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Abstract

We introduce a novel methodology for describing animal behavior as a tradeoff between

value and complexity, using the Morris Water Maze navigation task as a concrete example.

We develop a dynamical system model of the Water Maze navigation task, solve its optimal

control under varying complexity constraints, and analyze the learning process in terms of

the value and complexity of swimming trajectories. The value of a trajectory is related to its

energetic cost and is correlated with swimming time. Complexity is a novel learning metric

which measures how unlikely is a trajectory to be generated by a naive animal. Our model is

analytically tractable, provides good fit to observed behavior and reveals that the learning

process is characterized by early value optimization followed by complexity reduction.

Furthermore, complexity sensitively characterizes behavioral differences between mouse

strains.

Author summary

Goal directed learning typically involves the computation of complex sequences of

actions. However, computational frameworks such as reinforcement learning focus on

optimizing the reward, or value, associated with action sequences while ignoring their

complexity cost. Here we develop a complexity-limited optimal control model of the Mor-

ris Water Maze navigation task: a widely used tool for characterizing the effects of genetic

and other experimental manipulations in animal models. Our proposed complexity met-

ric provides new insights on the dynamics of navigational learning and reveals behavioral

differences between mouse strains.

Introduction

Adaptive decision-making is often modeled, within the framework of reinforcement learning,

as a process of generating actions associated with a high expected reward signal, or value (or

low negative value, also called cost) [1]. Learning is described within this framework as a
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process of finding a sequence of actions which maximizes the cumulative value (or minimizes

the cumulative cost). The rule by which actions are selected is sometimes called a policy. The

value (or cost) typically represents some notion of task performance (for example the total

time for task completion). Importantly, while the value (or cost) can be often interpreted in

terms of task performance level and energy expenditure associated with a policy, it ignores

internal information processes involved in generating or computing the policy, which may

have their own cost. We show here that information processing costs have important conse-

quences to learning. Thus, biological models of behavior need to quantify policies not only in

terms of their expected rewards but also in terms of their information processing costs.

To address this fundamental issue, we develop a framework for describing biological learn-

ing as a trade-off between two measures: value, which reflects task performance level as well as

energetic or metabolic constraints, and complexity, which relates to the internal information

processing limitations of the organism. Learning is thus formalized as a constrained optimiza-

tion problem: maximizing value under a given complexity constraint, or equivalently, mini-

mizing complexity under a given value constraint.

We demonstrate the usefulness of this framework by developing a complexity-limited, con-

trol-theoretic model of a mouse navigating a large, circular tank of water; the so-called Morris

Water Maze navigation task. The Morris Water Maze is widely used in neuroscience for study-

ing cognitive processes and neural mechanisms underlying spatial learning and memory [2].

Because of its simplicity and robustness, it is used to characterize the effects of many different

experimental manipulations, including genetic modifications, manipulation of brain activity

through lesions or opto- and chemogenetics, behavioral manipulations, and drugs. Efficient

metrics of behavior in the Morris Water Maze are therefore of great importance. The task

involves placing animals, typically rats or mice, at one of a number of possible starting loca-

tions in a large circular tank filled with opaque water, from which they can escape by reaching

a submerged platform whose location is fixed (Fig 1). The goal of the animal is to learn the

location of the platform. The animal can use distal visual cues such as high contrast images

placed on the walls of the room, which are fixed and consistent from trial to trial. Initially, the

animal tends to swim near the walls of the tank, a behavior known as thigmotaxis, but shortly

after learning the location of the platform, the animal starts taking shorter and more direct

swimming paths towards it. Task performance is typically quantified using latency to platform,

path length, the proportion of time spent in the quadrant of the tank in which the platform is

positioned, or the average distance to the platform while swimming [3].

We construct a model of the water maze in three steps. First, we describe the physical prop-

erties of a naive mouse, i.e., a mouse who is not aware of the existence and location of the plat-

form. Such mice tend to swim in meandering, quasi-circular trajectories near the tank walls.

We therefore model their motion using a stochastic, damped harmonic oscillator. Second, we

compute the optimal trajectories from each starting point in the tank to the stationary platform

using a classical result from linear optimal control theory: the Linear Quadratic Regulator, or

LQR [4]. These theoretically derived trajectories are optimal in the sense that they optimize a

value functional over the feasible trajectories. In the case of the LQR, the value functional is a

quadratic form that is related to the total distance travelled as well as to the forces needed in

order to reach the platform.

The main theoretical contribution of this paper consists of the third step, in which we

account for the gradual learning process by augmenting the LQR value functional with a com-

plexity functional that measures the difference, in a statistical sense, between the actions gener-

ating the winding trajectories of naive mice and those generating the more direct trajectories

of the trained ones. Our complexity measure is taken as a fundamental quantifier of the

computational cost involved in action generation and selection. It is not meant to serve as a
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proxy for muscle activation or some such metabolic cost, which are supposed to be indexed by

the value functional.

