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Abstract

In systems with several effectors, the results of dose-response (DR) experiments are usually assessed by checking them
against two hypotheses: independent action (IA) and concentration addition (CA). Both are useful simplifications, but do not
represent the only possible responses, and avoid to a large extent the analysis of the interactions that are possible in the
system. In addition, these are often applied in such a way that they produce insufficient descriptions of the problem that
raises them, frequent inconclusive cases and doubtful decisions. In this work a generative approach is attempted, starting
from some simple mechanisms necessarily underlying the response of an elementary biological entity to an effector agent.
A set of simulations is formulated next through an equally simple system of logical rules, and several families of virtual
responses are thus generated. These families include typical responses of IA and CA modes of action, other ones not less
probable from a physiological point of view, and even other derived from common and expectable forms of interactions.
The analysis of these responses enabled, firstly, to relate some phenomenological regularities with some general
mechanistic principles, and to detect several causes by which the IA-CA dualism is necessarily ambiguous. Secondly, it
allowed identifying different forms of synergy and antagonism that contribute to explain some controversial aspects of
these notions. Finally, it led to propose two sets of explicit algebraic equations that describe accurately a wide diversity of
possible and realistic responses.
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Introduction

The response of a population of biological entities to the action

of an effector is typically sigmoidal and requires for its algebraic

description (the dose-response model: DR) an equation with at

least three parameters. If the response is altered by a perturbation

agent, variations depending on the perturbator concentration must

be expected in one or more of these parameters. If two effectors

interact, one or more parameters corresponding to the action of

each effector will vary, in the description of the joint response, as a

function of the concentration of the other one. Although these

premises are not much debatable, their practical application has

the disadvantage of requiring a solution whose complexity

increases in a more than linear way with the number of effectors

considered.

This justifies the common use of two simplifications: the IA

(independent action) [1] and the CA (concentration addition) [2,3]

hypotheses. Both avoid the mentioned disadvantage by postulating

conditions that allow verifiable predictions about the joint

response, using the individual DR models without adding new

parameters. Next we will discuss the details of these hypotheses;

now we will point out only that their formalizations are generally

considered as empiric models lacking in mechanistic content, what

is not completely true.

DR models are considered empirical (phenomenological,

macroscopical) because they describe the sensitivity distribution

of an effector in a target population. Although this provides DR

models with a statistical basis, ultimately the response depends on

processes that take place at the level of the interactions between

the effector quanta (ions, atoms, molecules, electric pulses,

radiations) and the receptor structures of the biological system, a

level that is ignored by the model. However, using a thermody-

namic analogy, the (macroscopic) sensitivity distribution can be

broken down into the (microscopic) distributions of other elements

that are response-determining at a finer resolution level. These

elements can be physical structures whose reduction to other

simpler ones has no sense (as the number of receptors per

biological entity), or more complex physiological limits (as a

response threshold), but in any case, they can be linked in

biological systems with the effector quanta of an agent through

hypotheses about some general forms of molecular interactions.

Under this perspective, IA and CA hypotheses postulate modes

of action that can be associated to general mechanisms or

microscopic conditions, which allows to propose variations capable

of generating specific responses. To classify these variations from

bibliographic data is difficult due to: the interference of the

experimental error; the required categories are not usually

considered in toxicodynamic studies; and the suitable designs for
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a given hypothesis rarely can be used to prove facts outside of their

conceptual framework. In this sense, a way for eluding these

difficulties can be achieved by performing simulation ‘‘experi-

ments’’. Both, the statistical basis and the general types of

mechanisms underlying the DR relationships (interactions be-

tween cell receptors, effectors and interfering agents) are

sufficiently known for simulating microscopic conditions able to

produce the corresponding macroscopic (populational) results.

In the simulations used in this work, simple properties for the

microscopic determinants of the response were postulated, and a

set of basic ‘‘sigmoidal scenes’’–among them those associated with

IA and CA hypotheses– were generated with the only assistance of

logical (Boolean) rules. Additionally, more specific response

surfaces were obtained by including in such rules some algebraic

expressions describing concrete interactions as those that can take

place in many physiological contexts (activation/deactivation,

competence/cooperation, steric hindrance). The results allowed to

illustrate the status of IA and CA hypotheses within the field of the

possible responses, to characterize several types of perturbations

and interactions, and to propose explicit algebraic models that

translate the mechanics of the response into specific parametric

variations. Although in some cases the practical utility of these

models can be limited by a low number of observations and a high

experimental error, the simulations constitute always a useful

reference for interpreting a complex response, inferring the type of

mechanism involved and suggesting complementary experiments.

Theoretical Background and Methods

1. Numerical methods
Hereafter we will call effector any agent able to cause a

(typically sigmoidal) response in a population of biological entities,

and perturbator to any agent that can alter the response to an

effector, itself being unable to cause it. Receptor is any biological

structure acting as ligand of effectors or perturbators. The term

dose is reserved to the concentration of an effector.

In the simulation procedures that are described later, the

Weibull’s random numbers w:(h;a) were obtained, from the

uniform random numbers u:[0,1] provided by the spreadsheet,

through [4,5]:

w~h ln 1= 1{uð Þð Þ½ �1=a

where mean (mw) and standard deviation (sw) of the corresponding

distribution are:

mw~hC 1z
1

a

� �
; sw~h C 1z

2

a

� �
{C2 1z

1

a

� �� �

To facilitate comparisons, doses were coded into the [0-(0.1)-1]

interval, and responses were calculated by considering Y as a total

number of biological entities, S the survive population at a given

dose, therefore the surviving population response R can be

expressed in a useful coded range [0,1] as R = 12(S/Y). The

simulated and experimental results were adjusted to the proposed

models by non-linear least squares methods (quasi-Newton), in

Microsoft Excel spreadsheet, using Solver complement for parametric

estimates, and Solver Aid macro [6,7] for confidence intervals and

model consistency (Student’s t and Fisher’s F tests, respectively,

with a= 0.05 in both cases).

In the most complex cases (models with interactions), the fitting

process involved always a progressive hypotheses of contrast, as it

is usual in any stepwise multiple regression method, to select the

interactive mode providing the most statistically consistent

interpretation. Parametric confidence intervals, coefficient of

multiple determination, residual bias and sensitivity analysis were

applied as selection criteria. An efficient way of proceeding is by

following the next steps: 1) calculation of the sigmoidal parameters

from the individual responses; 2) use of these estimates as

provisional fixed values of the model, and assay of different

interaction hypotheses, rejecting those that lead to not statistically

significant coefficients; 3) refinement of the model by recalculation,

now allowing the variation of all the accepted parameters.

Although the initial number of parameters is high, it means only

a high number of potential alternatives, some of which are

mutually exclusive, and others easily rejected in the course of the

fitting to a concrete data set. Trying of initial values is facilitated by

follow up of the variations produced by the Solver results in graphic

displays of response surface and residuals, and convergence is

usually immediate. Details about experimental design are provided

as Supporting Information (see Figure S1).

2. Null interaction, synergy and antagonism. IA and CA
hypotheses

In any system (as defined in the Bertalanffy’s sense: a set of

interacting elements), an important and characteristic problem is

to know whether the joint effect of two or more elements on the

system behaviour is deducible from their individual effects. This

issue, with a long history of controversy whose first known attempt

goes back to Aristotle, is often stated by replacing «deducible» with

«the sum», what leads to define the notions of synergy and

antagonism as those interactions by virtue of which the joint effect

of two (or more) effectors is greater (synergy) or lesser (antagonism)

than the sum of the individual effects.

For examining the meaning of this non-acceptable statement, let

us to consider a system in which two effector elements (E1 and E2)

can act, and let us to denote the possible behaviours or responses

of such a system as R1 and R2 (if only E1 or E2 are present), R1,2 (if

E1 and E2 do not interact), and R1&2 (if E1 and E2 interact). Under

these conditions, to obtain any initial analysis on the possible

interactions, it is an essential requirement to compare the

responses R1,2 against R1&2, defining synergy and antagonism

respectively, as those interactions in which R1,2,R1&2 and

R1,2.R1&2.

