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   Abstract: Background: The worldwide use of glyphosate has dramatically increased, but also has 
been raising concern over its impact on mineral nutrition, plant pathogen, and soil microbiota. To date, 
the bulk of previous studies still have shown different results on the effect of glyphosate application 
on soil rhizosphere microbial communities.  
Objective: This study aimed to clarify whether glyphosate has impact on nitrogen-fixation, pathogen 
or disease suppression, and rhizosphere microbial community of a soybean EPSPS-transgenic line 
ZUTS31 in one growth season. 
Method:  Comparative analysis of the soil rhizosphere microbial communities was performed by 16S 
rRNA gene amplicons sequencing and shotgun metagenome sequencing analysis between the soybean 
line ZUTS31 foliar sprayed with diluted glyphosate solution and those sprayed with water only in 
seed-filling stage. 
Results :  There were no significant differences of alpha diversity but with small and insignificant dif-
ference of beta diversity of soybean rhizosphere bacteria after glyphosate treatment. The significantly 
enriched Gene Ontology (GO) terms were cellular, metabolic, and single-organism of biological pro-
cess together with binding, catalytic activity of molecular function. The hits and gene abundances of 
some functional genes being involved in Plant Growth-Promoting Traits (PGPT), especially most of 
nitrogen fixation genes, significantly decreased in the rhizosphere after glyphosate treatment.  
Conclusion: Our present study indicated that the formulation of glyphosate-isopropylamine salt did 
not significantly affect the alpha and beta diversity of the rhizobacterial community of the soybean 
line ZUTS31, whereas it significantly influenced some functional genes involved in PGPT in the rhi-
zosphere during the single growth season. 
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1. INTRODUCTION 

 Glyphosate (N-phosphonomethyl-glycine) was widely 
but modestly used in the 1980s, because it is a nonselective 
and broad-spectrum herbicide applied via foliar spray before 
crop seeding and eradicated almost all herbaceous plants 
including 90 kinds of emerged grasses, brush and broad-leaf 
weeds [1]. 
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 Glyphosate acts as a herbicide by inhibiting the 5-
enolpyruvyl-shikimate-3-phosphatase synthase (EPSPS) and 
then by blocking the synthesis of necessary aromatic amino 
acids in the shikimate pathway [2, 3] via translocation within 
plants [4]. Since transgenic glyphosate-resistant (GR) crops, 
such as Roundup Ready soybean, became commercially 
available in 1996 for agricultural planting, the use of glypho-
sate has dramatically increased [5, 6] and now has been the 
most widely consumed herbicides in the global market [6]. 
 Although glyphosate has become the dominant herbicide 
worldwide and has been usually described as environmental-
ly and toxicologically safe [2, 7], it still has raised some con-
cern over the potential impact on plant mineral nutrition, 
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plant pathogen and soil microbial community including rhi-
zosphere microorganisms [8-10] besides glyphosate resistant 
weeds. Duke et al. intensively reviewed the main concerns 
and demonstrated that most of available previous studies 
supported the view that mineral nutrition and plant disease 
were unaffected by glyphosate although some contradictory 
studies indicated that glyphosate had such impacts on GR 
crops [11]. However, the impacts of glyphosate may be cov-
ered by functional redundancy of soil microbiota in which 
overall functions seems not to be affected whereas the com-
position of microbial community has been changed and some 
key functions mediated by specific microbial populations 
have been affected [5]. Actually, Duke et al. also agreed that 
glyphosate influenced mineral nutrition, disease, and the 
diversity or richness of rhizosphere microbial community of 
glyphosate-sensitive plants via its herbicidal effects on roots 
and other parts of those plants [11]. Furthermore, some in-
tensive studies discovered that glyphosate was released from 
root into rhizosphere after it translocated within plants [4, 
12] and that it was also toxic to some bacteria and fungi [13]. 
Moreover, the unsafety or toxicity of glyphosate-based herb-
icide also may result from the additives or surfactants in the 
commercial formulations [14, 15].  
 Due to the crucial roles of rhizosphere microbiota affect-
ing plant health and growth [16-19] while plants shape or 
determine the composition, structure and activity of rhizo-
sphere microbiome via root exudates [20-23], previous stud-
ies have investigated the impact of glyphosate on rhizo-
sphere microbiota by using different cultivation-dependent 
and/or cultivation-independent methods, which were re-
viewed by Bünemann et al. [24] and Imfeld et al. [5] Newly, 
deep sequencing of 16S rRNA gene (16S rDNA) amplicons, 
via next generation sequencing (NGS) platform, has been 
used to examine the effects of glyphosate on rhizosphere 
microbiota [25-27]. 
 Recently, the shotgun metagenome sequencing combined 
with bioinformatics analysis via a NGS platform has been 
applied to investigate the composition, structure, and func-
tion of microbial communities in activated sludge [28], dif-
ferent soil types [29], and other samples [30-33]. However, 
to the best of published knowledge at the web of science via 
searching with the combined key words of “glyphosate, met-
agenome / metagenomic, soil” from all Databases, the effects 
of glyphosate on rhizosphere microbiota have been rarely 
investigated by shotgun metagenome sequencing. 
 In this study, we performed shotgun metagenomic se-
quencing together with 16S rDNA-based Illumina MiSeq to 
clarify whether the use of glyphosate affects nitrogen-
fixation, pathogen or disease suppression, and rhizosphere 
microbial community associated with soybean roots during 
the single growth season. 

2. MATERIALS AND METHODS 

2.1. Plant Materials 

 Transgenic soybean line ZUTS31 (or simply Z31), which 
was same as line L1 generated by Lu et al. [34], contains the 
g10-epsps gene that was cloned from glyphosate-resistant 
Deinococcus radiodurans R1 and had been transferred into 
the soybean cultivar HuaChun3 to produce a glyphosate-

resistant 5-enolpyruvylshikimate-3-phosphate synthase (EP-
SPS).  

2.2. Field Design and Sampling 

 The experimental field (N 31° 53′ 28′′-29′′, E 117° 14 ′ 
22′′ -23′′) was located in the Anhui Academy of Agricultural 
Sciences, Hefei City, Anhui Province, China. The soil type 
of local area was clay with pH 4.0 to 4.5, which is similar to 
stagnosol [35]. The experimental field was an area of 576 m2

 

and was divided into 48 plots (6 m × 2 m per plot) in June 
2014. Three replicate plots were used for each treatment of 
soybean cultivar or line, which were randomly distributed 
over the field. Soybean seeds of Z31 line were sowed on 
June 18, 2014. Emerging weeds were manually removed 
from three plots for planting Z31 line which were foliar 
sprayed with water as control. Glyphosate solution (Monsan-
to Company, Malaysia), which contained 41% active ingre-
dient of isopropylamine salt of glyphosate (also named as 
glyphosate-isopropyl ammonium salt), was foliar sprayed at 
field rate (3000 ml · ha-1) on July 7, 2014. GR line Z31 
plants (samples) treated by glyphosate were named as Z31J1. 

