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ABSTRACT

There are rising evidences of the human microbiome as a potentially influential player that 
is actively engaged in shaping the pathogenetic processes and other unresolved issues both 
in asthma and other chronic respiratory diseases, particularly of the airways. The biological 
components such as microbiome in inhaled air can induce immune dysfunction and 
inflammation, leading to inflammatory pulmonary disorders such as asthma and chronic 
obstructive pulmonary disease (COPD). Microbe-derived extracellular vesicles (EVs) with 
biologically active information or functions can reprogram their respective target cells and 
EV may have a role for the development of asthma and COPD. To evaluate the role of microbe-
derived EV in the pathogenesis of asthma and COPD and its role in diagnosis, the PRISMA 
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement method 
was used for the study. An electronic search was performed using PubMed, PubMed Central, 
and Embase up to 2020. EVs serve as an intercellular transporter of miRNAs for cell-to-cell 
communication in the lungs. Bacteria-derived EVs have distinctive characteristics in the lungs 
of patients with asthma and COPD compared to healthy controls. Furthermore, bacterial EV 
IgG antibody titers in serum were significantly higher in patients with asthma and COPD 
than in healthy controls, suggesting that antibacterial EV antibodies titers can be used as a 
diagnostic tool for lung disease. Taken together, microbial EVs and miRNAs have important 
roles in the pathogenesis of asthma and COPD and they can provide novel diagnostic 
biomarkers for asthma and COPD.

Keywords: Microbiome; Extracellular vesicles; miRNA; Asthma; Chronic obstructive 
pulmonary disease

INTRODUCTION

Microbiota are ecological communities of commensal, symbiotic, and pathogenic 
microorganisms found in all multicellular organisms from plants to animals. Microbiome 
is collective genomes of the microorganisms. The microbiome and host emerged during 
evolution as a synergistic unit from epigenetics and genetic characteristics, sometimes 
collectively referred to as a holobiont (a host animal and its microbial associates). Changes 
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in the holobiont may impact the complex signaling network thereby influencing the 
hologenome (the genome of a host animal and its metagenome) leading to health or 
disease [1-4]. The human microbiome is the aggregate of all microbiota that reside on or 
within human tissues and biofluids along with the corresponding anatomical sites in which 
they reside, including the skin, mammary glands, placenta, seminal fluid, uterus, ovarian 
follicles, lung, saliva, oral mucosa, urine, biliary tract, and gastrointestinal tract. Types of 
human microbiota include bacteria, archaea, fungi, protists and viruses, most members 
of which reside in the gastrointestinal tract. Several parameters, including diet, lifestyle, 
antibiotics and other drugs, hygiene, genetics and immune status of the host, shape the 
microbiota composition, with various consequences for host physiology [5].

Babies born through the vaginal canal have nonpathogenic, beneficial gut microbiota similar 
to those found in the mother. However, the gut microbiota of babies delivered by C-section 
harbors more pathogenic bacteria such as Escherichia coli and Staphylococcus and it takes longer 
to develop nonpathogenic, beneficial gut microbiota [6-8]. The Human Microbiome Project 
(HMP, 2008-2012) was a United States National Institutes of Health initiative to identify and 
characterize microorganisms found in both healthy and diseased humans. HMP discovered 
that only 1% of the genes in our bodies are human, the other 99% are contributed by the 
bacteria in our body, primarily in the gut. Over 10,000 microbial species occupy the human 
ecosystem. Our body consists of about 40 trillion human cells and about 22,000 human 
genes. And also, it consists as many as 100 trillion microbial cells and 2 million microbial 
protein-coding genes. The microbiome consists of microbes that are both helpful and 
potentially harmful. Most are symbiotic and some, in smaller numbers, are pathogenic. In a 
healthy body, pathogenic and symbiotic microbiota coexist without problems. But if there is 
a disturbance dysbiosis occurs, stopping these normal interactions. As a result, the body may 
become more susceptible to disease [9-11].