The choice of our measure of complexity is based on the following considerations. The

behavior of naive mice, who know nothing about the location of the platform, should have the

lowest complexity by definition. The behavior of trained mice, on the other hand, whose tra-

jectories are often shorter and more direct, incurs high complexity cost because in the context

of the model, which includes damping and noise, it requires the moment-by-moment genera-

tion of precise motor commands to counteract damping and correct precisely for the noise.

This would presumably result in a higher computational and cognitive load. Thus, the com-

plexity is not that of the swimming trajectories themselves, but rather that of the goal-directed

computational processes needed to generate them. Our complexity measure captures the fact

that the motor commands executed by trained mice are unlikely to be generated by naive

mice. The specific form of our complexity measure is based on a result from large deviations

theory known as Sanov’s theorem [5] (see Large deviations theory and Sanov’s theorem in the

Methods section for details). In the context of the model, Sanov’s theorem implies that our

complexity measure quantifies how (un)likely it is for a sequence of actions (motor com-

mands), generated by a mouse that already learned something about the water maze, to be gen-

erated by a naive mouse.

Using these two measures, value and complexity, we carry out an analysis of the trajectory

learning process in the Morris water maze task. This analysis provides two interesting results:

first, it shows that wildtype mice, in particular females, initially tend to optimize the value of

Fig 1. The water maze experiment. Schematic figure of the water maze experiment. The fixed platform is shown in

green. Release locations are indicated near the tank’s perimeter.

https://doi.org/10.1371/journal.pcbi.1008497.g001
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the paths by finding shorter paths to the platforms, and only later start reducing the complexity

of the paths by finding simpler trajectories without reducing value. Second, complexity is sen-

sitive to subtle features of the trajectories which are undetected by standard water maze perfor-

mance measures, and can be used to characterize important behavioral differences between

mouse strains.

Results

Modeling the water maze

The naive mouse. In the water maze task, mice learn the location of a submerged platform

within a water tank, using mostly visual cues. Briefly, mice were placed facing the tank wall at

one of four start locations designated as East (E), South (S), Northeast (NE) and Southwest

(SW) directions, whereas the platform remained fixed in the middle of the Northwest (NW)

quadrant (Fig 1). Over a period of four consecutive days, each mouse was released four times

every day, once from each starting location in a randomized order. If a mouse did not find the

platform within 60 seconds, it was positioned by the experimenter on the platform and left

there for an additional 30 seconds, allowing it to orient itself in relation to distal visual cues on

the walls of the tank and the room.

We first modelled the dynamics of a naive mouse as it swims around the circular tank. For

our purposes, a naive mouse is one which has no experience in the water maze task and in par-

ticular does not have any information about the location of the platform. Since naive mice

tend to move near the tank perimeter, with long segments that are roughly circular, we used a

2-D stochastic harmonic oscillator to model their motion. We added a damping term to model

water viscosity and additive Gaussian noise to allow for randomness in the trajectories. We

refer to this model of mouse motion as the naive or uncontrolledmouse model as it does not

contain any information about the location of the platform. It can be expressed in state-space

notation by the following linear-time-invariant stochastic dynamical system:

_xðtÞ ¼ AxðtÞ þ xðtÞ; ð1Þ

where x(t) is the 4-dimensional state of the mouse (bold characters represent vectors through-

out),

xðtÞ ¼ ½qðtÞ; pðtÞ�T; ð2Þ

and q(t) = (qx(t), qy(t)), p(t) = (px(t), py(t)) are the position and velocity coordinates of the

mouse respectively, i.e., pðtÞ ¼ _qðtÞ. The definition of state in terms of both position and

velocity coordinates enables us to describe the Newtonian dynamics of the damped harmonic

oscillator by the following matrix:

A ¼

0 0 1 0

0 0 0 1

� k=m 0 � g=m 0

0 � k=m 0 � g=m

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

ð3Þ

with the two parameters k and γ representing the restoring force and damping constants

respectively. For simplicity, we use a constant mass ofm = 20g (typical to mice) and further

assume, due to circular symmetry, that k,γ are isotropic (equal x and y components). The noise

term, xðtÞ � N ð0;SxÞ, is a zero mean, stationary Gaussian process with covariance matrix Sξ.
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The noise components of the position and velocity are also assumed to be isotropic, due to cir-

cular symmetry, and independent of each other, so that the noise covariance matrix has the fol-

lowing diagonal form:

Sx ¼

s2
q 0 0 0

0 s2
q 0 0

0 0 s2
p 0

0 0 0 s2
p

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

; ð4Þ

Where s2
q and s2

p represent position and velocity noise variances respectively.

In summary, we construct a linear, time-invariant, stochastic dynamical system model for

the motion of naive mice in the water maze that has four parameters: k, γ, σq and σp.
Modeling optimal behavior. To model the learned behavior of the mouse at the end of

training, we add a control signal term, u(t) = [ux(t), uy(t)]T, to the free model described above

(Eq 1). This term describes the forces exerted by the mouse to navigate toward the platform.