 The samples of rhizosphere soil were collected as de-
scribed by Inceoglu et al. [36]. Briefly, two sampling points 
were in each of three plots, and two soybean plants at seed-
filling stage with its surrounding soil were dug out from 
each sampling point and collected as one biological replicate 
on September 7, 2014, then placed in a plastic bag, and taken 
to the laboratory immediately. The soil loosely adhering to 
the roots were shaken off, and stored at 4°C for enzyme ac-
tivity analysis or at -70°C freezer for DNA extraction. Then 
the samples of rhizosphere soil were collected by brushing 
off the soil that was tightly adhering to the root surface, and 
then were stored at -80°C freezer for DNA extraction. 

2.3. Metagenomic DNA Extraction 

 In this study, the metagenomic DNA was extracted in 
duplicate from approximately 2 × 0.60 g soil of every bio-
logical replicate using the PowerSoil DNA Isolation Kit 
(MoBio Laboratories Inc., Carlsbad, CA, USA) as recom-
mended by the manufacturer's instructions with minor modi-
fication, which means that soil was homogenized in lysis 
buffer using Corning LSE vortex mixer (LSE vortex mixer 
230V, Coring Inc., Lowell, MA, USA) at 2850 rpm for 10 
mins. After mixing well, the concentrations of metagenomic 
DNA of every biological replicate were checked by a Qubit 
Fluorometer (Qubit 2.0, Invitrogen, USA), and were more 
than 10 ng/µl that may minimize the variability in microbial 
community surveys [37]. DNA integrality was then checked 
by 1% agarose gel electrophoresis. The DNA samples were 
stored in a −20°C freezer before using. 

2.4. Analyses of 16S rRNA Genes via Amplicon Sequenc-
ing 

2.4.1. PCR Amplification of 16S rDNA and Illumina Miseq 
Sequencing 

 Our strategy is a dual-index sequencing approach [38], 
which is an improved dual-index paired-end 250 nt approach 
[39]. In brief, fusion primers were designed to include the 
appropriate P5 or P7 Illumina adapter sequences, an 8-nt 
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index sequence, and a gene-specific primer for amplifying 
the V4 region of 16S rDNA, which were 515F (5”- 
GTGCCAGCMGCCGCGGTAA - 3”) and 806R (5”-
GGACTACHVGGGTWTCTAAT - 3”). The primer pair 
was selected because the error rates decreased to 0.01% for 
every cluster density within the V4 region data by Illumina 
Miseq [38], and produced the greatest diversity at the bacte-
rial phylum and domain levels compared with V1-V2, V5-
V8 and V6-V8 regions [40]. The 515F plus 806R Dual-index 
Fusion PCR Primer Cocktail was then added to the PCR 
Master Mix (NEB Phusion High-Fidelity PCR Master Mix) 
to amplify the V4 region. Qualified metagenomic DNA was 
normalized to 30 ng per PCR reaction using 50 µl volume, 
and its final concentration was higher than 0.4 ng/µl, because 
the template concentration had a significant effect on the 
sample profile variability for most samples [37]. The melting 
temperature was 56°C and PCR cycle is 30. The PCR prod-
ucts were purified using Ampure XP beads (AGENCOURT). 
High-throughput sequencing of the qualified libraries was 
conducted by BGI Tech Solutions Co., Ltd (Wuhan, China) 
by using the Illumina MiSeq NGS platform (Illumina) and 
MiSeq Reagent Kit with the sequencing strategy paired-end 
2 × 250 bp (PE250). 

2.4.2. Operational Taxonomic Unit (OTU) Selection 

 Clean reads were obtained when the raw data were fil-
tered to eliminate the reads with sequencing adapters, am-
biguous N base, poly base, or average base quality score less 
than 20. Then paired-end clean reads with overlap were 
merged to tags by using Fast Length Adjustment of Short 
reads (FLASH, v1.2.11) [41]. The tags were then clustered 
to OTU at 97% sequence similarity by scripts of software 
USEARCH(v7.0.1090) [42]. OTU representative sequences 
were taxonomically classified using the Ribosomal Database 
Project (RDP, Release9, 201203) [43] Classifier v.2.2 
trained on the Greengenes database (default: V201305) [44]. 
Based on the OTU abundance information, principal compo-
nent analysis (PCA) of OTU was drawn by package “ade4” 
of software R (v3.0.3). 

2.4.3. Analysis of Species Composition and Abundances 

 The tag number of each taxonomic rank or OTU in dif-
ferent samples was summarized in a profiling histogram 
which was drawn using software R (v3.0.3). A representative 
OTU phylogenetic tree was constructed using the QIIME 
v1.8.0 built-in scripts including the fast tree method for tree 
construction [45].  

2.4.4. Alpha Diversity Analysis 

 Alpha diversity was applied for analyzing complexity of 
species diversity for a sample through several indices, in-
cluding observed OTU number, Chao 1, abundance cover-
age-based estimator (ACE), Shannon, and Simpson indices, 
which were calculated by Mothur (v1.31.2) [46]. The corre-
sponding rarefaction curves were drawn by software R 
(v3.0.3) as follows: calculating OTU numbers based on ex-
tracted tags (in multiples of 500); and rarefaction curve was 
drawn using the indices calculated with extracted tags. 

2.4.5. Beta Diversity Analysis 

 Sequences of each sample were extracted randomly ac-
cording to the minimum sequence number among the same 

group to rule out the effects of sequencing depth on beta 
diversity analyses, which include Bray-Curtis, weighted 
UniFrac, and unweighted UniFrac, and were then calculated 
by using software QIIME (v1.80) [45] based on the “OTU 
table biom” file. Principal coordinate analysis (PCoA) was 
used to exhibit the differences between the samples accord-
ing to the matrices of beta diversity distances. 