It is obvious that the key aspect to assess any interaction is the

response of the system in the absence of interactions (the null

interaction). Thus, to define the null interaction, any mechanism

must be postulated as underlying any specific behaviour of the

system. The addition is the simplest mechanism, and its most

immediate options suppose that the added magnitudes can be the

effectors (acting as one alone), or the effects on the system of their

independent actions (the responses of the system to such actions).

Now, if we imagine that the response has a superior limit, as it

happens, for example, in the case of the death-survival alternative

in a microbial population under increasing doses of two toxics. If

the added magnitudes are the concentrations of the toxics, the

response obtained, would be identical to the resulting response

values of a single toxic dose –although it can be expressed as a

function of two independent variables–. The additive response is

more problematic, since it is obvious that if one cell dies when one

of the doses reaches a given level, it will die independently on the

level of the other dose, simply because it cannot die twice.

These two types of sum are the foundations of the two basic

accepted modes for describing the joint action of two effectors

under null interaction conditions: concentration addition and

independent action. Although both can be applied –at least in
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theory– to any number of effectors, here will be discussed in their

simplest forms, for two effectors (their generalizations are, anyway,

immediate).

2.1. Independent action hypothesis. It supposes that the

effectors act through different mechanisms, whose asymptotic

maxima are reached through statistically independent phenome-

na. Under this premise, the probability theory allows to define the

response as the sum of the probabilities of the individual

phenomena minus the probability of their joint occurrence [1,8].

Consequently, if Rc is the response to the joint action of c1 and c2

concentrations, and Rc1 and Rc2 the individual responses at the

same concentrations, it can be established:

R~Rc1zRc2{Rc1Rc2;

or,equivalently : R~Rc1zRc2 1{Rc1ð Þ
ð1Þ

An expression easily generalizable to more than two effectors is

obtained by writing the first Rc1 in the second member of (1) as

12(12Rc1):

R~1{ 1{Rc1ð ÞzRc2 1{Rc1ð Þ~ 1{ 1{Rc1ð Þ{Rc2 1{Rc1ð Þ½ �

and, finally : R~1{ 1{Rc1ð Þ 1{Rc2ð Þ
ð2Þ

2.2. Concentration addition hypothesis. In its classical

formulation [2,3], null interaction is not defined as a relation

between the individual responses, but through the following

criterion: since the concentration (c) of an effector whose action

obeys the equation R = f(c) can be considered as a fictitious

combination of c1 and c2 concentrations (c = c1+c2), it is obvious

that the response to c will be described by the equation R = f(c),

with c = c1+c2. If the response to a mixed dose of two effectors

behaves as the response to the ‘‘mixed’’ dose of the same effector,

it is accepted that the interaction between them is null, implying

that any effector concentration can be substituted by the

equieffective concentration of the other one.

The conventional practice avoids an explicit algebraic formu-

lation when evaluating the joint response of effectors, using the

isobolographic analysis [9] (or lines on the plane of the

independent variables that represent the dose combinations that

produce an equal response) to solve the lack of a clear

mathematical process. Thus, in the isobolographic analysis, if D1

and D2 are the doses of two effectors that produce the individual

response Ra, and d1 and d2 any dose combination that produces the

same joint response Ra (Figure 1), under null interaction conditions

the isobole of the response Ra will be necessarily described by the

following lineal equation:

d1

D1
z

d2

D2
~1 ð3Þ

Consequently, if the individual DR models are Ri = fi(Di) and

their reciprocal functions Di = gi(Ri) exist, it can be established that:

d1

g1 Rað Þz
d2

g2 Rað Þ

v1synergy

~1nullinteraction

w1antagonism

8><
>: ð4Þ

In other words: straight isoboles indicate null interaction, and

concave and convex up isoboles indicate synergy and antagonism,

respectively. The dimensionless quotients di/gi(Ra) are called toxic

units and represent the relative contribution of each effector to the

joint response Ra.

3. Some problems associated with the AI-AC approach
A first unsatisfactory aspect of this approach is the difference

between the formal criteria applied to each mode of action. IA

hypothesis proposes an explicit response surface model, but a

general agreement does not exist about the ways in which synergy

and antagonism must be formulated. CA hypothesis avoids the

explicit model, but equation (4) is accepted as a criterion for

detecting synergy and antagonism. This criterion, however, is not

transferable to the IA framework, whose mathematical form

prevents straight isoboles in null interaction if –as it occurs in most

DR relationships– the individual responses R1 and R2 are not

proportionally constant. As a general rule, IA isoboles in null

interaction are convex up at low doses, concave up at high doses,

and with two branches of opposite curvature in a transitional zone

when R1?R2 (Figure 1). But the factual meaning of this formal

property cannot be attributed to synergy or antagonism, only

implying that the probability that at least one dose is lethal is low

at low doses and high at high doses (another outcome of the

statistical independence, as the above mentioned impossibility of

dying twice).

In CA hypothesis, as already pointed out, the absence of an

explicit mathematical model is another disadvantage. A measure

of the sign and degree in which an isobole deviates from linearity is

provided by (4), and isoboles with a variable degree of curvature

and asymmetry can be defined by using alternative expressions as

equation (5) described by [10] or equation (6) described by [11].

d1

g1 Rað Þ

� �1=b1

z
d2

g2 Rað Þ

� �1=b2

~1 ð5Þ

d1

g1 Rað Þ

� �c1 d1

g1 Rað Þz
d2

g2 Rað Þ

� �1{c1

z
d2

g2 Rað Þ

� �c2 d1

g1 Rað Þz
d2

g2 Rað Þ

� �1{c2

~1

ð6Þ

where the additional parameters b or c are more precise indexes of

synergy and antagonism. Although these equations would enable

the construction of isobole maps by solving them numerically, the

procedure is laborious and in practice is usually applied only to the

isobole at the half-maximum response. Furthermore, in this

approach a homogeneous isobolic curvature is postulated for the

whole considered domain, a property that as we shall see later, is

not necessarily true.

Some joint responses to chemically similar/dissimilar effectors

were suitably described with CA/IA models, respectively [12,13].

However, there are evidences, as well, that these modes of action

are not always obeyed by the reality. Jonker et. al [14] have

proposed in each case, besides synergy and antagonism, other

deviations from null interaction which were defined a priori as

effects depending on the absolute dose levels or dose ratios, thus

enabling synergistic and antagonistic displays on different regions

of the same response surface. But even so, the reality seems to be

richer: in a revision of 158 cases [15] was found that 20% of the

responses can be adequately predicted by IA, 10% by CA, another

20% admitted both models and half of the cases were not correctly
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described with either of them. Moreover, neither of the models

was significantly better than the other on assessing synergy and

antagonism at the 50% effective doses.

These results are not really surprising. Figure 2 represents a

simple hypothetical metabolic pathway that can lead to a set of

different situations depending on the considered inhibition

mechanisms (competitive, non-competitive, acompetitive), the

kinetic constants that are null, the values of the rest of such

constants and the definition of the response (individual or

simultaneous drops of the products P1, P2 or P3). But even

without including an experimental error, none of these possible

situations obeys unambiguously IA or CA modes of action. In our

laboratory, these ambiguities have been detected not only in the

joint action of hydrocarbons and dispersants on the larval growth

of sea urchin [16], but also, as we will see, in the simpler context of

the oxidation inhibition of a substrate by the joint action of two

antioxidants.

4. DR model for a single effector
The natural form of a DR model is a cumulative (mass)

probability function, and it translates the response of a population

with a given sensitivity distribution to an effector. Four additional

conditions seem reasonable as well: 1) the model should have an

explicit algebraic form; 2) it should be lacking of an intercept (null

response at null dose); 3) an asymptote equal or lesser than 1

should be enabled; and 4) the parameters with important factual

meaning should be explicitly included, to facilitate the trial of

initial values and the calculation of confidence intervals when non-

linear fitting methods are applied.