There are rising evidences of the human microbiome as a potentially influential player that is 
actively engaged in shaping the pathogenetic processes and other unresolved issues both in 
asthma and in the other chronic respiratory diseases, particularly of the airways [12-16].

Extracellular vesicles (EVs) have only recently been recognized as important molecules in 
the pathogenesis of a number of human diseases particularly, lung diseases. Intercellular 
communication is an essential hallmark of multicellular organisms and can be mediated through 
direct cell-cell contact or transfer of secreted molecules. EV is a critical mediator of cell-to-cell 
communication, which is involved in the physiological and pathological processes of different 
diseases [17,18]. EVs are nanometer-sized lipid bi-layered vesicles containing cargos from parent 
cells such as various DNAs, proteins, lipids, mRNAs, and microRNAs (miRNAs). Many diverse 
names have been used to refer to these vesicles released by healthy cells including ectosomes, 
microparticles, and shedding microvesicles. Now the term EV are used as a generic term for all 
secreted vesicles. EVs may be broadly classified into exosomes (endosomal origin, 40–120 nm), 
microvesicles (plasma membrane origin, 50–1,000 nm), and apoptotic bodies (500–2,000 nm) 
according to size, structural components, and their origin of generation [19,20]. In the lung, 
EVs can be released from numerous parent cells both spontaneously and in response to specific 
stimuli such as inflammation. EVs have emerged as important information shuttles that can 
coordinate and disseminate homeostatic and disease signals in the lung [21-23].

The biological components such as microbes in indoor dust can induce immune dysfunction 
and inflammation, leading to inflammatory pulmonary disorders such as asthma and chronic 
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obstructive pulmonary disease (COPD). Yang et al. [24, 25] reported the importance of indoor 
dust biological ultrafine particles in the pathogenesis of chronic inflammatory lung diseases. 
Indoor dust is known to contain EVs derived from microorganisms. Bacteria-derived EVs are 
spherical, lipid-bilayered vesicles with diameters ranging from 20 to 100 nm, produced by both 
gram-negative and gram-positive bacteria and are common biological ultrafine particles found 
in the indoor environment. EVs with biologically active information or functions can reprogram 
their respective target cells and EV may have a role for the development of asthma and COPD. 
Moreover, EVs are presently emerging as promising biomarker candidates for a number of lung 
diseases that currently have little to no reliable means of predicting diagnosis.

The purpose of this review article is to evaluate the role of cell-derived EV, particularly 
microbial EV relevant to pathogenesis in asthma and COPD and its diagnostic potential as a 
biomarker for asthma and COPD.

LITERATURE SEARCH

Sources and searches
The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 
statement method was used for the study. An electronic search was performed using 
PubMed, PubMed Central (PMC), and Embase up to 2020. The search key words were EVs, 
asthma, and COPD. The search collected 26 articles from PubMed, 168 articles with author 
manuscripts from PMC and 33 articles from Embase.

Selection of articles
In vivo/ex vivo studies of biofluids or tissues of patients with asthma and COPD and animal 
models were selected instead of in vitro studies. Titles and abstracts were screened and 
articles of duplicates, reviews, abstracts, conference proceedings, or articles not relevant to 
objective were excluded. Only peer reviewed original research articles were included and then 
25 articles were included in the final qualitative analysis. Eight of 25 articles investigated the 
effect of airway exposure on polluted air, microbiome or microbial EVs. Thirteen of them 
showed the profiles of microbiome, EVs, miRNA in sputum, airway epithelial brushing, 
bronchoalveolar lavage fluid (BALF) or serum/plasma in asthma and COPD. Two of them 
showed miRNA spectrum in various body fluids. Two of them provided lung diseases 
diagnostic model based on IgG antibody titer to microbial EVs.

Among 25 articles 2 were human in vivo studies, 16 articles were human ex vivo studies,  
5 articles were animal experiments, and 2 were combined studies with human ex vivo and 
animal experiments.