2.5. Shotgun Metagenomic Analyses 

2.5.1. Metagenomic DNA Library Construction 

 0.2 µg DNA was pipetted from each of Z31 or Z31J1 
rhizosphere metagenomic DNA, and then the six DNA sam-
ples were pooled as one qualified metagenomic DNA, 
named MGZ31DRh or MGZ31J1DRh, respectively.  
 Shotgun metagenomic DNA library was constructed ac-
cording to the manufacturer’s instructions (Illumina) [47] 
with minor modifications. In brief, a total of 1.2µg qualified 
DNA of each sample in 80 µl TE was sheared into smaller 
fragments less than 600 bp by nebulization firstly, fragments 
were blunted secondly, and were then ligated with Illumina 
adapter oligo mix after an A(adenine) base was added to the 
3' end of the blunt phosphorylated DNA fragments, respec-
tively. Fourthly, the adapter-modified DNA fragments were 
enriched by NEB Phusion high-fidelity PCR master mix with 
65°C melting temperature and 12 cycles. Furthermore, 
adapted products of 400-600 bp were purified by QIAquick 
PCR purification kit (QIAGEN), and then were qualified and 
quantified by Agilent 2100 Bioanaylzer and ABI 
StepOnePlus Real-Time PCR System. The paired-end (PE) 
libraries were constructed with insert sizes of 468 bp for 
MGZ31DRh and 461 bp for MGZ31J1DRh, respectively. 

2.5.2. Shotgun Metagenomic Sequencing 

 High-throughput sequencing of the qualified meta-
genome libraries was conducted by BGI Tech Solutions Co., 
Ltd (Shenzhen, China) using the Illumina HiSeq2500 NGS 
platform (Illumina) and HiSeq PE Cluster Kit v4 (Illumina), 
with the sequencing strategy PE125. 

2.5.3. Quality Control of Raw Data and de novo Meta-
genome Assembly 

 Clean reads were obtained after the raw data were filtered 
to remove the reads with ambiguous N base, sequencing 
adapters, and average base quality score less than 15. De 
novo metagenome assembly was firstly performed with 
SOAPdenovo2 [48] and further assembled with Rabbit [49]; 
for each sample, reads were assembled with a series of dif-
ferent k-mer size in parallel, and then were mapped back to 
each assembly result with SOAP2 [50], and the optimal k-
mer size and assembly result were chosen depending on both 
contig N50 and mapping rate. De novo metagenome assem-
bly was reperformed with IDBA-UD (v1.1.1) [51]. Only 
those contigs with more than 500 bp were kept for further 
analysis. 

2.5.4. Gene Prediction, Catalog Construction and Mapping 
with Bowtie2 

 MetaGeneMark [52] (version 2.10, default parameters) 
was used to predict open reading frames (ORFs) based on 
assembly results. Genes from different samples were com-
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bined and clustered using CD-Hit [53] (sequence identity 
threshold 95% and alignment coverage threshold 90%). The 
high quality reads from each sample were aligned against the 
gene catalogue by Bowtie2 [54] using a sensitive parameter. 

2.5.5. Functional Annotation of Predicted Genes and Tax-
onomic Assignment 

 All predicted genes were blasted against public databases 
including databases eggNOG, CAZy, GO, COG, Swiss-Prot, 
KEGG, ARDB, and NR (blast, e-value < 0.00001), to re-
trieve proteins with the highest sequence similarity with the 
given genes along with their protein functional annotations.  
 Analysis of NR BLAST output files was performed using 
the MEGAN (version 4.6) [55]. The NCBI taxonomy was 
displayed as a tree and the size of each node was scaled to 
indicate number of reads assigned to the corresponding tax-
onomy. Afterwards, the relative abundance of each taxono-
my level was summed from the same taxonomy, and the 
gross relative abundance was taken as the content of this 
taxonomy in a sample to generate the taxonomy relative 
abundance profile of the samples. 
 Based on the known sequence database of bacteria, fungi 
and archaeobacteria from the nucleotide database of NCBI, 
clean reads of each sample were aligned by SOAPaligner 
(version 2.21) [50], and then mapped clean reads were as-
signed to the corresponding taxonomy and summed. 

2.5.6. Alpha Diversity Analysis 

 Based on the species profile, the alpha diversity within 
each sample was calculated to estimate the species richness 
of a sample using Shannon index, as described previously by 
Qin et al. [47]. 

2.5.7. Computation of Relative Gene Abundance 

 Reads mapping to multiple genes were then reassigned to 
a “most likely” gene using Pathoscope (version 1.0) [56], 
which uses a Bayesian framework to examine each read se-
quence and mapping quality within the context of a global 
reassignment. Then, for any sample “S”, the hits (number of 
mapped reads), abundances (copy number of gene with spe-
cific length), relative abundances of different genes in single 
sample were calculated using the formulas described by Qin 
et al. [47]. 

2.5.8. Differential Analysis of Gene Abundance Between 
Two Samples 

 The number of unambiguous clean reads was denoted as 
“x” from gene A, given that every gene abundance occupies 
only a small part of the library, where “x” yielded to the 
Poisson distribution [57]: 
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 Then, a strict algorithm was developed to identify genes 
with different abundance between two samples based on the 
formula described by Audic et al. [57]. N1 and N2 represented 
the total number of clean reads of samples 1 and 2, respec-
tively. Gene A holds "x" reads in sample 1 and “y” reads in 
sample 2. The probability of abundance of gene A equally 
between two samples was calculated with: 

  2 ! !|!
!!!

!!!

  !"   

2×(1 − ! !|! ) !"   ! !|!
!!!

!!!

> 0.5
!!!

!!!

 

  ! !|! =
!!
!!

! ! + ! !

!! !! 1 + !!!!

!|!|!  

 
 Correction was performed on p-value that corresponded 
to genes with different abundance tests by using Bonferonni 
method [58]. Correction for false positive (type I) errors and 
false negative (type II) errors was performed using false dis-
covery rate (FDR) method [59]. We used “FDR ≤ 0.001” and 
the “absolute value of log2 Ratio ≥ 1” as the default threshold 
to judge the significance.  

2.5.9. Cluster Analysis of Genes 

 Genes with similar abundance patterns usually have same 
functional correlations. Therefore, we performed clustering 
analysis of gene abundance patterns with cluster [60, 61] and 
java Tree view software [62] according to the provided clus-
ter plans. 

2.5.10. Gene Ontology Enrichment 

 Enrichment analysis of Gene Ontology (GO) provided all 
GO terms that were significantly enriched in a list of genes 
with different abundances, compared with a genome back-
ground, and filtered the genes that corresponded to specific 
biological functions. This method firstly mapped all genes 
with different abundances to GO terms in the database 
(http://www.geneontology.org/), calculating gene numbers 
for every term, then used the hypergeometric test to find 
significantly enriched GO terms in the input list of genes, 
based on 'GO::TermFinder' (http://www.yeastgenome.org/ 
help/analyze/go-term-finder). A strict algorithm was devel-
oped to do the analysis, and the method used is described as 
follows: 
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where “N” was the number of all genes with GO annotation; 
“n” was the number of genes with different abundances in 
“N”; “M” was the number of all genes that are annotated to 
certain GO terms; “m” was the number of genes with differ-
ent abundances in “M”. The calculated p-value went through 
Bonferonni Correction [58], taking corrected p-value ≤ 0.05 
as a threshold. GO terms fulfilling this condition were de-
fined as significantly enriched GO terms in genes with dif-
ferent abundances. 

