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Coreceptors and Their Ligands  
in epithelial γδ T Cell Biology
Deborah A. Witherden, Margarete D. Johnson and Wendy L. Havran*

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States

Epithelial tissues line the body providing a protective barrier from the external environ-
ment. Maintenance of these epithelial barrier tissues critically relies on the presence of 
a functional resident T cell population. In some tissues, the resident T cell population 
is exclusively comprised of γδ T cells, while in others γδ T cells are found together with 
αβ T cells and other lymphocyte populations. Epithelial-resident γδ T cells function not 
only in the maintenance of the epithelium, but are also central to the repair process
following damage from environmental and pathogenic insults. Key to their function is 
the crosstalk between γδ T cells and neighboring epithelial cells. This crosstalk relies 
on multiple receptor–ligand interactions through both the T cell receptor and accessory 
molecules leading to temporal and spatial regulation of cytokine, chemokine, growth
factor, and extracellular matrix protein production. As antigens that activate epithelial γδ 
T cells are largely unknown and many classical costimulatory molecules and coreceptors 
are not used by these cells, efforts have focused on identification of novel coreceptors 
and ligands that mediate pivotal interactions between γδ T cells and their neighbors. 
In this review, we discuss recent advances in the understanding of functions for these 
coreceptors and their ligands in epithelial maintenance and repair processes.
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inTRODUCTiOn

The epithelial tissues are home to populations of T  cells that function to protect the body from 
environmental pathogens and other insults. A major portion of T  cells in many of these tissues 
expresses the γδ T cell antigen receptor (TCR) (1). The importance of these cells to homeostasis 
and wound repair has been evident for several years and exemplified by studies in skin, intestine, 
and lung (2–9). An absence of epithelial-resident γδ T cells in these tissues results in dysregulation 
of the epithelium, more severe damage or disease, and a delay in repair processes (2, 6, 8, 10, 11). 
Constant communication between resident γδ T cells and their neighboring epithelia is crucial for 
homeostasis and repair processes following damage or disease. Recent studies have begun to define 
the role of distinct molecular interactions in the rapid and localized response of epithelial-resident 
γδ T cells to tissue injury, yet much of the triggers and sequence of events remain a mystery.

ePiTHeLiAL TiSSUeS

The resident T  cell population in the epidermal layer of the murine skin is a highly dendritic 
γδ T  cell termed dendritic epidermal T  cell (DETC). DETC express a canonical Vγ3Vδ1 TCR 
[nomenclature according to Garman et al. (12); alternative nomenclature Vγ5Vδ1 (13)] and make 
numerous contacts with surrounding epithelial cells, in particular keratinocytes and Langerhans 
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TABLe 1 | Non-TCR receptor–ligand pairs in epithelial γδ T cell function.

γδ T cell epithelial cell Species Function Reference

Junctional 
adhesion 
molecule-like

Coxsackie and 
adenovirus receptor

Mouse  
and human

Costimulation (64, 65)

NKG2D MICA/MICB Human Costimulation (71–74, 78, 79)
Rae1, H60c, MULT-1 Mouse

? Skints Mouse Activation (81)
Butyrophilins Mouse/

human
Activation (82)

CD200R CD200 Mouse Inhibition (85)

CD94/NKG2 HLA-E Human Inhibition (86–89)
Qa-1 Mouse

G protein-
coupled 
receptor 55

L-α-
lysophosphatidylinositol

Mouse Inhibition (15)

Lymphocyte 
function-
associated 
antigen-1

Intercellular adhesion 
molecule 1

Mouse  
and human

Adhesion (26, 27)

E-cadherin ? Mouse Adhesion (42–44, 48, 49)

αEβ7 E-cadherin Mouse Adhesion (45–50)

CD100 Plexin B2 Mouse Morphology/
migration

(58–60)

Aryl 
hydrocarbon 
receptor

? Mouse γδ T cell 
maintenance

(55–57)

TLR 2, 4, 9 ? Mouse ? (83)

? CD98hc Mouse ? (53)

CCR4 Mouse γδ T cell 
maintenance

(54)

?, unknown.
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cells. Under homeostatic conditions, their individual dendrites 
extend between surrounding cells allowing for constant contact 
with numerous adjacent cells. This feature allows for regulated 
interactions between both cell surface receptors and soluble mol-
ecules facilitating homeostasis in the skin and allowing for rapid 
repair following damage or disease. Although differing in T cell 
composition, human epidermis also contains resident T cells that 
make crucial contributions to wound repair (9). As such, it is 
reasonable to suggest that similar mechanisms of communication 
exist in human epidermis.