MAIN FINDINGS

Biological factors in indoor dust induce chronic inflammatory pulmonary 
diseases, including asthma and COPD
Asthma and COPD are major lung diseases that cause widespread morbidity and mortality 
worldwide. The increased prevalence of asthma and COPD patients during the past several 
decades may be associated with changes in housing styles that have led to increasing 
amounts of indoor biological contaminants.
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Hansel et al. [26] reported that increases in PM2.5 concentrations in the main living area were 
associated with increases in respiratory symptoms, rescue medication use, and risk of severe 
COPD exacerbations and they concluded that indoor pollutant exposure, including PM2.5 was 
associated with increased respiratory symptoms and risk of COPD exacerbation.

Kim et al. [27] evaluated the hypothesis that airway exposure to different doses of 
lipopolysaccharide (LPS) induces different form of asthma. We demonstrated that neutrophilic 
inflammation and IFN-gamma (IFN-γ) expression were higher in induced sputum from severe 
asthma patients than from mild-to-moderate asthmatics. Animal experiments indicated 
that allergen sensitization with low-dose LPS (0.1 μg) induced type 2 asthma phenotypes, 
i.e., airway hyperresponsiveness, eosinophilic inflammation, and allergen-specific IgE 
up-regulation. In contrast, allergen sensitization with high-dose LPS (10 μg) induced type 1 
asthma phenotypes, i.e., airway hyperresponsiveness and noneosinophilic inflammation that 
were not developed in IFN-γ-deficient mice, but unaffected in the absence of IL-4. Jeon et al. 
[28] evaluated the effects of double-stranded RNA (dsRNA) on airway sensitization to inhaled 
allergens in experimental mouse models to see the effects of respiratory viral infections 
for the development of airway allergen sensitization. We found that lung inflammation 
enhanced by low-dose dsRNA was impaired in interleukin (IL)-13-deficient mice, whereas lung 
inflammation by high-dose dsRNA was impaired in IFN-γ-deficient mice. The models also 
demonstrated that low-dose dsRNA enhanced IL-4 expression during allergen sensitization. 
In contrast high-dose dsRNA enhanced IFN-γ expression during allergen sensitization. The 
results showed that airway allergen exposure during respiratory viral infections might induce 
asthma induced by both Th1 and Th2 immune responses to inhaled allergens. These 2 studies 
suggest biological factors such as allergens, viruses, and bacterial substances in indoor dust 
can induce immune dysfunction and chronic inflammation, leading to chronic inflammatory 
pulmonary diseases, including asthma and COPD.

Microbial diversity is inversely associated with human diseases
The diversity of microbes within a given body habitat can be defined as the number and 
abundance distribution of distinct types of organisms, which has been linked to several 
human diseases: low diversity in the gut to obesity and inflammatory bowel disease [29-31]. 
Ege et al. [32] extracted DNA from mattress dust samples of 489 school-age children from 
rural and suburban regions in Germany. A fragment of the bacteria-specific 16S ribosomal 
RNA gene was amplified by polymerase chain reaction, digested to single-strand DNA, and 
subjected to electrophoresis. They found an inverse association of bacterial diversity with 
childhood asthma. Thus, diverse microbial environment may account for the protective effect 
on the development of asthma and atopy.

Microbial EVs induce neutrophilic pulmonary inflammation leading to asthma 
and COPD
Like mammalian cells, gram-negative and gram-positive bacteria release EVs into the 
extracellular environment. The contents of gram-negative and gram-positive bacteria-derived 
EVs have a wide variety of molecules, such as proteins, lipids, DNAs, RNAs, and various 
virulence factors, which can play important physiological and pathological roles in bacteria-
bacteria and bacteria-host interactions [22, 33].