2.5.11. KEGG Pathway Enrichment 

 Pathway-based analysis was used to further understand 
genes biological functions. KEGG, the major public path-
way-related database, has been used to perform pathway 
enrichment analysis of genes with different abundances [63]. 
This analysis identified significantly enriched metabolic 
pathways or signal transduction pathways in genes with dif-
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ferent abundances compared with the whole genome back-
ground. The calculating formula was the same with GO en-
richment analysis except that “N” was the number of all 
genes that with KEGG annotation, “n” was the number of 
gene with different abundances in “N”, “M” was the number 
of all genes annotated to specific pathways, and “m” was the 
number of genes with different abundances in “M”. 

2.6. Statistical Analyses 

 Metastats [64] was used to obtain the abundance differ-
ences of microbial communities between samples (groups = 2, 
samples per group ≥ 3). The obtained p-value was adjusted by 
Benjamini-Hochberg FDR [65] correction (function “p.adjust” 
in the stats package of R (v3.0.3)). The significance test meth-
od for alpha diversity is Wilcoxon Rank-Sum Test. 

3. RESULTS 

3.1. Composition and Structure of Bacterial Community 
Revealed by 16S rDNA Amplicon Sequencing 

3.1.1. Overall Analysis of 16S rDNA (V4 region) Ampli-
cons Sequencing Data Based Illumina MiSeq 

 A total of 893,865 qualified pairs of clean reads were 
obtained with an average of 74,489 (250 bp average) per 
rhizosphere replicate; and then a total of 29,148 OTUs was 
identified, except singletons, with an average of 2429 ± 248 
OTUs per rhizosphere replicate (Table S1 online), and all 
OTU sequences of rhizosphere soil samples were shown in 
(File S1). Moreover, as a systematic contrast study, a total of 
684,351 qualified pairs of clean reads were obtained with an 
average of 57,029 (250 bp average) per surrounding soil rep-
licate and a total of 26,367 OTUs were identified, with an 
average of 2197 ± 173 OTUs per surrounding soil replicate 
with the exception of singletons (Table S2 online), and all 
OTU sequences of surrounding soil samples were shown in 
(File S2). Based on the OTU abundance of rhizosphere soil 
samples (Table S3 online) and surrounding soil samples (Ta-
ble S4 online), the OTUs of each group together with the 
specific and common OTU ID were summarized in sheet 1 
of Table S3 or S4 online, respectively, and were also shown 
in Venn picture (Fig. S1A, B). 

3.1.2. Alpha-diversity of Bacterial Community in Rhizo-
sphere and Surrounding Soil 

 According to alpha diversity of 12 replicates of rhizo-
sphere soil (File S3) and surrounding soil (File S4) in detail, 
the rarefaction curve of the normalized observed OTU num-
ber, Chao 1, and ACE of rhizosphere soil samples (File S5) 
and surrounding soils (File S6) almost reached the saturation 
plateau, indicating that the OTU coverage was sufficient to 
cover enough detectable species in the bacterial community 
and to capture the diversity of the bacterial communities in 
those samples. The mean and standard deviation (SD) of five 
alpha diversity indices of rhizosphere soil groups (Table S5 
online) or surrounding soil groups (Table S6 online) were 
then calculated. Wilcoxon test p-values of five indices be-
tween two groups were higher than 0.05, which indicated 
there were no statistically significant difference in the overall 
indices of alpha diversity either between the rhizosphere soil 
of Z31J1 and that of Z31 or between the surrounding soil of 
Z31J1 and that of Z31. 

3.1.3. Beta-diversity of Bacterial Community in Rhizo-
sphere and Surrounding Soil 

 The differences in the OTU composition were firstly ex-
amined by using PCA. The rhizosphere soil replicates of 
Z31J1 seemed to be separated from those of control Z31 
(Fig. 1A) whereas the surrounding soil replicates of Z31J1 
were not separated from those of Z31 (Fig. 1B). Further-
more, phylogenetic beta diversity analyses were performed 
to rhizosphere and surrounding soil replicates by PCoA 
based on weighted UniFrac distance metric. The rhizosphere 
soil replicates of Z31J1 were separated from those of Z31 
using PCoA (Fig. 2A), and the third principal coordinate 
(PCo3) axis of two dimensions explained 11.29% of the total 
variance. By comparison, the surrounding soil replicates of 
Z31J1 were not separated from those of Z31 using PCoA 
(Fig. 2B). 
 Based on the Bray-Curtis distance metric, taxonomic beta 
diversity analysis was also performed to replicates of rhizo-
sphere and surrounding soil by PCoA. The rhizosphere soil 
replicates of Z31J1 were not separated from those of Z31 
(Fig. S2A online), and those surrounding soils replicates of 
Z31J1 also were not separated from those of Z31 (Fig. S2B 
online). 

3.1.4. Comparison of the Major Bacterial Phyla in the Rhi-
zosphere and Surrounding Soil 

 The taxonomic composition in the rhizosphere or sur-
rounding soil of Z31J1 and its control Z31 at the phylum 
level were shown in (Table S7 online), and the most abun-
dant phylum was Proteobacteria in both the rhizosphere and 
surrounding soil, which was followed by Bacteroidetes or 
Acidobacteria and so on. Among these major phyla, only the 
relative abundance of Gemmatimonadetes was significantly 
lower in the rhizosphere soil of Z31 compared with that of 
Z31J1 (Table S7 online) based on the systematic contrast 
analysis of the surrounding soil of Z31J1 compared with that 
of Z31, which suggested that the relative abundances of 
Gemmatimonadetes were less decreased in the rhizosphere 
soil of Z31 after glyphosate treatment. Additionally, both the 
relative abundances of Proteobacteria and Bacteroidetes 
increased whereas the relative abundance of Acidobacteria 
decreased in the rhizosphere soils of Z31J1 and Z31 com-
pared with surrounding soils of Z31J1 and Z31. 