The intestinal mucosal barrier is also occupied by resident 
T cells. These T cells are termed intraepithelial lymphocytes (IEL) 
that, as their name suggests, are found residing between epithelial 
cells and include subsets of both αβ and γδ T cells. The intestinal 
γδ T cell subset expresses predominantly a Vγ5 TCR [alternative 
nomenclature Vγ7 (13)] that is able to pair with a number of 
different Vδ chains. Although not dendritic like γδ T cells in the 
skin, γδ IEL are able to make contact with multiple epithelial cells 
through active migration within the intestinal epithelium. This 
gives a single γδ IEL the ability to surveil large areas of epithelium 
(14, 15) and defend against pathogenic assault (16). Although not 
as clearly defined, resistance to infection and repair from damage 
in the lung also relies on resident γδ T cells (3, 11, 17–20), again 
likely through numerous contacts with surrounding cells (21).

Continual interaction with neighboring epithelia is thus 
required for epithelial γδ T  cells to perform their functions in 
homeostasis, resistance to infection, and damage repair. While 
the importance of the TCR is clear (22–25), it is becoming evident 
that additional distinct molecular interactions drive these func-
tions of epithelial γδ T cells. Discussion of some of these interac-
tions (Table 1) will be the focus of the remainder of this review.

ADHeSiOn

The maintenance of epithelial-resident γδ T  cells within the 
epithelium is known to involve adhesion through integrin and 
cadherin-mediated interactions. Expression of these molecules is 
also modulated in response to epithelial damage suggesting their 
functions may extend beyond maintenance to roles in repair 
processes as well.

Intercellular adhesion molecule 1 (ICAM-1), also known as 
CD54, is a membrane-bound adhesion molecule that is a ligand for 
leukocyte-expressed lymphocyte function-associated antigen-1 
(LFA-1). This protein is well known to recruit leukocytes to sites 
of inflammation, but its interaction with tissue-resident γδ T cells 
is less understood. ICAM-1 is upregulated by the corneal epithe-
lium following wounding and is required for γδ T cell recruitment 
to the site of damage in an LFA-1-dependent process (26). While 
ICAM-1 is also upregulated by endothelial cells and keratinocytes 
following wounding (27), and ICAM-1-deficient mice are known 
to exhibit delayed wound repair (27, 28), it is unknown whether 
the protein plays any role in DETC-mediated epithelial repair. 
ICAM-1 has also been shown to be important in shaping the gut 
lymphocyte populations, with ICAM-1-deficient mice displaying 
a relatively higher proportion of γδ T cells and a lower propor-
tion of αβ T cells, though the biological effects of this population 
shift are unclear (29). Interestingly, the effect of ICAM-1/LFA-1 

interactions on γδ T cells is not limited to leukocyte migration. 
Costimulation of peripheral mouse γδ T cells through TCR and 
LFA-1 was demonstrated to trigger apoptosis of these cells (30, 31),  
in contrast to the proliferative response observed in αβ T cells 
(30). However, ICAM-1/LFA-1 interaction has been shown to be 
involved in peripheral γδ T cell recognition of tumor cells and 
subsequent cytolytic response (32–36), so the outcome appears 
to be context dependent. While the majority of this work has 
focused on γδ T cell recognition of target cell-expressed ICAM-
1, it should be noted that γδ T cells also express ICAM-1 (37). 
Blocking ICAM-1 expressed on the epithelial-associated Vδ1 
T cell population has been reported to reduce cytotoxicity against 
myeloma cells (34). Studies in αβ T cells have shown ICAM-1 to 
be a costimulatory molecule promoting proliferation, IL-2 and 
IFNγ secretion, phosphatidylinositol-3 kinase activation, and a 
shift toward a memory phenotype (38–40). However, it remains 
to be seen whether epithelial-resident γδ T  cells also have the  
ability to receive costimulatory signals through ICAM-1, and 
what the effects of LFA-1 engagement are in this population.

E-cadherin is an adhesion molecule that supports adhesion 
between keratinocytes (41). Interestingly, DETC also express 
E-cadherin as well as another E-cadherin ligand, αEβ7. Following 
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wounding, DETC downregulate expression of E-cadherin, but 
maintain their level of expression of αEβ7 (42–44). In vitro and 
in vivo studies have demonstrated a role for αEβ7 in DETC acti-
vation with possible functions in adhesion and epidermal reten-
tion, dendrite anchoring, morphology and motility, cytotoxicity 
and costimulation (22, 45–47). In contrast, DETC-expressed 
E-cadherin functions as an inhibitory receptor for DETC activa-
tion (47). Murine intestinal IEL also express both E-cadherin and 
αEβ7 (48, 49), and αEβ7 is expressed on most γδ T cells in the 
bleomycin-induced mouse model of lung fibrosis (50), suggest-
ing similar functions for these adhesion molecules on γδ T cells 
in other epithelial sites. Furthermore, the expression of both 
E-cadherin and αEβ7 on fetal thymic precursors of DETC (43, 44) 
indicates that inhibitory and costimulatory signals, respectively 
through these molecules may also influence thymic development 
and maturation of DETC precursors. This is further supported by 
the observation of diminished DETC numbers in the epidermis 
of αE deficient mice (46), although thymic populations were not 
directly analyzed in this study.