Although normal and log-normal distributions have been the

basis of the classical DR analysis, they have the disadvantage of

lacking of an explicit form for their mass functions. Logistic-type

equations are more useful and they can be expressed in forms

easily modifiable to comply with the above mentioned conditions

[17,18]. However, their derivatives (their density functions) show

only right bias, which can be a restriction scarcely realistic.

Another option is the Gompertz [19] equation, but its use is prolix,

especially with the modifications that are required to apply in the

DR context. The mass function of the Weibull distribution [20]

can be expressed in a suitable reparametrized form [21–23],

providing the adequate DR analytical model, whose expression

can be write as:

R~K 1{ exp { ln 2 D=mð Þa½ �f g ; briefly : R~W D; K ,m,að Þ ð7Þ

Figure 1. Isobole of a response Ra. In 1, 2 and 3 the geometric logic underlying the analysis of the CA hypothesis through the equation (4) is
shown. Type 4 isoboles arise in many real responses corresponding to the IA hypothesis with null interaction, and illustrate the limitations of the
relation between factual and formal aspects of isobole analysis beyond a particular case of the CA mode of action (see results, section 5).
doi:10.1371/journal.pone.0061391.g001

Figure 2. Ambiguity of the IA-CA dualism. Rates of the enzymatic
reactions yielding products P1 to P3 from substrates S1 and S2 are
affected by the inhibiting effectors E1 and E2 with the specified
inhibition constants kij. Under these conditions, responses measured as
drops of the levels of any of the products are dependent of the nature
(competitive, non-competitive, acompetitive) of the inhibition and the
values of the inhibition constants. But any result can be unambiguously
attributed to IA or CA modes of action.
doi:10.1371/journal.pone.0061391.g002
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where D is the dose, R the response (with K as asymptotic

maximum, not necessarily 1), m the dose producing half-maximum

response, and a a shape parameter related to the maximum slope

of the response (rm) by:

rm~
Ka

m
ln 2ð Þ1=a

GGexp {Gð Þ; being : G~
a{1

a
ð8Þ

It should be noted that m is the abscissa of the inflection point,

which represents the accumulated modal response. The basic

parameter of the DR analysis is ED50 or EC50, defined as the

effective dose for the 50% of the assay population. Thus, m and

EC50 are coincident values if the maximum response implies the

whole population (K = 1). The reciprocal function of equation (7),

which is a requirement when performing the isobole analysis in the

CA hypothesis, it can be written as:

D~m ln 1{ R=Kð Þ½ �={ ln 2f g
1=a ð9Þ

The use of the equation (7) as DR model is interesting for

several reasons. Its density function (the sensitivity distribution of

the population) can be symmetrical or asymmetrical with right or

left bias, which makes it very versatile. It produced the best fittings,

among the above mentioned alternatives, when it was applied to

the simulations that will be described in the next sections, and this

result was repeatedly confirmed before by experimental data

[21,24–27]. Moreover, the Weibull distribution is the conventional

model for the failure of complex devices, making the equation

more attractive because it unifies phenomena in which underlies a

profound analogy.

5. Simulation of the response to a single effector
Since the basic sigmoidal profile of the DR relationships

translates a macroscopic, statistical phenomenon, it should be

possible to simulate it as a result of the microscopic behaviour of a

population of elementary biological entities, which we will call

cells. Such a simulation can be carried out on the following basis:

B1. One cell is defined by means of three aleatory magnitudes:

r, or number of receptors of an effector, a, or number of

active receptors –ready for linking the effector– in a given

instant, and l, threshold or minimum number of active

receptors that must be linked to an effector to produce a

response.

B2. The dose D is defined as the number of effector units per

cell, accepting that every unit is capable of linking to one

receptor.

B3. The cell response r is limited to two modalities: death (r = 0)

and survival (r = 1), obeying the following logical rule:

R0 : r~IF(avl; 1; IF(Dvl; 1; 0) ð10Þ

or, as a Boolean proposition (^: AND, _: OR, :: NO, 1: TRUE, 0:

FALSE):

R0 : r~(avl) _ (:(avl) ^ (Dvl))

Notice that a,l implies r = 1 at any dose. It translates possible

limitations in the effector bioavailability, resistant cells or other

conditions which, relatively frequent in DR assays, produce lesser

than 1 asymptotes.

Although r (highest limit of a) is interesting in some cases,

hereafter it will be omitted without loss of generality, and a cell will

be defined through the pair a, l. Thus, if we assign to a and l
probability distributions defined by their mean and variance

values, we can create, in a spreadsheet, a virtual cell population

whose sensitivity distribution depends on the parameters a and l.

The population response R to an increasing dose series is

simulated by applying the rule (10) to each cell and defining

R = 12(S/Y) when S cells, of a total number Y, survive at a given

dose. The typical shape of the response arises even at moderate

population sizes (Y,100) and becomes highly stable when

Y$1,000. At low population sizes, the variability of the result

represents a simulation of the natural variability, the experimental

error, or both.

These premises define the minimum complexity of a system able

to generate a sigmoidal response and, despite their schematic

character, they produce a great variety of profiles, depending on

the a and l parameters. Although the microscopic solution of the

system is determined by such parameters, the obtained profiles can

be macroscopically described by the conventional equations of the

DR analysis.

The use of the Weibull distribution for defining a and l is not

essential. With normal, log-normal, Poisson, binomial, or even

uniform distributions, the best descriptions of the responses are

obtained, as it has been mentioned. However, distributions with

domain [0,‘) are obviously preferable, since low means and high

variances in (2‘,‘) distributions lead to a finite probability of

negative values of a and l, which lacks of physical meaning.

6. Simulation of perturbations of the response to an
effector

Using the elements above defined, we will admit that a

perturbator does not produce a response by itself, but it can

modify the response to an effector by altering the number of active

receptors (a), the threshold (l) or the effective dose corresponding

to the nominal dose (D) (hereafter a, l and D-perturbations,

respectively). a and D-perturbations can be illustrated in

molecular terms through the well-known key-lock analogies

(Figure 3). l-perturbations require to suppose an intermediate

fast process modifying the cell sensitivity.

All of them can be exemplified by common physiological

mechanisms as those that take place in trans-membrane proteins,

second messengers or enzymatic systems, in which any DR assay

allows to distinguish at least between a and D-perturbations.

Indeed, in the presence of an excess of effector, a moderate

increment of a perturbator modifies or not the response depending

on whether the perturbation acts over the receptors or the effector.

The effect of these perturbations on the response can be

simulated by using the rule R0 (10) and adding a vector that

represents increasing perturbator concentrations, as well as a

criterion for modifying the values of a, l or D as a function of the

perturbator concentration. Since direct or inverse ratios are the

simplest criteria, a perturbation term can be formulated as:

Ue~1zpeP ; e~l,a,Dð Þ ð11Þ

where P is the perturbator concentration, pe the proportionality

coefficient, and the e subscript indicates the element affected by

the perturbation. The term Ue multiplies or divides the values of

Modelling the Action of Two Effectors
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Figure 3. Some key-lock analogies. Possible response modifications involving alterations of the effective dose or the number of active receptors
are illustrated (see Table 1). Notice that the alterations of the effector-receptor affinity (for simplicity reasons only perturbations are illustrated) do not
modify the response to a given dose, but the response to a given time.
doi:10.1371/journal.pone.0061391.g003
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D, a or l depending on the effect that we are trying to achieve,

and it can be replaced by any other algebraic expression able to

describe any other type of alteration.

Now, it can be pointed out that if a DR curve is sigmoidal

because the most sensitive elements of a population die at lower

doses than the most resistant ones, therefore a time-response curve

will be sigmoidal if the sensitivity distribution of the population is

translated into responses at shorter or longer times. Although this

problem will not be considered here, the time-course of the

response could be treated also in terms of molecular interactions,

which in this case, would accelerate or delay the progress of the

effect (Figure 3). In some fields –i.e. marine toxins–, the time of

death of a target organism often replaces the response in the

framework of the empirical dose-time death models [28–31]. We

do not allude here to this approach, but to the time-response

relationships, which can be described by using the same models as

DR analysis [26].