3.1.5. Comparison of Differentially Relative Abundance of 
Bacterial Genera in the Rhizosphere Soil 

 A total of 559 genera were detected in the rhizosphere 
soil (File S7), and only the relative abundances of 17 among 
219 characterized genera were significantly different be-
tween the rhizosphere of glyphosate-treated Z31J1 and its 
control Z31 (Sheet 2 of Table S8 online). Additionally, only 
9 among 192 characterized genera were significantly differ-
ent between the surrounding soil of glyphosate-treated Z31J1 
and its control Z31 (Sheet 3 of Table S8 online) whereas 517 
genera were detected in the surrounding soils (File S8). Un-
der the comparative analysis of surrounding soils as a sys-
tematic contrast study, the relative abundances of only 3 
genera, such as Opitutus, Comamonas, and Dyella, signifi-
cantly increased in the rhizosphere soils of control Z31 
(Z31DRh) compared with Z31J1 (Z31J1DRh), and the rela-
tive abundances of 2 genera, Burkholderia and Ralstonia,
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Fig. (1). Principal Component Analysis (PCA) based on OTU abundances of bacterial communities. X-axis was 1st principal compo-
nent and Y-axis was 2nd principal component. Numbers in brackets represented contributions of principal components to the total variance. 
A) The black rhombuses and black triangles represented rhizosphere soil replicates of the glyphosate treated Z31J1 and its control Z31, re-
spectively. B) The black squares and the black solid circles represented surrounding soil replicates of glyphosate treated Z31J1 and its control 
Z31, respectively. 

 

 
Fig. (2). Principal Coordinate Analysis (PCoA) based on weighted UniFrac distance. The variance explained by each principal coordi-
nate axis was shown in PCo1 vs. PCo3 and PCo3 vs. PCo2. A) The black rhombuses and black triangles represented rhizosphere soil repli-
cates of the glyphosate treated Z31J1 and its control Z31, respectively. B) The black dots and the dark gray squares represented surrounding 
soil replicates of glyphosate treated Z31J1 and its control Z31, respectively. 
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increased whereas the relative abundance of Candida-
tus_Koribacter decreased in the rhizosphere soils of both 
control Z31 and glyphosate-treated Z31J1 compared with the 
surrounding soils of both Z31 and Z31J1 (Sheet 1 of Table 
S8 online). 

3.1.6. Comparison of Composition of Main Nitrogen-fixing 
Bacterial Genera in the Rhizosphere Soil 

 At the genus level, the relative abundance of Burkhold-
eria was significantly higher in the rhizosphere soil of 
glyphosate-treated Z31J1 compared with its control Z31 
(Table S9 online), whereas the relative abundances of Brady-
rhizobium and Rhizobium were much lower in the rhizo-
sphere soil of glyphosate-treated Z31J1 compared with its 
control Z31, although no statistically significant difference 
existed between Z31J1DRh and its control Z31DRh (Table 
S9 online). 
 Furthermore, the summary of relative abundances of the-
se 9 main symbiotic nitrogen-fixing genera in the rhizo-
sphere of glyphosate-treated Z31J1 (2.116% ±0.404%) were 
less than those in the rhizosphere of control Z31 (2.513% 
±0.546%), which were consistent with the absolute abun-
dances of these main symbiotic nitrogen-fixing genera in the 
rhizosphere of glyphosate-treated Z31J1 compared with 
those of control Z31 (Table S10 online). 

3.2. Metagenomic Analysis of the Effect of Glyphosate on 
Rhizosphere Microbial Community 

3.2.1. Statistical Summary of Assembled Metagenome Data 

 On average 73,970,948 clean reads and 9.25 Gbp clean 
data per sample were generated from shotgun metagenomic 
sequencing (Table S11 online). The total clean reads of 
MGZ31DRh and MGZ31J1DRh were firstly de novo assem-
bled by SOAPdenovo2, respectively, and the mapping rates 
of both samples were lower than 0.44 %, although more than 
272,000 reads per sample were mapped (Table S11 online). 
Thus, de novo metagenome assembly of the total clean reads 
of two samples was reperformed with IDBA-UD (v1.1.1), 
and the mapping rates of both samples obviously increased 
to more than 2.61 % of MGZ31DRh or 4.91 % of 
MGZ31J1DRh (Table S11 online). 

3.2.2. Gene Catalogue and Functional Annotation of Pre-
dicted Genes 

 Based on the assembled data by SOAPdenovo2, a total of 
54,776 genes with detailed sequence were obtained (File S9) 
after ORFs were predicated by MetaGeneMark, while 
47,619 and 52,694 genes were identified from MGZ31DRh 
and MGZ31J1DRh samples, respectively. All predicted 
54,776 genes were blasted against public databases including 
KEGG, and NR etc., and all functional annotations of those 
genes were summarized in File S10. 
 Moreover, a total of 523,955 genes with detailed se-
quence were obtained (File S11) from the assembled data by 
IDBA-UD, and 381,428 and 437,494 genes were identified 
from MGZ31DRh and MGZ31J1DRh samples, respectively. 
All predicted 523,955 genes were blasted against public da-
tabases including KEGG, and NR etc., and the functional 
annotations of those genes were summarized in File S12. 

3.2.3. Computation of Gene Abundances and Taxonomic 
Assignment of Major Taxons 

 Based on the assembled data by SOAPdenovo2, the 
length, the hits (mapped reads), abundances (copy number of 
gene with specific length), and the relative abundances of 
47,619 genes in MGZ31DRh sample and of 52,694 genes in 
MGZ31J1DRh sample were calculated and summarized in 
Files S13 and S14, respectively. Correspondingly, the length, 
hits, abundances, and relative abundances of 381,428 genes 
in MGZ31DRh sample and of 437,494 genes in 
MGZ31J1DRh sample were calculated and summarized in 
Files S15 and S16, respectively, based on the assembled data 
by IDBA-UD. 
 The taxonomic assignment was performed by MEGAN 
according to predicted genes based on the assembled data by 
SOAPdenovo2, and the annotated genes were 37,536 and 
40,579 among 47,619 genes of MGZ31DRh and 52,694 
genes of MGZ31J1DRh, respectively (File S17). The abso-
lute and relative abundances of annotated taxons at different 
classification level in detail were summarized in (Table S12 
online). However, those relative abundances of annotated 
taxons were different from the relative abundances of taxons 
at different classification levels that were calculated based on 
species abundances (Table S13 online), although the Wil-
coxon test p-values of the Shannon index between 
MGZ31DRh and MGZ31J1DRh was 1.00 and much higher 
than 0.05 (Table S14 online). 
 Hence, the taxonomic assignment was further performed 
by SOAPaligner by aligning clean reads directly to the 
known sequence database of bacteria, fungi and archaeobac-
teria from the nucleotide database of NCBI, and then 
mapped clean reads were assigned to the corresponding tax-
onomy and summed (File S18). After comparative analysis, 
we found that taxonomic assignment results based on direct-
ly aligned clean reads seemed consistent with those based on 
species abundances (Table S15 online). 