CD98hc is an amino acid transporter that associates with  
both cadherins and β1 integrins (51, 52). As such, it is perhaps  
not surprising that it too has been implicated in the regulation of 
skin homeostasis and wound healing (53), although it is unknown 
whether this involves direct interaction of CD98hc with DETC. 
In addition to adhesive interactions, the chemokine receptor 
CCR4 has been shown to be important for DETC retention in 
the epidermis (54). Additionally, the aryl hydrocarbon receptor 
(AhR) transcription factor is essential for maintaining both 
DETC and IEL in their respective tissues (55–57), although just 
how AhR signals lead to tissue retention of DETC and IEL, and 
whether AhR plays a role in epithelial γδ T cell activation and the 
wound repair process, is unknown.

MORPHOLOGY AnD MiGRATiOn

γδ IEL actively migrate within the intestinal epithelium and this 
migration is dependent on occludin expression in both IEL and 
the epithelium (14). In contrast, DETC in the epidermis are sessile 
under homeostatic conditions, communicating with surrounding 
keratinocytes through their numerous dendritic processes. Upon 
keratinocyte damage, DETC rapidly pull back these processes 
and adopt a more rounded morphology (6). Interestingly, 
downregulation of E-cadherin in keratinocytes can contribute to 
this rounding either through disruption of E-cadherin-mediated 
homophilic binding and/or αEβ7 integrin-mediated heterophilic 
binding (45).

In addition, binding of the semaphorin, CD100, to one of its 
ligands, Plexin B2, contributes to the DETC rounding response 
through activation of ERK kinase and cofilin (58). In the absence 
of CD100, the DETC rounding response to keratinocyte dam-
age is delayed resulting in subsequent delayed wound closure 
(58). It has been suggested that the rounding of DETC permits 
them to migrate within the epidermis during wound repair, yet 
this remains to be demonstrated. Interestingly, in the intestinal 
epithelium, where IEL are in constant motion, CD100-plexin 
B2 interactions still play an important role as CD100-deficiency 
results in more severe damage as well as delayed repair in a mouse 

model of DSS-induced colitis (59). Similarly, a role for CD100 
in lung allergic inflammation has been described (60). Whether 
CD100 is involved in γδ T cell migration in these epithelial tissues 
is yet to be determined.

ACTivATiOn

To become fully activated, αβ T  cells require engagement of 
molecules in addition to the TCR, such as CD4, CD8, and CD28 
together with other costimulatory and adhesion molecules. 
Unlike αβ T  cells, epithelial-resident γδ T  cells do not express 
CD4, CD8 (although the CD8aa homodimer is expressed by some 
γδ IEL), or CD28 (61), however, a number of other molecules 
have recently been described to participate in the activation of 
these cells.

Striking similarities between CD28 and the junctional adhe-
sion molecule-like (JAML) (62–64) suggest that JAML may play 
the role of primary costimulator for epithelial-resident γδ T cells 
through interaction with its ligand coxsackie and adenovirus 
receptor (CAR) (64, 65), expressed on epithelial cells. Like CD28 
on αβ T cells, JAML is able to induce proliferation and cytokine 
production in epithelial γδ T  cells. This response is mediated 
through PI3K which is recruited to JAML following CAR ligation 
(63). The PI3K binding motif in CD28 (66), similarly mediates 
delivery of a costimulatory signal. Although JAML expression has 
been demonstrated on activated peripheral γδ T cells, a popula-
tion of activated CD8+ αβ T cells and other cell types of both the 
innate and adaptive arms of the immune system, including neu-
trophils, monocytes, and some memory T cells (64, 65, 67), the 
function of JAML as a costimulatory molecule appears confined 
to the epithelial subsets of γδ T cells.

Blocking of JAML-CAR costimulation in vivo impairs DETC 
activation and delays wound closure (64), demonstrating the 
importance of this interaction to DETC function. Just how this 
interaction might function in response to other perturbations to 
the skin, such as infection or malignancy, is unknown. A parallel 
role in IEL activation in the mouse intestine (64) is suggested 
by the similarity in expression patterns of JAML and CAR in 
the intestine. Whether this costimulatory pair also functions in 
human skin and intestinal T cell activation and tissue repair is 
still not known.