7. Simulation of the response to two effectors
In this case, the perturbator must be replaced by a second

effector, but the essential issue is the need to include in the

simulation algorithm, even in the absence of any interaction, any

rule about the joint action. The simplest hypothesis in this regard

leads to admit that: 1) the receptors are specific of the effectors; 2)

the cell response is r = 0 if any of the doses exceeds the

corresponding threshold and there is a sufficient number of

receptors. Thus, the rule is:

R1: r~IF(AND(OR(a1vl1; D1vl1);OR(a2vl2;D2vl2)); 1; 0)

r~((a1vl1) _ (D1vl1)) ^ ((a2vl2) _ (D2vl2))
ð12Þ

These conditions are reminiscent of IA hypothesis and in fact, as

we shall see later, they produce the typical IA response surfaces.

Now then, both conditions can be denied, what seems quite

reasonable for the second one [32], since it prevents to accept that

two biological subsystems –e.g. glycolysis and b-oxidation– can be

affected at individually sub-lethal, but jointly lethal levels. By

denoting the first condition (specificity) as S+ and the second one

(independence) as I+, three additional rules, besides S+I+, can be

considered:

S+I2. It admits that 1) the effect Gi of a dose Di below threshold

li is Gi = Di/li; 2) Gi values are additive; 3) r = 0 if G1+G2$1

and there enough receptors:

R2 : r~IF(Divai; IF((D1=l1zD2=l2)v1; 1; 0);

IF((a1=l1za2=l2)v1; 1; 0))

r~(Divai) ^ ((D1=l1zD2=l2)v1)

_ :(Divai) ^ ((a1=l1za2=l2)v1)

ð13Þ

S2I+. It admits that any effector has access to the whole of the

receptors (a1+a2), what produces competence if they are insuffi-

cient. Competence depends on factors as the relative doses of the

effectors, their diffusivity or their affinity for the receptors, but to

simplify, only relative doses will be considered here: C1 = D1/

(D1+D2) and C2 = D2/(D1+D2). Thus, the number of receptors

linked to Di will be Ci(a1+a2), what leads to the rule:

R3 : r~IF(SDivSai; IF(AND(OR(Saivl1; D1vl1);

OR(Saivl2; D2vl2)); 1; 0);

; IF(AND(OR(Saivl1; C1(a1za2)vl1);

OR(Saivl2; C2(a1za2)vl2)); 1; 0))

r~(SDivSai) ^ ((Saivl1 _D1vl1))^

((Saivl2 _D2vl2)) _ :(SDivSai)^

^ ((Saivl1 _ C1(a1za2)vl1))^

((Saivl2 _ C2(a1za2)vl2))

ð14Þ

S2I2. It admits simultaneously competence (if the receptors are

insufficient) and additivity of below-threshold effects. The rule is:

R4 : r~IF(SDivSai; IF(S½Di=li�v1; 1; 0);

IF(S½Ci(a1za2)=li�v1; 1; 0))

r~(SDivSai) ^ (S(Di=li)v1) _ :(SDivSai)^

(SCi(a1za2)=liv1)

ð15Þ

None of these rules implies the sum of the doses required by the

CA hypothesis. This condition plays down the receptor specificity,

but again the competence arises if the receptors are insufficient. If

both effectors have the same threshold, the response is not

modified by the competence. If the thresholds are different, the

number of occupied receptors will depend on the relative doses

and will be Ci(a1+a2), turning the dose addition effect in below-

threshold addition effect: Gi = Ci(a1+a2)/li. Therefore, two rules

are possible, any of which produces the response surfaces with

straight isoboles that characterize the null interaction in the CA

hypothesis:

R5a: Without competence (equal thresholds):

r~IF(AND(Saivl1; Saivl2); 1;

IF(AND(SDivl1; SDivl2); 1; 0))

r~(Saivl1) ^ (Saivl2) _ :((Saivl1)^

(Saivl2)) ^ (SDivl1) ^ (SDivl2)

ð16Þ

R5b: With competence (different thresholds):

r~IF(AND(Saivl1; Saivl2); 1;

IF(AND(SGivl1; SGivl2); 1; 0))

r~(Saivl1) ^ (Saivl2) _ :((Saivl1)^

(Saivl2)) ^ (SGivl1) ^ (SGivl2)

ð17Þ

8. Inherent and accidental mechanisms
Concrete assumptions (about specificities, thresholds, compe-

tence and dose or effect addition) as those included in the rules R1

to R5 are indispensable for any joint action hypothesis, and they

represent mechanisms that are inherent to a given null interaction
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model. Over these minimal inherent modes of action, accidental

mechanisms (interactions) can be superimposed, in which each

effector can perturb the response to each other by modifying the

number of active receptors, the threshold or the effective dose

corresponding to the nominal dose. Thus, when the effector E1

perturbs the response to E2, we can write an interaction term like

(11):

Ue2
~1zqe2

D1; e2~1zqe2D1ð Þ ð18Þ

which is included into the rules R1 to R5, as a factor or divisor of

D2, a2 or l2.

The interactions can be unidirectional (E1 alters some factor

related with E2, but E2 does not alter E1 accordingly) or reciprocal

(mutual alterations), and these last ones can or cannot be

symmetrical (the same or different strength in both directions).

Whereas the reference of a perturbation is the response in the

absence of perturbator, the reference of an interaction is the

inherent mechanism or null interaction. This implies that a given

interaction has different consequences depending on the inherent

mechanism and the frame of application. A systematics in this

regard is proposed in Table 1, which attempts to preserve the

main senses of the usual terminology [33], and whose categories

allow simulations and specific formal descriptions. Although this

terminology can be used without ambiguity, it seems preferable to

simplify it by defining stimulation/inhibition as perturbations that

increase/decrease the response to an effector, and sinergy/

antagonism as interactions that increase/decrease the joint

response to two effectors with respect to the response promoted

by the null interaction.

Results

1. Perturbations of the response to a single effector
In Figure 4 the three conditions that depress the response

simulations to an effector in the presence of increasing concen-

trations (P) of a perturbator are shown (decrease of the effective

dose, decrease of the number of active receptors and increase of

the threshold). The individual fittings to the resulting profiles with

the model (7) proved that, in each series, the estimates of K and m

parameters varied as a function of P in specific ways (Table 2), thus

enabling to identify the underlying perturbation. Although the

maximum slope varied as a consequence of the variations of K and

m, in agreement with (8), the parameter a remained constant in all

cases.

Such a constancy of a is not surprising, since the simulations

with the rule R0 prove that the variation of this parameter is

related with the variations of the variances of a and l, a condition

that was not considered in any case. Such a restriction simplifies

the analysis and is not arbitrary. From the microscopical point of

view adopted for the effector and perturbator actions, variations in

the number of receptors and threshold are clear possibilities, but it

is more difficult to justify an action on a populational property

such as the variance.

1.1. The perturbation function. To obtain a simultaneous

solution for every series of profiles, an auxiliary function (a

perturbation function ph) is required for describing the possible

variations of any parameter h as a function of P (Figure 5). This

can be achieved by means of different biparametric (exponential,

polynomial or hyperbolic) expressions:

h~h0ph

ph~1zbh 1{ exp chPð Þ½ �

ph~1zbhPzchP2

ph~ 1zbhPð Þ= 1zchPð Þ

8>><
>>:

(19)

(20)

(21)

where the h subscript represents the modified parameter (K, m), h0

is the parametric value when P = 0, and the pairs bh, ch are fitting

coefficients. It should be noted that, in the absence of perturbation,

the first function requires bh = 0 and ch = 1, whereas the other two

require bh = 0 and ch = 0. Moreover, the condition of the third

function a singularity is obtained if chP = 21. In order to avoid it,

when P is coded in the interval [0,1] it is advisable to include the

restriction ch.20.999 in the fitting algorithm. Thus, the model (7)

turns into:

R~W D; Kpk,mpm,a½ � ð22Þ

With any of the mentioned forms of ph, the (22) led to excellent

simultaneous fittings, which confirmed the specificity of the

parametric variations found in the individual descriptions.