Gram-negative bacteria such as E. coli and gram-positive bacteria such as Staphylococcus aureus 
and their microbial EVs were detected in indoor dust. To evaluate whether EVs in indoor 
air are related to the pathogenesis of pulmonary inflammation and/or asthma Kim et al. 
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[34] prepared EVs from indoor dust by sequential ultrafiltration and ultracentrifugation. 
Repeated intranasal application of indoor dust to the experimental mice induced neutrophilic 
pulmonary inflammation accompanied by lung infiltration of both Th1 and Th17 cells. Kim 
et al. [35] performed the other animal experiment to evaluate the role of E. coli-derived EVs 
on the development of COPD, such as emphysema. Airway exposure to E. coli EVs increased 
the production of proinflammatory cytokines, such as tumor necrosis factor-α and IL-6. In 
addition, repeated inhalation of E. coli EVs for 4 weeks induced neutrophilic inflammation 
and emphysema, which are associated with enhanced elastase activity. Emphysema and 
elastase activity enhanced by E. coli EVs were reversed by the absence of IFN-γ or IL-17A 
genes. Kim et al. [36] performed another animal experiment to evaluate whether inhalation 
of Staphylococcus aureus-derived EV is causally related to the pathogenesis of inflammatory 
pulmonary diseases. Repeated airway exposure to S. aureus EV induced both Th1 and Th17 
cell responses and neutrophilic pulmonary inflammation, mainly via a Toll-like receptor 2 
(TLR2)-dependent mechanism.

COPD is a chronic inflammatory disease, and bacterial infection may play a role in its 
pathogenesis. Kim et al. [37] hypothesized that lung EVs might display specific microbiome 
characteristics in COPD. To test this possibility, they compared the microbiome data from 
3 completely age- and sex-matched groups of nonsmokers, healthy smokers and COPD 
patients. They analyzed and compared the microbiomes of 13 nonsmokers with normal 
spirometry, 13 smokers with normal spirometry (healthy smokers) and 13 patients with COPD 
by using 16S ribosomal RNA gene sequencing of surgical lung tissue and lung EVs. They 
found that bacterially derived EVs have distinctive characteristics in the lungs of nonsmokers, 
healthy smokers and patients with COPD.

IgG sensitization to microbial EVs in asthma and COPD
Kim et al. [38] measured serum IgG antibodies against dust EVs in 90 healthy control 
subjects, 294 asthmatics and 242 COPD patients. The results showed that serum IgG 
antibody level to dust EVs were significantly higher in patients with noneosinophilic asthma, 
COPD or lung cancer than in healthy control subjects. Adjusted multiple logistic regression 
revealed that sensitization to dust EVs (high serum antidust EV IgG titer) was an independent 
risk factor for asthma and COPD which indicate that IgG sensitization to indoor dust EVs 
appears to be a major risk for the development of asthma and COPD.

Yang et al. [39] performed microbiome analysis of indoor dust EVs isolated from mattresses 
in apartments and hospitals. We developed diagnostic models based on the bacterial EVs 
antibodies detected in serum samples via enzyme-linked immunosorbent assay. The levels 
of antibacterial EV IgG, IgG1, and IgG4 antibodies were found to be significantly higher in 
patients with asthma and COPD compared to the healthy control group.

Altered miRNA profiles in asthma
Differential expression of several miRNAs in serum and biological fluids (BALF, induced 
sputum) from asthmatics as compared to healthy controls have been documented.