The NKG2D receptor (discussed in detail elsewhere) is an 
activating receptor expressed on NK, γδ, and CD8+ T  cells  
(10, 68–70). In the mouse epidermis, NKG2D is expressed on DETC 
and ligation to its ligands Rae-1, H60, and MULT-1 on keratino-
cytes activates DETC (10). A reliance on PI3K signaling has been 
demonstrated, however, whether activation through NKG2D 
also requires simultaneous TCR stimulation or can stimulate  
DETC directly is somewhat controversial (71–75). Nevertheless, 
the importance of NKG2D signaling in epithelial γδ T  cells 
has been demonstrated in models of wound healing, carcino-
genesis, and contact hypersensitivity responses (72, 76, 77).  
Whether the difference in T cell receptor requirement for NKG2D-
mediated DETC activation is due to differences in the induced 
ligand resulting from the type of damage elicited, is unclear at this 
time. In humans, there is evidence to suggest that recognition of 
MIC by Vδ1 expressing intestinal epithelial T cells (76, 78, 79) can 
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either be direct, via the TCR, through NKG2D, or sequentially 
using both molecules (80). This idea, however, requires experi-
mental confirmation.

It is increasingly evident that additional molecules are also 
important for the activation of epithelial-resident γδ T cells. A 
recent analysis of defective wound healing in aged mice high-
lighted the importance of Skint molecules (to be reviewed in 
detail elsewhere) in DETC activation and epidermal re-epithe-
lialization (81). A role for the closely related butyrophilin (Btnl) 
molecules in the activation of intestinal γδ T cells in both mice 
and humans has recently been demonstrated (82). In addition, 
other molecules, such as toll-like receptors 2, 4, and 9 have been 
shown to be upregulated on γδ T cells following skin injury (83), 
suggesting a role in their activation, however, a precise function 
has yet to be defined.

inHiBiTiOn

The role of inhibitory signals in the control of αβ T cell activation 
is well established. Emerging evidence points to similar signals 
playing an important role in regulating the activation of epithe-
lial-resident γδ T cells. The transmembrane glycoprotein CD200 
expressed on keratinocytes has been implicated in the protection 
of hair follicles from autoimmune attack (84). Interestingly, resting 
DETC express low levels of the CD200-receptors 1, 2, and 3, but 
expression of CD200R1 is increased following activation in vitro. 
In functional assays, ligation of DETC-expressed CD200R with 
immobilized CD200 inhibits DETC proliferation and cytokine 
secretion highlighting an important role for CD200–CD200R 
interactions in the control of DETC activation (85). How this 
interaction may function during wound repair is unknown.

Inhibitory receptors expressed by NK  cells are also found 
on γδ T  cells, and appear to have similar inhibitory functions 
on these cells (86). The Ly49E and CD94/NKG2 receptors are 
expressed on mature fetal thymic DETC as well as those residing 
in the epidermis (86). DETC do not express other members of the 

Ly49 family. DETC cytotoxicity is inhibited by ligation of CD94/
NKG2 and monoclonal antibody cross-linking of CD94/NKG2 
prevents mature DETC thymocytes from killing FcγR+ target cells 
demonstrating a role for CD94/NKG2 as an inhibitory receptor 
on DETC (86). Just how these and other inhibitory interactions 
may function in epithelial wound repair processes warrants 
further investigation.

A recent report has identified an inhibitory role for G protein-
coupled receptor 55 (GPR55) on intestinal IEL (15). GPR55 is 
highly expressed on γδ IEL and more modestly on αβ IEL and 
intestinal dendritic cells. Through interaction with its receptor 
L-α-lysophosphatidylinositol expressed on intestinal epithelial 
cells, GPR55 regulates the interaction between IEL and the epi-
thelium and inhibits the accumulation of GPR55+ cells in the small 
intestine. Analysis of GPR55-deficient animals revealed increased 
γδ IEL migration within, and retention in, the small intestine, and 
enhanced IEL-epithelial cell crosstalk (15). Although the precise 
inhibitory role of GPR55 in the intestine is yet to be determined, 
Sumida et al. (15) propose that it may constrain IEL movement in 
the epithelium to allow normal epithelial cell functions to proceed.

COnCLUSiOn

By analogy with skin, gut, and lung, the existence of a resident γδ 
T cell population in all epithelial barrier tissues implies a crucial 
function for these cells throughout the body. An increasing 
number of receptor-ligand pairs are being identified as vital for 
the homeostasis and repair functions of these resident γδ T cells.  
An understanding of the precise mechanisms of action of these 
various molecules in the crosstalk between T cells and their adja-
cent epithelial cells will help to elucidate their roles throughout 
the epithelia.
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