Figure 4 and Table 3 show the results obtained with the

hyperbolic function (21), which will be the form used now on.

The description of the inhibition of the haemolytic activity of

palytoxin by ouabain [22], illustrates the application of equation

(22) for perturbations involving a time-response profile.

When the model (22) is satisfied with uniparametric ph (bh = 0 or

ch = 0), the relationships between confidence intervals (CI) and

parametric values are approximately of the same numerical size in

all the cases. When bh?0 and ch?0 are required, both CI are

penalized by the linear correlation between both coefficients, and

therefore, with high experimental error and low number of

observations, some bh, ch pair can become not statistically

Table 1. A possible systematics on the modifications of the response to an effector.

object of the modification value
modifier do not promotes response
(perturbations)

modifier is another effector
(interactions)

effective dose corresponding to the nominal dose higher POTENTIATION SYNERGY

lower DEPRESSION ANTAGONISM

number of active receptors higher STIMULATION ACTIVATION

lower INHIBITION INACTIVATION

threshold higher INSENSITIZATION ATTENUATION

lower SENSITIZATION ENHANCEMENT

When the modifier is a second effector (interactions), unidirectional and reciprocal effects can be considered in every case. For details, see text.
doi:10.1371/journal.pone.0061391.t001
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significant, even in highly predictive models. This problem is

solved if the model is recalculated fixing the value of one of the

coefficients and excluding it of the Student test, or –with a small

loss of predictive capability– making zero the coefficient of the pair

whose suppression does not alter the increasing or decreasing

trend of the parametric variation due to the perturbation function.

Finally, in D-perturbations is interesting to observe that two

equivalent solutions are possible. One of them is that provided by

the model (22), describing the variation of m (the only affected

parameter) due to the presence of the perturbator. The other one

describes directly the variation of the effective dose through the

equation:

Figure 4. Effect of a perturbator on the response (R) to a same dose series (D) of an effector and the parameters of the model (22).
The three cases in which the perturbation depresses the response are illustrated: reduction of the effective dose corresponding to the nominal one
(left), reduction of the number of active receptors (canter), and increase of the threshold (right). Dots are simulated results in the absence (#) and
presence (N) of increasing concentrations of the perturbator, and lines the respective fittings to model (22). See also tables 2 and 3.
doi:10.1371/journal.pone.0061391.g004

Table 2. Variations (+: increase; 2: decrease; 0: no change) in
the parameters of the response to an effector, as described by
the equation (7), due to the presence of an agent which
produces the specified perturbations.

alteration due to the perturbator

effective dose active receptors threshold

higher lower higher lower higher lower

K 0 0 + 2 2 +

m 2 + + 2 + 2

Maximum slope, rm, varies according to (8), but the parameter a remains
constant in all cases.
doi:10.1371/journal.pone.0061391.t002

Table 3. Simulation conditions of the responses to an
effector as perturbed according to the three modalities that
cause response drop, and respective fittings to the model
(22).

a (mean; sd) 120;48 120;48 120;48

l (mean; sd) 80:32 80:32 80:32

peqQ pDQ = 0.006 paQ = 0.006 plq = 0.006

K .0.74860.002 0.75660.004 0.76060.005

m 0.35260.001 0.35360.002 0.36160.003

a 2.69660.015 2.68560.042 2.68560.045

bK - 20.54260.013 20.40060.028

cK - 0.63160.038 0.67160.061

bm 1.19860.009 20.38560.013 0.56460.030

cm - - -

adj. r2 0.9999 0.9998 0.9994

r2: correlation coefficient between observed and predicted results. See also
Table 1 and Figure 4. Number of active receptors (a) and threshold (l) are
defined by means of aleatory Weibull numbers. Doses and perturbator
concentrations varie in the natural domain [0-(20)-200] and are coded in the
domain [0-(0.1)-1]. pe coefficients –which operate on natural values of D, a and
l– are those defined in (11). Arrows indicate increase (q) and decrease (Q) of
the affected element.
doi:10.1371/journal.pone.0061391.t003
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R~W DpD; K,m,a½ � ð23Þ

Later on we will see that this dual solution is not possible in

interactions between two effectors.

2. The response surfaces to two effectors
Among the five basic types of response produced by the rules R1

to R5, only two of them were in accordance with those

corresponding to IA and CA hypotheses, and the diversity

increases as interactions are included. Two possible reasons to

avoid describing this diversity as unrealistic are because it involves

options that are implicit in the same rules that produce IA and CA

responses and it translates common physiological mechanisms. In

fact, the situation seems to be just the opposite one. As Rovati et. al

[34] pointed out regarding the cases of partial agonism, or

effectors able to interact with receptors promoting opposite effects,

there are responses «that were often disregarded by the

experimentalists, or considered as artefacts, in the absence of a

biological and/or mathematical theory to justify them».

The parametric variations due to interactions showed the same

specific increasing and decreasing trends as those due to

perturbations (Table 2), in linear or asymptotic forms (Figure 5)

depending on quantitative factors, and such fact is hardly

surprising.

3. Modelling of interactions under the independent
action hypothesis

As expected, the response surfaces produced by the rule R1

were consistent with the IA hypothesis (Figure 6, Table 4) and

could be accurately described by transferring model (7) to equation

(2):

R~1{ 1{W D1; K1,m1,a1ð Þ½ � 1{W D2; K2,m2,a2ð Þ½ � ð24Þ

Since each effector can act as perturbator of the response to the

other, by altering effective doses, active receptors or thresholds,

auxiliary functions phi can be defined in terms as those applied to

the perturbations. Thus, the (24) will be written, in its most

complex form as:

R~1{ 1{W D1; K1pK1,m1pm1,a1ð Þ½ �

1{W D2; K2pK2,m2pm2,a2ð Þ½ �

where : phi~ 1zbhiDj

� ��
1zchiDj

� �
; h~K ,mð Þ ; i=jð Þ

ð25Þ

When this equation was used to describe the corresponding

simulations, the specific variations in the parameters Ki and mi led

to discriminate all the modalities of interaction (Table 2), whose

main types are summarized in Figure 6, Figure 7 and Table 4. For

those interactions affecting the effective dose, the dual solution that

is possible in the homologous case of the perturbations, here, it

would be reduced to parametric variations affecting only to mi.

3.1. Partial forms of independent action. The R2–4 rules

exhibit the three alternatives to the two conditions of R1, which

represents the typical independent action. The corresponding

simulations showed that unspecific receptors produce a compe-

tence that depresses the response, while additive below-threshold

effects promote a cooperative effect with an opposite enhancing

result. Since the equation (1), that describes IA mode, contains a

term (the product of the individual responses) translating the joint

probability, it can be supposed that the cooperative and

competitive effects could be described by including in (1) a

coefficient s modifying the contribution of that term.

However, the fitting tests proved that the coefficient s is

necessary, but not enough, and that accurate descriptions (Figure 6)

require parametric structures including interaction terms (Table 4).

This seems contradictory with the definitions of inherent

mechanism and accidental interaction proposed in the ‘‘Simula-

tion of the response to two effectors’’ section, since S+I2, S2I+ and

S2I2 modes (like IA = S+I+ one) represent inherent mechanisms,

without modifications of effective doses, receptors or thresholds.

Nevertheless, the lack of specificity in the receptors and the

additivity of the below-threshold effects involve that the action of

an effector is not indifferent to the presence of the other, what

constitutes an interaction, although of a passive character.

Thus, a generalized IA model in its most complex form –in

practice several phi = 1 are expectable–, can be write as:

R~W D1; K1pk1,m1pm1,a1ð ÞzW D2; K2pk2,m2pm2,a2ð Þ

1{s|W D1; K1pk1,m1pm1,a1ð Þ½ �
ð26Þ

It should be noted that the need of s?1 detects the relaxation of

some of the conditions defining IA mode, but in such a case the

identification of possible D, a or l-interactions become confuse.

