 
MMSE Mini-Mental State Examination, MOCA Montreal Cognitive Assessment, RAVLT Rey Auditory Verbal Learning Test, ICV intracranial volume
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Fig. 10 Mean absolute error. CN Control, MCI mild cognitive impairment



Page 17 of 18Iddi et al. Brain Inf.             (2019) 6:6 

Fig. 11 Weighted error score for subset of the population with amyloid burden information. IMM Independent mixed-effects model, JMM joint 
mixed-effects model, LTJMM latent-time joint mixed-effects model

Fig. 12 Comparison of performance metrics on clinical status for subset of the population with amyloid burden information. Note that only the 
LTJMM did not include baseline diagnosis as a covariate. The numbers on the graph represent the number of subjects at each of the occasions. 
CN Control, MCI mild cognitive impairment, IMM independent mixed-effects model, JMM joint mixed-effects model, LTJMM latent-time joint 
mixed-effects model
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