Maes et al. [40] performed a study to see the association between miRNA expression in 
sputum supernatants with the inflammatory cell profile and disease severity in asthmatic 
patients. They investigated miRNA expression in sputum supernatants of 10 healthy subjects, 
17 patients with mild-to-moderate asthma, and 9 patients with severe asthma. The results 
showed that expression of miRNA is increased in sputum of patients with severe asthma and 
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is linked to neutrophilic airway inflammation, suggesting that these miRNAs contribute 
to this asthma inflammatory phenotype. Levänen et al. [41] isolated EVs from BALF from 
healthy control subjects (n = 10) and patients with mild intermittent asthma (n = 10) and EV 
miRNA was analyzed by using microarrays. They demonstrated that substantial differences 
in EV miRNA profiles between healthy subjects and patients with unprovoked, mild, stable 
asthma. These changes might be important in the inflammatory response leading to bronchial 
hyperresponsiveness and asthma. Gon et al. [42] performed an animal experimental study 
using house dust mite (HDM) allergen-exposed HDM-sensitized mice and control mice. They 
isolated airway-secreted EVs from BALF and analyzed the expression of miRNA in EVs or lung 
tissue using miRNA microarray. The results showed that the amount of EV increased 8.9-fold 
in BALF from HDM-exposed mice compared with that from sham-control mice. These results 
indicate that selective sorting of miRNA into EVs and increase release to the airway after 
HDM exposure would be involved in the pathogenesis of allergic airway inflammation. Zhang 
et al. [43] explored the expression patterns of miRNA-let 7a, 7b, and 7c in BALF in infants 
with asthma and airway foreign bodies within the first 8 hours and demonstrated whether 
the changed expression of miRNA-let 7a, 7b, and 7c in BALF were related with the asthma 
of infants. They found that the increased expressions of miRNA-let 7a, 7b, and 7c in BALF 
from infants were related to the asthma, not airway foreign bodies. This study indicates that 
expression levels of miRNA-let 7a, 7b, and 7c might be potential biomarkers for distinguishing 
asthma and airway foreign bodies in infants. Solberg et al. [44] evaluated whether airway 
epithelial miRNA expression is altered in asthma. They used miRNA microarrays to analyze 
bronchial epithelial brushings from 16 steroid-naive subjects with asthma before and after 
inhaled corticosteroids, 19 steroid-using subjects with asthma, and 12 healthy control subjects. 
The results showed that dramatic alterations of airway epithelial cell miRNA levels are a 
common feature of asthma.

To determine whether miRNAs are differentially expressed in asthma, Panganiban et al. 
[45] isolated serum from 10 asthmatics and 10 control subjects for miRNA profiling. They 
showed differential serum expression patterns of miRNA in asthmatic patients compared to 
nonasthmatic controls, demonstrating the potential of miRNA profiling in the diagnosis and 
management of asthma.

Altered miRNA profiles in COPD
COPD causes significant morbidity and mortality worldwide and is expected to become 
the third leading cause of death by 2020. miRNAs are small RNA molecules (approximately 
21–25 nucleotides long) that negatively regulate gene expression posttranscriptionally, by 
means of mRNA degradation, inhibition of protein translation, or by a combination of both 
mechanisms. miRNAs are predicted to regulate approximately 60% of all human protein-
coding genes. De Smet et al. [46] discussed the miRNA expression patterns in lungs of 
patients with COPD and in mouse models and they highlighted various miRNAs are involved 
in the development and progression of COPD. Van Pottelberge et al. [47] performed a study 
to identify miRNA expression in induced sputum and examined whether the expression of 
miRNAs differed between patients with COPD and subjects without airflow limitation. Eight 
miRNAs were expressed at a significantly lower level in current-smoking patients with COPD 
compared with never-smokers without airflow limitation. Schembri et al. [48] performed 
a study to determine whether miRNAs play a role in regulating the airway gene expression 
response to smoking. They examined whole-genome miRNA and mRNA expression in 
bronchial airway epithelium from current and never-smokers and found 28 miRNAs to be 
differentially expressed with the majority being down-regulated in smokers.
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EV and miRNA in exacerbation of asthma and COPD
Bacterial and viral infections are common causes of exacerbations of respiratory diseases 
such as asthma and COPD. miRNAs are a class of small single-stranded RNA that is involved 
in gene expression regulation at posttranscriptional level of both innate and adaptive 
immune response to viral infections which suggests their potential contribution to the 
pathogenesis of asthma exacerbation [49].