4. Modelling of interactions under the concentration
addition hypothesis

As it has been already mentioned, the application of the CA

hypothesis is usually carried out through the isobole analysis.

However, the definition of null interaction according to Beren-

baum provides the key for establishing an explicit model. Indeed, if

the response to a mixed dose of two effectors should behave as a

fictitious mixed dose of a single effector, the model is necessarily:

R~W D1zD2ð Þ; K ,m,a½ � ð27Þ

Figure 5. Possible variations of a parameter (h) of the response
to an effector, as a function of the concentration of a
perturbator (P). Any of the functions (19), (20) and (21) can produce
all the profiles. Parametric value can be increased (+) or decreased (2),
with constant (L), decreasing (A) or increasing (C) slope.
doi:10.1371/journal.pone.0061391.g005
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Figure 6. Joint response to two effectors in the four suppositions resulting from combining the two implicit key conditions of the IA
hypothesis (see text). In the first column, dots are the result of simulations and surfaces the respective fittings to the model (26). Isobolograms,
correlations between observations and predictions and parametric variations (Ki: #, mi: N) of the response to an effector as a function of the dose of
the another are added. D1 and D2: doses; R: response. Numerical data in Table 4.
doi:10.1371/journal.pone.0061391.g006
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In fact, the simulations obtained with any of the rules R5 were

accurately described by this equation, which produced straight

isoboles with equal intersection points on the doses axis (Figure 8

and Table 5). Although the competence affects the parametric

values, it does not alter the functional form, making equivalent the

two alternatives of the rule R5.

As a consequence of the equation (27), the CA hypothesis can be

accepted when the individual responses differ in their m

parameters and –given the relation (8)– in their maximum slopes,

but should be rejected when such responses differ in their K

parameters. This is consistent with the isobole approach: if the

asymptotes differ, expressions as (4), (5) or (6) could only be applied

to lower responses than the lowest asymptote, since the inverse

function (9) only exists if R,K.

When interactions are included, the key notion of concentration

addition should be preserved in any modification of the (27), what

means that the doses should act as an additive block in a function

with a single set of sigmoidal parameters (K, m, a). These conditions

enable the cases that are described next.

4.1. Effectors with different potency. This case was

simulated by using the rule R5a and multiplying one of the doses

by a tox factor (tox = 1 for effectors with equal potency). Results

were fitted –with coded doses in the same interval– to the

equation:

R~W uD1zD2ð Þ; K,m,a½ � ð28Þ

which provided a precise description and produced straight

isoboles with different intersection points on the doses axis

(Figure 8). The u coefficient (u.1 if the first effector has more

potency than the second one) means that if a joint response is

described by the equation (28), the m2 parameter of the individual

response to the second effector is m2 = m6u.

4.2. Synergy and antagonism. To obtain surfaces with

isoboles like those associated with synergy and antagonism, the

rule R5a must include the condition that an effector alters,

unidirectional or reciprocally, the effective dose of the other one.

By using pDi terms like those phi defined by equation (22), the

corresponding simulations (Figure 8 and Figure 9) were described

by means of:

Table 4. Simulation conditions and respective fittings (a= 0.05) to the generalized IA model in the specified examples.

S+I+ (independent action)

null
interaction antagonism a-antagonism l-antagonism S+I2 S2I+ S2I2

receptors (a1 = a2) 120;48 120;48 120;48 120;48 100;40 100;40 95;38

l1 threshold 90;36 80;32 80;32 80;32 95;38 95;38 100;40

l2 threshold 75;30 80;32 80;32 80;32 95;38 95;38 100;40

q [D1qQD2] - 0.012 [D1QD2] - - - - -

q [D2qQD1] - - - - - - -

q [D1qQa2] - - 0.01 [D1Qa2] - - - -

q [D2qQa1]

q [D1qQl2] - - - 0.01 [D1ql2] - - -

q [D2qQl1] - - - - - - -

Basic (sigmoidal) parameters K1 0.68560.002 0.74960.001 0.75060.003 0.75360.002 0.53360.007 0.93560.006 0.92660.005

of the joint response m1 0.38260.001 0.35260.001 0.35660.002 0.35560.002 0.36860.006 0.44660.003 0.47360.003

a1 2.68060.027 2.69160.022 2.66160.034 2.69760.034 2.72960.106 2.66760.051 2.58460.047

K2 0.78060.001 0.74760.002 0.75360.004 0.75260.004 0.53560.007 0.93760.006 0.92560.005

m2 0.33760.001 0.35160.002 0.35360.002 0.35560.003 0.36960.006 0.44660.003 0.47160.003

a2 2.70260.022 2.70660.027 2.65760.049 2.66960.053 2.70360.105 2.65860.051 2.60760.048

Joint probability factor s 1 1 1 1 1.02960.005 1.33960.004 1.05460.001

Perturbations due to D1 bk2 0 0 20.71260.042 20.63260.067 0 0 0

modifying the parameters ck2 0 0 0.93660.085 1.06660.120 5.97160.219 0.19860.025 0

of the response to D2 bm2 0 2.43460.031 20.57460.033 1.07460.072 0 0 0

cm2 0 0 0 0 5.69060.265 0 2.68460.111

Perturbations due to D2 bk1 0 0 0 0 0 0 0

modifying the parameters ck1 0 0 0 0 5.57360.216 0.19360.025 0

of the response to D1 bm1 0 0 0 0 0 0 0

cm1 0 0 0 0 6.09760.274 0 2.79260.112

r2 0.9999 0.9998 0.9996 0.9996 0.9994 0.9994 0.9997

Active receptors (ai) and thresholds (li) were defined as in Table 3. Doses vary within the natural domain [0-(10)-200] and are coded for fittings within the domain [0-
(0.1)-1]. q coefficients defined by (18): a notation as D1Qa2 means that the effector E1 reduces the value a2. r2: correlation coefficient between observed and predicted
results. See also Figure 6, Figure 7 and Figure 8. Simulation conditions were defined in such a way that produced a typical surface in each case. In S+I+ (IA) the three basic
types of antagonistic unidirectional interactions are shown. Parametric structures of synergistic and reciprocal interactions (some examples in Figure 7 and Figure 8) are
immediate by symmetry considerations.
doi:10.1371/journal.pone.0061391.t004
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Figure 7. Some examples of joint responses to two effectors under IA mode of action. Concrete types of interactions are specified and
adjusted to the generalized model (26). Keys and graphic criteria as in Figure 6. See also Table 4.
doi:10.1371/journal.pone.0061391.g007
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Figure 8. Joint response to two effectors under CA mode of action. Concrete types of interactions are specified and adjusted to the
generalized model (32). Keys and graphic criteria as in Figure 6. See also Table 5.
doi:10.1371/journal.pone.0061391.g008
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R~W D1pD1zD2pD2ð Þ; K ,m,a½ � ð29Þ

Contrary to the case of the perturbations, the equivalent dual

solution based in the variation of the m parameter is not possible

here.

4.3. Interactions effector-receptor (a) and effector-

threshold (l). If it is admitted that an effector E1 alters the

number of active receptors a2 or the threshold l2 of the effector

E2, the conservation of the CA hypothesis requires to admit also

that E1 alters the a1 or l1 values. What in turn means to admit

autoinhibitory or autocalytic effects. In fact, when this type of

interactions are included in the rules R5, the response surfaces

from the resulting simulations are limited by individual responses

that decrease after a maximum or increase not asymptotically.

Moreover, the estimates of the sigmoidal parameters from the joint

response are only apparent (such as the Michaelian parameters in

the presence of inhibitors), useful to predict the response surface,

but without direct physical meaning in connection with individual

responses, whose real parameters should be separately calculated

using the model (7).