3.2.4. Comparison of Main Nitrogen-fixing Rhizobacterial 
Genera Based on Metagenome Taxonomic Assignment 

 According to results of taxonomic assignment based on 
genes abundances, species abundances, and clean reads 
alignments, main nitrogen-fixing rhizobacterial genera were 
collected and compared (Table S16 online). The relative 
abundance of Bradyrhizobium was the richest genus in rhi-
zosphere soil, followed by Cupriavidus or Burkholderia, 
Rhizobium or Pseudomonas, and so on. Additionally, the 
relative abundance of Bradyrhizobium was much lower in 
the rhizosphere soil of Z31J1 compared with control Z31, 
whereas the relative abundances of Burkholderia and Cu-
priavidus were higher in the rhizosphere soil of Z31J1. 

3.2.5. Differential Analysis of Gene Abundance and En-
richment of GO and KEGG 

 Based on data assembled by SOAPdenovo2, the abun-
dances of 1766 genes were significantly higher, whereas the 
abundances of 1939 genes were significantly lower in the 
rhizosphere soil of glyphosate-treated Z31J1 compared with 
control Z31 among the total of 54,776 genes (File S19; Files 
S20, and S21 in detail). Correspondingly, the abundances of 
5010 genes were significantly higher, whereas the abundanc-
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es of 8065 genes were significantly lower in the rhizosphere 
soil of glyphosate-treated Z31J1 compared with control Z31 
among the total of 523,955 genes (Fig. 3; Files S22, and S23 
in detail) based on data assembled by IDBA-UD. 
 Among those significantly enriched GO terms in genes 
with different abundances, those remarkable terms were cellu-
lar, metabolic, and single-organism of biological process to-
gether with binding, catalytic activity of molecular function, 
and cell, cell part, membrane of cellular component, based on 
data assembled by IDBA-UD (Fig. 4) as well as those based 
on data assembled by SOAPdenovo2 (Fig. S3 online). 
 To further understand biological functions of those genes 
with different abundances, KEGG pathway enrichment anal-
yses were performed between MGZ31DRh and 
MGZ31J1DRh. Among 32,949 genes with KEGG pathway 
annotation based on data assembled by SOAPdenovo2, the 
top 18 pathways were summarized in (Table S17 online) 
after much less related 9 pathways were removed. Moreover, 
among 39,776 genes with KEGG pathway annotation based 
on data assembled by IDBA-UD, the top 18 significantly 
enriched pathways were summarized in (Table S18 online) 
after seven pathways were deleted because of less relation 
with soil microbes. Those common significantly enriched 
pathways were purine metabolism, pyrimidine metabolism, 
ABC transporters, fatty acid metabolism, DNA replication, 
nitrogen metabolism, and legionellosis between MGZ31DRh 
versus MGZ31J1DRh. We were more interested in the en-
riched KEGG pathways of nitrogen metabolism and ABC 
transporters. 

3.2.6. Detection of Functional Genes with Significantly 
Differential Abundance Involved in PGPT 

 Based on the functional annotation of predicted genes 
and differential analysis of genes abundance, together with 
enrichments of GO and KEGG, we further detected those 
genes involved in Plant Growth Promoting Traits (PGPT), 
such as ACC deaminase, nitrogen fixation related genes, 
plant disease suppression, phosphate solubilization, and iron 
carriers, based on data assembled by SOAPdenovo2 (Table 
S19 online) and by IDBA-UD (Table 1). Additionally, other 
nitrogen metabolism related genes also were detected in this 
study (Tables 1 and S19 online). 
 Compared with MGZ31DRh, the hits and abundances of 
nitrogen fixation genes, ACC deaminase, β-1, 3-glucanase 
and GDH were significantly lower, whereas the hits and 
abundances of dhbF were significantly higher in the 
MGZ31J1DRh sample. The present results suggested that the 
abundance of those PGPT genes except dhbF in rhizosphere 
soil decreased after glyphosate treatment. As for other nitro-
gen metabolism related genes detected in this study, the hits 
and abundances of 5 genes were significantly lower whereas 
the hits and abundances of nirK were significantly higher in 
the MGZ31J1DRh sample compared with MGZ31DRh. 
 One gene of IAA metabolism involved in PGPT, iaaM 
encoding tryptophan 2-monooxygenase, was not found in 
either File S10 or File S12, which was the annotation table 
based on data assembled by SOAPdenovo2 or by IDBA-UD. 
The other gene of IAA metabolism involved in PGPT, name-
ly, ipdC that encodes indolepyruvate decarboxylase, was not

 
Fig. (3). Scatter plots of genes with differential abundance. Y and X axis presented value of genes abundance of MGZ31J1DRh and of 
MGZ31DRh, respectively, based on the assembled data by IDBA-UD. Orange triangles and blue rhombuses indicated genes with significant-
ly higher and lower relative abundance in MGZ31J1DRh, respectively. Brown circles indicate those genes with no significant difference 
between MGZ31J1DRh and MGZ31DRh. The criterion of screening is on top of the plot. 
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Fig. (4). GO functional classification for the pairwise of MGZ31DRh VS MGZ31J1DRh. X-axis means number of genes with different 
abundance based on data assembled by IDBA-UD. Y-axis represents different GO terms. All GO terms were grouped into three ontologies: 
the dark gray, gray and black color indicated biological process, cellular component, and molecular function, respectively. 
detected in File S10, but was found in File S12, although its 
hits and abundances in the MGZ31J1DRh did not signifi-
cantly differ from those in MGZ31DRh (Table 1). 

4. DISCUSSION 

 We collected samples of surrounding and rhizosphere 
soils from GR transgenic line Z31 plants after glyphosate 
treatment in seedling, flowering, and seed-filling stages. We 
then analyzed the effect of glyphosate on the rhizosphere 
microbes in seed-filling stage because we aimed to deter-
mine the effect of glyphosate treatment during a single 
growth season. In addition, 8% to 12% of the applied 
glyphosate was still detected in the soil samples incubated 
with roots one and a half months later [12]. Compared with 
rhizosphere soil being sampled 3 days later [26] or more than 
one year [27] after the glyphosate treatment, in this study, 
the sampling time of two months after the glyphosate treat-
ment was a mid-term period. 