Wardzyńska et al. [50] studied 21 asthmatics during asthma exacerbation. They reported 
that the expression of circulating miRNAs during asthma exacerbation was associated 
with the objective parameters of disease severity. And they documented that asthma 
exacerbation is associated with epigenetic dysregulation expressed by changes in 
circulating miRNA. Kho et al. [51] identified, in the sera of children with asthma, 12 
miRNAs that were significantly associated with exacerbations in the subsequent year, 
with each doubling of expression of these miRNAs associated with a 25%–67% increase 
in risk of exacerbations. This study suggests that the assessment of the expression of 
these miRNAs in serum has the potential to identify reliable biomarkers for asthma 
exacerbation. Eltom et al. [52] hypothesized that respiratory infections cause the release of 
EVs in the airway, triggers neutrophilia and subsequent disease exacerbations. To test this 
hypothesis, they utilized human cell-based assays, ex vivo murine BALF, in vivo preclinical 
models and human samples. Data showed that infective challenge causes exacerbated 
inflammation and infection can trigger the release of EVs. This study suggests a possible 
mechanism for how infections could exacerbate respiratory diseases.

EVs and miRNA as potential biomarkers for asthma and COPD
EVs are found in circulation and contain cell-derived biomolecules. Kadota et al. [22] pointed 
out that EV has been highlighted as a new disease biomarker for 3 reasons. (1) EVs reflect the 
physiological state and microenvironment of their cells of origin, and most cells secrete EVs 
containing specific proteins and nucleic acids; (2) EVs are found in the blood, urine and other 
body fluids; (3) EVs are very stable in the extracellular environment after their release from 
cells because of the phospholipid bilayer. Circulating miRNAs are also stable and protected 
from ribonucleases. Kadota et al. [22] analyzed the miRNA profile in the plasma or sputum 
for risk prediction and diagnosis of COPD. Nagano et al. [23] revealed EVs in BALF from 
asthma patients could be biomarkers of asthma.

Weber et al. [53] examined the presence of miRNAs in 12 human body fluids and urine 
samples from women in different stages of pregnancy or patients with different urothelial 
cancers. The results showed that extracellular miRNAs are both present and stable in a 
diverse array of extracellular body fluids including blood serum/plasma, BALF, saliva, 
peritoneal fluid, pleural fluid, cerebrospinal fluid, and urine. They suggested that 
extracellular miRNAs can be used as informative biomarkers to assess and monitor the 
body's physiopathological status. Yeri et al. [54] isolated total extracellular RNA (exRNA) 
and sequenced from 183 plasma samples, 204 urine samples, and 46 saliva samples from 55 
male college athletes ages 18–25 years. They found that microbial exRNAs also circulate in the 
human body and high levels of bacterial RNA fragments exist in human biofluids.

Sundar et al. [55] used different EV isolation and purification methods to characterize the 
plasma-derived EV miRNAs from nonsmokers, smokers, and patients with COPD. They found 
that plasma-derived EVs from nonsmokers, smokers, and patients with COPD vary in their size, 
concentration, distribution, and phenotypic characteristics. And they concluded that plasma-
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derived EV miRNAs are novel circulating pulmonary disease biomarkers. Thus, molecular 
profiling of EV miRNAs has great translational potential for the development of biomarkers 
that may be used in the diagnosis, prognosis, and therapeutics of COPD. Xie et al. [56] analyzed 
serum miRNA profiles in 41 healthy controls, 40 asymptomatic heavy smokers, and 49 COPD 
patients. The results showed that the levels of serum miR-21 and miR-181a in asymptomatic 
heavy smokers and COPD patients were significantly higher than in healthy control patients. 
They suggested that the levels of serum miR-21 and miR-181a and their ratio have potential 
biomarker utility for predicting the development of COPD in heavy asymptomatic smokers. 
Extracellular miRNAs may be useful as biomarkers for allergic disease, with the ability to 
classify disease subtype or activity, and that biologically relevant extracellular miRNAs may 
contribute to the pathogenesis of allergic inflammation and asthma [57]. Yang et al. [39] 
provided a lung disease diagnostic model based on antibacterial EV antibody titers.

SUMMARY AND DISCUSSION

The number of microbial cells in human body surpasses the number of actual human cells. 
Our body consists of about 40 trillion human cells and also it consists as many as 100 trillion 
microbial cells. Our bodies interact with trillions of microorganisms in our body that are 
capable of complex biological reactions. The interactions between microbes and human cells 
appears to have coevolved and this coevolution has likely shaped evolving phenotypes in all 
life forms [58, 59].