Avoiding now to discuss the realism of these behaviours, it can

be pointed out that the response to lactic acid of some lactic acid

bacteria seems to illustrate them, at least in their autoinhibitory

modality [35–37].. Thus, the response to this acid of Leuconostoc

mesenteroides [38] showed a profile –like that resulting from an

enzymatic kinetics under substrate inhibition– which was de-

scribed by including in the logistic equation a dose-depending

term depressing the asymptotic value. But the description is also

feasible –and more accurate– using a modified Weibull model as:

R~W Di; K
1zbkDi

1zckDi

,m,a

� �
;

b1~0; ci=0[autoinhibition

b1=0; ci~0[autostimulation

	
ð30Þ

In any case, these a and l interactions under IA response can be

described, in their most complex forms, by modifying the K and m

parameters with interaction terms:

Table 5. Simulation conditions and respective fittings (a= 0.05) to the generalized CA model in the specified examples.

receptors (a1 = a2) 80;32 80;32 80;32 80;32 80;32 80;32 60;24

l1 threshold 120;48 120;48 120;48 120;48 120;48 120;48 120;48

l2 threshold 120;48 120;48 120;48 120;48 120;48 120;48 120;48

tox (D2) 1 0.7 1 1 1 1 1

q [D1qQD2] - - 0.02 [D1qD2] 0.04 [D1QD2] 0.02 [D1QD2] - -

q [D2qQD1] - - 0.02 [D2qD1] - 0.01 [D2QD1] - -

q [D1qQa2] - - - - - 0.004 [D1Qa2] -

q [D2qQa1] - - - - - 0.001 [D2Qa1] -

q [D1qQl2] - - - - - - 0.02 [D1Ql2]

q [D2qQl1] - - - - - - -

null equipotent null non-
equipotent

unidirectional recipr. asymm. recipr. receptor recipr.
threshold

interaction interaction synergy antagonism antagonism modification modification

Basic parameters of the K 0.87460.0006 0.87460.0006 0.87360.0004 0.87460.001 0.87460.002 0.91560.007a 0.70060.006a

joint response m 0.42660.0007 0.61060.0013 0.42660.0009 0.42760.001 0.42660.001 0.42260.002a 0.39060.003a

a 2.77260.0160 2.78660.0138 2.77660.0181 2.78460.016 2.77860.016 2.85060.040a 2.81360.055a

perturbations due to D1 b2 0 0 7.95560.075 0 0 0 0

modifying the actual dose D2 c2 0 0 0 7.98660.068 4.00960.024 0 0

perturbations due to D2 b1 0 0 0 0 0 0 0

modifying the actual dose D1 c1 0 0 0 0 2.00660.012 0 0

Relative potency factor u 1 1.42860.005 1 1 1 1 1

Perturbations due to D1 bk2 0 0 0 0 0 0 4.32560.297

modifying the common parameters ck2 0 0 0 0 0 0.26560.008 2.73860.192

bm2 0 0 0 0 0 0 20.61160.030

bm2 0 0 0 0 0 0 0

Perturbations due to D2 bk1 0 0 0 0 0 0 0

modifying the common parameters ck1 0 0 0 0 0 0.11660.007 0

bm1 0 0 0 0 0 0 0

bm1 0 0 0 0 0 0 0

r2 0.9999 0.9999 0.9999 0.9998 0.9998 0.9992 0.9994

Notations as in Table 4. See also Figure 9 and Figure 10.
(a) apparent parameter (see text).
doi:10.1371/journal.pone.0061391.t005
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Figure 9. More examples of joint responses to two effectors under CA mode of action. Concrete types of interactions are specified and
adjusted to the generalized model (32). Keys and graphic criteria as in Figure 6. See also Table 5.
doi:10.1371/journal.pone.0061391.g009
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R~W D1zD2ð Þ; Kpk1pk2,mpm1pm2,a½ � ð31Þ

Although these effects increase or decrease the response with

respect to that expected in null interaction, the isoboles differ

markedly (Figure 9) from those produced by the equation (29) and

corresponding to synergy and antagonism.

As in IA mode, all the possible options under CA hypothesis can

be unified in a generalized model which, in its most complex form

–again in practice simpler cases with several phi = 1 should be

expected– can be formulates as:

R~W upD1D1zpD2D2ð Þ; Kpk1pk2,mpm1pm2,a½ � ð32Þ

5. Broad and strict sense of the notions of synergy and
antagonism

The frequent and not always enlightening discussions about

synergy and antagonism have led some authors to consider

synergy as an «ineffective mixture risk definition» [10]. However,

we believe that both concepts are important, and that their

confused sides can be debugged by suppressing some common, not

justified assumptions.

Firstly, their formal aspects should be distinguished from the

factual ones. From a factual perspective, as it has been said,

synergy and antagonism are the result of interactions that increase

or decrease the response with respect to that expected in null

interaction. This is a broad and unambiguous definition, but it

requires taking into account the following issues:

1) Synergistic and antagonistic responses can be generated by

any of the interactions (D, a or l) considered in preceding

sections. This implies that such responses can have diverse

origins, that these origins require different formal descrip-

tions, and that these descriptions are dependent not only on

the elements involved in a given interaction, but also on the

inherent mechanism of the system under null interaction

conditions.

2) Association between concave/convex isoboles and synergy/

antagonism is limited and misleading. In IA mode, as it has

been seen, it lacks sense, and in CA mode it lacks general

validity. As an example, the reciprocal synergistic a-

interaction (Figure 9) increases the response in the entire

domain with respect to null interaction, in spite of which its

isoboles are straight. In fact, that association is only

applicable to D-interactions in CA mode, where the

corresponding regular series of concave/convex isoboles

enable clear contrasts with the straight series which are

typical –although no exclusive– of the null interaction.

3) If the usual isobolographic convention in CA framework is

followed, synergy/antagonism could be defined in a strict

sense as those effector-effector interactions that increase/

decrease the response. Such a definition, however, would

exclude arbitrarily other interactions (as a or l ones) with

similar net effects.

4) Unfortunately, satisfactory expedients for typifying synergy/

antagonism by means of a single value or a particular isobole

do not exist, since the differences between these conditions

and null interaction vary throughout the corresponding

response surfaces (Figure 10C2).

5) Furthermore, there are not theoretical reasons which

prevent interactions with opposite regional effects on the

response surface (e.g. E1 increases the effective dose of E2,

and E2 increases the parameter m of the response to E1).

Consequently, synergy and antagonism can be simulta-

neously detected in different regions throughout a given

response surface.

6. More insufficiencies and ambiguities of the IA-CA
dualism

The frequent inconclusive character of IA and CA hypothesis is

a well-documented experimental fact [39], whose justification was

suggested in theoretical section 3. A different justification is

provided by the simulations described Simulation of perturbations of the

response to an effector and Partial forms of independent action sections.

Indeed, when the conditions that define the IA hypothesis are

altered in biologically plausible forms, response surfaces with

cooperative or competitive effects are obtained, which cannot be

acceptably described by any of the possibilities of the IA-CA

scheme.

An additional cause of ambiguity –difficult to detect in the

absence of explicit models– derives from a more formal issue. The

IA and CA response surfaces are in general clearly distinguishable

when the asymptotes of the individual responses are less than 1, as

in the examples of Figure 6, Figure 7, Figure 8 and Figure 9. But

the distinction turns more problematic as these asymptotes move

closer to 1, since in such a case the IA surface losses its peculiar top

region, in which the joint response surpasses the asymptotes of the

individual responses. Figure 10 shows an IA surface obtained by

assigning arbitrary parametric values (with K1 = K2 = 1) to the

model (1), which could be significantly typified as a case of

antagonism in CA mode by any assessment method, especially if

the results are ‘‘blurred’’ by the experimental error. Similarly, a

reciprocal asymmetrical synergy in IA mode is practically

indistinguishable from synergy in CA mode. In such cases, the

false hypothesis could only be detected by the lack of randomness

of the residuals, if the number of observations is sufficient and the

experimental error is reasonable.