 Before shotgun metagenome sequencing and analysis 
were performed, we comparatively analyzed the bacterial 
communities in the rhizosphere and surrounding soils of the 
GR transgenic soybean line Z31 treated with glyphosate (or 
simply Z31J1) versus Z31 treated with water in the seed-
filling stage by V4 region of 16S rDNA amplicon based Il-
lumina MiSeq sequencing to clarify whether glyphosate 
treatment affects rhizosphere bacterial community associated 
with soybean roots.  
 It is also important to conduct the analysis of surrounding 
soil as a systematic contrast study that not only overcomes 
some of soil heterogeneity but also distinguish those signifi-
cant differences in some rhizosphere bacterial relative abun-
dances from edaphic factors instead of host plants already in 
the surrounding and bulk soils [18], especially to distinguish 
the effect of glyphosate being penetrated from field surface.  
 Previous studies involving the deep sequencing of 16S 
rDNA amplicon showed that the effects of glyphosate 
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Table 1. Detection of functional genes involved in PGPT plus N2-metabolim based on data assembled by IDBA-UD. 

Gene Name ID of KEGG ID of [deno-
vogenes] 

 

MGZ31DRh 
(Assembled by IDBA-

UD) 

MGZ31J1DRh 
(Assembled by IDBA-

UD) Gene 
length2 

(bp) 

  

Hits1 Gene Abun-
dance Hits1 Gene Abun-

dance p-value FDR3 

ACC deaminase K01505 _73123 83 0.08185 33 0.03254 1014 9.35E-07 6.32E-05 

Nitrogen fixation 

nifH K02588 _103473 63 0.07023 24 0.02676 897 1.04E-05 0.0004979 

nifD K02586 _19302 135 0.08893 59 0.03887 1518 7.25E-09 8.97E-07 

nifK K02591 _17563 108 0.06936 40 0.02569 1557 3.44E-09 4.61E-07 

nifA K02584 _9784 146 0.08004 57 0.03125 1824 3.79E-11 7.81E-09 

nifB K02585 _17564 150 0.09634 47 0.03019 1557 7.76E-15 2.89E-12 

nifE K02587 _12565 121 0.07101 50 0.02934 1704 9.02E-09 1.08E-06 

nifN K02592 _25697 97 0.06923 51 0.03640 1401 5.43E-05 0.0018917 

nifQ K15790 _182142 39 0.05462 12 0.01681 714 7.17E-05 0.0024326 

nifV K02594 _45566 91 0.07660 30 0.02525 1188 4.66E-09 6.03E-07 

nodB K14659 _219374 32 0.04848 8 0.01212 660 6.73E-05 0.0023008 

nodC K14666 _27548 112 0.08151 46 0.03348 1374 2.75E-08 2.92E-06 

fixA K03521 _121736 43 0.05101 11 0.01305 843 4.44E-06 0.0002400 

fixB K03522 _56616 85 0.07678 34 0.03071 1107 7.80E-07 5.34E-05 

fixC K00313 _32844 89 0.06804 28 0.02905 1308 1.68E-06 0.0001030 

fixJ K14987 _242433 40 0.06319 13 0.02054 633 9.83E-05 0.0030541 

fixL K14986 _23774 85 0.05940 41 0.02865 1431 3.14E-05 0.0012269 

Plant disease suppression 

β-1,3-glucanase K01210 _13389 26 0.01548 ND 4 0.00025 1680 8.71E-09 1.06E-06 

  _14945 125 0.07673 37 0.02271 1629 2.43E-13 7.38E-11 

Phosphate solubilization 

GDH K00117 _3387 227 0.09554 69 0.02904 2376 2.06E-22 1.54E-19 

Siderophore (iron carrier) 

dhbF K04780 
_9 67 0.00774 202 0.02332 8661 6.20E-16 2.62E-13 

_2733 ND 4 0.00025 44 0.01769 2487 1.37E-13 4.27E-11 

Nitrogen metabolism other related genes 

cynT/can K01673 _18558 43 0.02799 7 0.00456 1536 5.75E-08 5.62E-06 

ncd2/npd K00459 _25423 28 0.01990 6 0.00426 1407 7.31E-05 0.002472 

gltD K00266 _22286 105 0.07202 42 0.02881 1458 3.89E-08 3.97E-06 

gltB K00265 

_122 160 0.03439 47 0.01010 4653 8.38E-17 3.85E-14 

_106 461 0.09701 205 0.04314 4752 5.49E-26 5.06E-23 

_2287 68 0.02623 24 0.00926 2592 1.31E-06 8.42E-05 

nirK K00368 _31799 1 0.00076 54 0.04091 1320 4.54E-15 1.73E-12 

nirB K00362 

_2403 77 0.03013 41 0.01604 2460 0.000404 0.009216 

_2606 74 0.02947 24 0.00956 2511 9.77E-08 8.86E-06 

_2886 214 0.08699 85 0.03455 2460 2.68E-15 1.05E-12 
1 The number of hits represented the number of mapped reads of single denovogene detected in the sample. 
2 The gene length (bp) was listed according to those denovogenes assembled by IDBA-UD. 
3 The value in the table cell was underlined when FDR was less than 0.01 but more than 0.001. 
4 ND = Not Detected. 
treatment are the major shift in the relative abundances of 
Proteobacteria and Acidobacteria at the phylum level for 
both soybean and corn rhizosphere samples, in which the 
increase in the relative abundance of Proteobacteria is at-