Intercellular communication between microbe and human is essential for the homeostasis 
of biological systems and it is one of the key mechanisms of lung disease biology. There 
are rising evidences that microbial EVs and miRNAs are essential for microbe-host 
communication as they can modulate the expression of host genes. EV may serve as an 
intercellular transporter of miRNAs for cell-to-cell communication in the lungs. miRNAs are 
endogenous, single-strand, noncoding RNAs, 20 to 23 nucleotides in length, that regulate 
translation through their interactions with mRNA transcripts [60]. Thus, microbial EVs and 
miRNAs may represent key signaling molecules that facilitate relationship between host 
and microbiome. Interaction between human hosts and the microbiome occurs through a 
number of mechanisms, including transcriptomic regulation by miRNA [61].

EVs and miRNA from both gram-positive [62] and gram-negative bacteria [63] have 
been observed to invade host cells, suggesting their possible function as communication 
molecules that influence host cell functions. Which indicate that host gene regulation by 
microbial EV and miRNA is a novel pathogenic mechanism, and that the transfer of microbial 
EV and miRNAs to host cells represents an additional example of microbe-host interaction. 
Kim et al. [34-36] reported that airway exposure to gram-negative and gram-positive bacteria-
derived EVs in indoor dust can induce neutrophilic pulmonary inflammation, asthma and 
COPD. The ability of EVs to circulate through the bloodstream and reach any place in the 
human body implies that EVs and their components such as miRNA are relevant to human 
diseases [64]. Bacteria-derived EVs can affect host immunity with pathogenic bacteria-
derived EVs having proinflammatory effects of host immune cells while probiotic derived EVs 
mostly shape the immune response towards tolerance [65].

In viral infections, EVs produced by infected cells could be a central player in disease pathogenesis. 
EVs have emerged as specific carriers of cellular and viral components, including miRNAs, 
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proteins, and viral genomes, and they can be produced during both active viral replication and 
during viral latency [66]. Internalized viruses have been demonstrated to express miRNAs. 
Many viruses encode miRNAs that are expressed in host cells, and these miRNAs facilitate viral 
replication and survival, and suppress or regulate host immunity [67, 68]. The miRNAs play a well-
documented regulatory role in controlling functions of cells associated with airway inflammation 
and are strongly modulated by viral infections, which suggests their potential contribution to the 
pathogenesis of asthma exacerbation [49]. Wardzyńska et al. [50] reported that the expression of 
circulating miRNAs during asthma exacerbation was associated with the objective parameters of 
disease severity. Eltom et al. [52] revealed that respiratory infections causes the release of EVs in 
the airway, triggers neutrophilia and subsequent disease exacerbations of asthma and COPD.

COPD is one of the major causes of mortality and morbidity worldwide. Among several risk 
factors for COPD, cigarette smoking is the main factor. Smokers have a higher prevalence of lung 
function abnormalities and a greater COPD-related mortality rate than nonsmokers [69, 70]. 
However, smoking does not explain all of the aspects of this condition, because COPD can develop 
in nonsmokers, and more than half of smokers do not have COPD [71]. Bacterial infection plays a 
role in pathogenesis of COPD. Bacteria secrete EVs, which may induce more immune dysfunction 
and inflammation than the bacteria themselves. Kim et al. [37] found that bacterially derived EVs 
have distinctive characteristics in the lungs of nonsmokers, healthy smokers and patients with 
COPD. This information should contribute to knowledge of the involvement of lung microbiome 
in the development of COPD. Yang et al. [39] demonstrated that the levels of antibacterial EV IgG 
antibodies were higher in patients with asthma and COPD compared to the healthy controls and we 
provided a lung disease diagnostic model based on antibacterial EV antibody titers.

Taken together, microbe-derived EV and miRNA may play vital roles in the pathogenesis 
of asthma and COPD and can provide novel diagnostic biomarkers for asthma and COPD, 
especially useful in possible early detection of these lung diseases.
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