All these reasons lead to doubt about the generalization to more

than two effectors of any IA-CA discrimination method, since the

probability of all kind of ambiguities increases with the number of

agents considered. The main justification of this generalization is

the experimental economy in the research of the joint effect of

many effectors at moderate levels, an important issue in

environmental toxicology, which seems practically unapproach-

able through the assay of binary combinations. However, it seems

as well that the simplification of the experimental arrays only will

produce even more ambiguous results.

Experimental examples
Some elements of the approach proposed here are exemplified

by two above mentioned cases of study: the larval growth

inhibition in sea urchin by the joint action of hydrocarbons and

dispersants [16], and the inhibitory perturbation by ouabain of the

haemolytic action of palytoxin [27]. In fact, the need to clarify

problems as those arose in these cases was the origin of the

simulation-based systematics we have attempted in this work.

We present now an experimental example in connection with

the antioxidant activity, a field in which the possible interactions

between both natural and synthetic products are formally

equivalent to the toxicological ones, and they raise similar

discussions. The example refers to the inhibition of crocin

oxidation by the joint action of two well-known antioxidants:
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ascorbic acid and trolox. Triplicate analytical results were

obtained by monitoring of the oxidation kinetics in 868

concentration arrays, using a microplate method [40,41]. Inhib-

itory responses were quantified through the ratio between areas

under kinetic profiles at the end point of the control [40,42–44].

Antioxidants can compete with the oxidizable substrate for

oxygen or the source of radicals (primary antioxidants), or for

radicalized products that are formed in more advanced oxidation

phases (secondary antioxidants). Therefore, their modes of action

are in agreement with the diagrams of Figure 2 and they can be

analysed using the general equations [31] or [37].

In this regard, the example of ascorbic acid and trolox is

interesting, because it shows some of the features in which a clear

decision is difficult (Figure 11 and Table 6). Although null

interaction cannot be accepted under both IA and CA hypotheses,

when a synergistic effect is admitted, the difference between the

two (statistically significant) options becomes small. Residual

distribution inclines the decision towards IA, but a more accurate

characterization is a predominantly independent action, with synergy

and a cooperative unspecific effect. On the other hand, it should

be pointed out that a conventional analysis (use of a model (1) for

IA hypothesis and a contrast on the 50% isobole for CA

hypothesis) would lead to decide a CA

Discussion

The approach we have defended here is supported on three

statements: S1) in any algebraic macroscopic model, any interac-

tion between effectors is necessarily translated into –reciprocal or

not– modifications of the parametric values describing the

individual action of each effector. In our modelling, such

modifications can adopt increasing or decreasing forms, with

constant, increasing or decreasing slope in each case; S2) the

algorithms used for describing microscopic facts underlying

common chemical and biological interactions produce realistic

simulations as long as any hypothetical mechanism considered can

be: a) defined in terms of levels of effectors, enhancers, inhibitors,

receptors and response thresholds; b) expressed involving these

elements in Boolean propositions; S3) macroscopic consequences

of all the microscopic mechanisms considered were satisfactorily

described by the proposed macroscopic modelling.

With these premises, two complementary queries emerge. The

first concerns the degree in which the microscopic interactions

considered are important for defining observable consequences as

synergy or antagonism. The second one refers to the possibility

that a concrete microscopic mechanism can be specifically

identified through the macroscopic model obtained from a given

data set.

Regarding the first query, it can be underlined that the two

suppositions in which our approach would be insufficient are: 1)

parametric variations (with discontinuities, singularities, and very

pronounced inflection points) which cannot be described accord-

ing to S1; 2) mechanisms which cannot be reduced, in the last

analysis, to the terms S2. Since none of these suppositions are too

plausible, it can be accepted that the considered interactions are

considerably relevant –an absolute answer seems impossible in a

factual science–, and that, in any case, our double approach will

help in the search for alternative types of interactions.

The second query leads to admit that our modelling is

mechanistically in the microscopic-macroscopic direction, but

phenomenological in the opposite one. Therefore, it obeys the

general fact that none mechanism can be unequivocally deduced

from any macroscopic description, because different mechanisms

can generate the same phenomenal profile. In perturbator-effector

interactions, a reasonably mechanistic systematics is possible on

the basis of the relationships between parametric variations

(Table 2). But in effector-effector interactions, these relations

provide only mechanistic suggestions, whose validation requires

additional experiments as those applied in enzymatic kinetics to

the identification of the different inhibition modalities.

Figure 10. An example of ambiguous interpretation of a
response through IA and CA hypothesis. A: IA response surface
(defined by K1 = K2 = 1.00; m1 = m2 = 0.30; a1 = a2 = 2.00). B: result
obtained when this surface is interpreted, through CA hypothesis, as
a case of symmetrical antagonism (K = 1.00; m = 0.316; a = 2.348;
cD2 = cD1 = 1.311. All coefficients statistically significant, with a= 0.05).
Notice the lack of residual randomness. C: differences between CA
minus IA (C1) and CA null interaction minus CA antagonism (C2)
responses.
doi:10.1371/journal.pone.0061391.g010
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Nevertheless, our modelling produces explicit algebraic equa-

tions able to describe accurately a set of situations more diverse

and realistic than those considered in other alternatives, and allows

to classify (at least according to the parametric variations) different

modalities of synergy and antagonism. The proposed approach

solves some recalcitrant and controversial aspects of these

Figure 11. Joint effect of ascorbic acid (A1) and trolox (A2) on crocin oxidation under different hypotheses. Keys and graphic criteria as
in Figure 6, with parametrtic variations replaced by residuals, which are more informative in this case. See details in text, and numerical results in.
doi:10.1371/journal.pone.0061391.g011
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concepts, as well as the necessary distinction between the factual

and formal sides of these phenomena, and it exposes several types

of theoretical reasons that explain the abundance of experimental

results that are inconclusive in the IA-CA framework, as it was

pointed out by other authors [11,12]. These reasons have perhaps

diverse orgin, but they are related, firstly, with the fact that IA and

CA hypotheses are far from elemental statements. As it is proven

by the rules R1 to R4, IA hypothesis involves conditions that can

be combined in ways that do not obey any of the two modes of

action, but whose macroscopic consequences can be satisfactorily

described in the frame of our proposal.
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26. Riobó P, Paz B, Franco JM, Vázquez JA, Murado MA, et al. (2008) Mouse

bioassay for palytoxin. specific symptoms and dose-response against dose-death

time relationships. Food and Chemical Toxicology 46: 2639–2647. 10.1016/

j.fct.2008.04.020.

27. Riobo P, Paz B, Franco J, Vázquez JA, Murado MA. (2008) Proposal for a

simple and sensitive haemolytic assay for palytoxinToxicological dynamics,

kinetics, ouabain inhibition and thermal stability. Harmful Algae 7: 415–429.

10.1016/j.hal.2007.09.001.

28. Lehane L, Lewis RJ. (2000) Ciguatera: Recent advances but the risk remains.

Int J Food Microbiol 61: 91–125.

29. Holtrop G, Petrie J, McElhiney J, Dennison N. (2006) Can general anaesthesia

be used for the paralytic shellfish poison bioassay? Toxicon 47: 336–47.

10.1016/j.toxicon.2005.11.012.

30. Fernández ML, Anderson DM, Cembella AD. (2003) Manual on harmful

marine microalgae. In: Anonymous: UNESCO. pp. 347–380.

31. Tan CH, Lau CO. (2000) Seafood and freshwater toxins: Pharmacology,

physiology and detection. In: Botana L, editor. Marcel Dekker, New York.pp.
533–548.

32. Gessner PK. (1988) A straightforward method for the study of drug interactions:

An isobolographic analysis primer. Int J Toxicol 7: 987–1012.
33. Hertzberg RC, MacDonell MM. (2002) Synergy and other ineffective mixture

risk definitions. Sci Total Environ 288: 31–42.
34. Rovati GE, Nicosia S. (1994) Lower efficacy: Interaction with an inhibitory

receptor or partial agonism? Trends Pharmacol Sci 15: 140–4.
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