tributed to the increase in the relative abundance of the class 
Gammaproteobacteria and the increase in the relative abun-
dance of the family Xanthomonadaceae after glyphosate 
treatment [27]. However, in our 16S rDNA amplicon se-
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quencing results, the relative abundances of Gemmatimona-
detes, Bacteroidetes, and Acidobacteria in the rhizosphere 
soil were remarkably altered at the phylum level, as indicat-
ed by the analysis of surrounding soil as a systematic con-
trast study (Sheet 1 of Table S7 online), and the relative 
abundances of Gammaproteobacteria and Saprospirae obvi-
ously increased under water control treatment compared with 
glyphosate treatment at the class level in this study (Sheet 2 
of Table S7 online). Interestingly, our 16S rDNA amplicon 
deep sequencing results were consistent with those of taxo-
nomic assignment based clean read alignment in our meta-
genome sequencing data; By contrast, previous results were 
similar to the taxonomic assignment based on species abun-
dance assembled by SOAPdenovo2 in our metagenome se-
quencing data (Table S15 online, at the class and family lev-
el) although the relative abundance of Proteobacteria, which 
was the major phyla revealed by shotgun metagenome se-
quencing, decreased in the rhizosphere soil of Z31J1 after 
glyphosate treatment (Table S15 online, at the phylum level).  
 Previous studies involving the deep sequencing of 16S 
rDNA amplicon demonstrated that the relative abundance of 
Acidobacteria, particularly the subgroup Acidobacteria-6, 
decreases in corn and soybean rhizospheres upon glyphosate 
treatment [27]. In our results, the relative abundance of Ac-
idobacteria-6 in the rhizosphere soil of soybean Z31 in 
glyphosate treatment was less than that in water control 
(Sheet 2 of Table S7 online). By comparison, the relative 
abundances of the phylum Acidobacteria and its major class 
Acidobacteriia in the rhizosphere soil with glyphosate treat-
ment were much higher than those in the rhizosphere soil 
with water control, as demonstrated by 16S rDNA amplicon 
sequencing (Table S7 online) and shotgun metagenome se-
quencing (Table S15 online). 
 The inconsistent results of the deep sequencing of 16S 
rDNA amplicons might be attributed to different soil types, 
glyphosate concentrations, sampling times after glyphosate 
treatment, and PCR programs with different cycles during 
the amplification of the V4 region of 16S rDNA. 
 Rhizobium-legume symbioses are essential for land eco-
systems by providing ammonia for plant growth via symbi-
otic nitrogen fixation [23]. Hence, the composition of nitro-
gen-fixing bacteria was the focus of this study. All 15 main 
symbiotic nitrogen-fixing bacterial genera with legumes [66] 
were detected by shotgun metagenome sequencing and anal-
ysis of total clean reads direct alignment in the present study 
(Table S16). By comparison, only 9 main symbiotic nitro-
gen-fixing bacterial genera were detected by 16S rDNA am-
plicons sequencing and analysis in the present study (Table 
S9). The relative abundances of several major nitrogen-
fixing bacterial genera, such as Bradyrhizobium, and Rhizo-
bium, obviously decreased, whereas the relative abundance 
of Burkholderia increased in the rhizosphere soil after 
glyphosate treatment via both shotgun metagenome sequenc-
ing and 16S rDNA amplicons sequencing; nevertheless, their 
relative abundances were different. Moreover, the total rela-
tive abundances of main symbiotic nitrogen-fixing bacterial 
genera obviously decreased in the rhizosphere soil after 
glyphosate treatment via two methods. This finding was con-
sistent with the significantly decreased hits and gene abun-
dance of most nitrogen-fixation related genes including ma-

jor nitrogenase genes, such as nifH, nifD, nifK, and nodula-
tion related genes such as nodB, nodC. 
 With the importance of plant growth promoting rhizobac-
teria for improving plant growth and health [16, 67-69], in 
addition to nitrogen-fixation related genes, other functional 
genes involved in PGPT were also detected in this study. 
The hits and gene abundances of ACC deaminase, β-1,3-
glucanase, and GDH significantly decreased, although a few 
of them, such as dhbF, and one of nitrogen metabolism relat-
ed genes, namely, nirK, significantly increased in the rhizo-
sphere soil after glyphosate treatment. 
 The total clean reads of MGZ31DRh and MGZ31J1DRh 
were reassembled by IDBA-UD because the metagenome 
assembly results significantly affected taxonomic assign-
ment, functional gene annotation, and genome reconstruction 
of different single microbe species.  
 Shotgun metagenome sequencing combined with bioin-
formatics analysis is an efficient method to investigate the 
composition, structure, and function of microbial communi-
ties. However, the large datasets generated by current NGS 
platforms, such as Illumina HiSeq, require massive computa-
tional resources and produce relatively short contigs in this 
study and others studies [70]. In addition to SOAPdenovo2 
and IDBA-UD, many bioinformatics tools, such as Kraken 
[71], GOTTCHA [72], CLARK [73], have been developed 
to explore the taxonomic assignment and functional compo-
sition of metagenomes. Furthermore, the speed and accuracy 
of 14 metagenome analysis tools have been evaluated [74]; 
Test datasets have been established with differences in the 
relative abundance of Bradyrhizobium and Rhizobium for 
nitrogen fixation functional analysis, and only EBI webserv-
er and MG-RAST tools have predicted the expected shift of 
nitrogen-fixation [74]. 
 Third-generation sequencing technology, especially Pac-
Bio Single Molecule Real Time (SMRT) detection with Circu-
lar Consensus Sequencing (CCS), has significantly improved 
the metagenome assembly when this technology is combined 
with HiSeq 2000 data. [75] This technology is another im-
portant advancement in shotgun metagenome sequencing. 

CONCLUSION 

 Our present study indicated that the formulation of 
glyphosate-isopropylamine salt did not significantly affect 
alpha diversity of soybean rhizosphere bacterial community, 
although it had small but insignificant effect on beta diversi-
ty of soybean rhizosphere bacterial community. By contrast, 
the formulation of glyphosate-isopropylamine salt signifi-
cantly affected some functional genes involved in PGPT, 
especially most of nitrogen-fixation genes in rhizosphere soil 
during the single growth season after glyphosate treatment. 

LIST OF ABBREVIATIONS 

16S rDNA = 16S ribosomal RNA Gene 
AMPA = Aminomethylphosphonic Acid 
ARDB = Antibiotic Resistance Genes Database 
CAZy = Carbohydrate-Active Enzymes Database 
COG = Cluster of Orthologous Groups of Proteins 
eggNOG = Evolutionary Genealogy of Genes: Non-

supervised Orthologous Groups 
EPSPS = 5-Enolpyruvylshikimate-3- Phosphate Syn-
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thase 
FDR = False Discovery Rate 
GO = Gene Ontology 
GR = Glyphosate Resistant 
KEGG = Kyoto Encyclopedia of Genes and Ge-

nomes 
nifA = The Core Gene Encoding Nitrogen Fixa-

tion Specific Regulatory Protein 
nifB = The Core Gene Encoding Protein Synthe-

sizes a Fe-S Containing Precursor of 
FeMo-cofactor 

nifD = The Core Structural Gene Encoding Nitro-
genase Molybdenum-iron Protein Alpha 
Chain 

nifE = The Core Gene Encoding the Molecular 
Scaffold for Assembly of Mo Cofactor 

nifH = The Core Structural Gene Encoding Nitro-
genase Iron Protein 

nifK = The Core Structural Gene Encoding Nitro-
genase Molybdenum-iron Protein Beta 
Chain 

nifN = The Core Gene Encoding the Molecular 
Scaffold for Assembly of the Fe-Mo Co-
factor 

NR = Non-redundant Protein Sequence Database 
ORF = Open Reading Frame 
OTU = Operational Taxonomic Unit 
PCA = Principal Component Analysis 
PCoA = Principal Coordinate Analysis 
PCR = Polymerase Chain Reaction 
PGPR = Plant Growth-promoting Rhizobacteria 
PGPT = Plant Growth-promoting Traits 
Z31 = GR Transgenic Soybean Line ZUTS31 

Being Foliar Sprayed with Water 
Z31J1 = GR Transgenic Line ZUTS31being Foliar 

Sprayed at Field Rate (3000 ml · ha-1) of 
Glyphosate 
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