The resulting control system, which we refer to as the controlledmodel, can be described as fol-

lows:

_xðtÞ ¼ AxðtÞ þ BuðtÞ þ xðtÞ; ð5Þ

where the matrix:

B ¼
0 0 1=m 0

0 0 0 1=m

 !T

; ð6Þ

aligns the control components, ux(t) and uy(t), with the corresponding mouse acceleration

coordinates, _pxðtÞ and _pyðtÞ, in line with their role as forces exerted by the mouse.

The problem of finding the optimal behavior is now reduced to the selection of a good con-

trol signal u(t). To define what we mean by that, we introduce a cost—a measure that takes

into account those features of the task that require energy expenditure from the mouse. The

cost is a functional of the control signal (applied forces) as well as of the resulting swimming

path. We then define the value functional as the negative cost. This somewhat circuitous defi-

nition is required since control theory typically uses cost, while studies of animal behavior

usually use value. Since cost and value are equivalent up to sign, we will use the two terms

interchangeably from here on, while mostly preferring the use of value.

Formally, we define a functional, J(x(t), u(t)), as the integrated “energetic cost” of the trajec-

tory. Here x(t) is the swimming path that results from the application of the force u(t). Once

J(x(t), u(t)) is specified, optimal control theory provides the force to apply at each moment in

time in order to steer the animal to the platform at minimal cost. Any other control signal will

result, on average, in costlier trajectories.

We use a quadratic cost functional with three terms representing different factors that con-

tribute to deviations from optimal behavior:

J½xðtÞ; uðtÞ� ¼ E
h 1

2

Z T

0

�
ðxðtÞ � �xÞTQðxðtÞ � �xÞþ

uðtÞTRuðtÞ þ 2ðxðtÞ � �xÞTNuðtÞ
�
dt
i
;

ð7Þ

where T denotes the duration of the trial. The matrices R and Q are assumed to be positive
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definite and semi-definite respectively, and �x ¼ ½�qx; �qy; 0; 0�
T

are the (fixed) state space coordi-

nates of a stationary mouse on the platform.

The first term in Eq 7 represents the cost of distance, in state-space, from the target, effec-

tively giving a higher value to trajectories which reach the platform faster and remain closer to

it. The second term represents a penalty on force exertion, since reaching the target using less

force is energetically desirable. The mixed third term can account for possible interactions

between position and force exertion; e.g., the same force may be less desirable when the animal

is near the target compared to when it is near the perimeter.

The integral in Eq 7 is calculated along the trajectory, from the release location of the ani-

mal into the arena and until it either reaches the platform or is positioned there by the experi-

menter. The expectation is taken over all possible realizations of the additive Gaussian noise

process ξ(t) in Eq 5.

We can now define the value functional simply as the negative cost:

V½xðtÞ; uðtÞ� ¼ � J½xðtÞ; uðtÞ�: ð8Þ

While the cost is always positive and is small when performance is good, the value is always

negative and becomes large (close to 0) when performance is good.

Finding the optimal control signal which maximizes the value functional (Eq 8) under the

model dynamics (Eq 5) is a classical problem in optimal control theory. Its solution is called

the Linear Quadratic Regulator [4], a linear force proportional to the difference between the

current and target states. In our case these correspond to the states of the animal and the plat-

form respectively:

uoptðtÞ ¼ � KðxðtÞ � �xÞ; ð9Þ

where the superscript indicates that this is the optimal control signal; i.e., the one maximizing

the value functional, Eq 8. The feedback gain matrix, K, is computed from the parameters of

the problem—the matrices A and B that define the dynamics and the matrices Q, R and N that

define the cost functional. The computation of K is described in in Computing the optimal

feedback gain in the Methods section with additional details provided in the mathematical

appendices Derivation of the Riccati equation and Boundary conditions and transients.

To apply the model to the empirical trajectory data, which was sampled at a rate of

Δt = 0.2s, we transform it into a discrete-time form. The discrete-time dynamics that approxi-

mates Eq 5 can be written as:

xtþ1 ¼ ADtxt þ BDtut þ xt ; ð10Þ

where xt � N ð0;SDtÞ and AΔt, BΔt and SΔt denote the discrete-time equivalents of A, B and Sξ

respectively. They can be computed from their continuous-time counterparts, detailed in

Model discretization in the Methods section. The discrete-time version of the cost functional

(Eq 7) can be written as:

JDt½xt;ut� ¼ E
h 1

2

XT

t¼1

�
ðxt � �xÞTQDtðxt � �xÞþ

uTt RDtut þ 2ðxt � �xÞTNDtut
�i
;

ð11Þ

where T denotes here the number of samples along the path and QΔt,RΔt and NΔt can be com-

puted from their continuous-time counterparts, as detailed in Model discretization in the
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Methods section. The corresponding value is again defined simply as the negative cost:

VDt½xt;ut� ¼ � JDt½xt; ut�: ð12Þ

The solution to the discrete-time optimal control problem, maximizing the discrete-time

value functional (Eq 12), is given by:

uoptt ¼ � KDtðxt � �xÞ; ð13Þ

where the discrete-time feedback gain matrix, KΔt, can be computed from the discrete-time

dynamics and cost matrices, as detailed in Computing the optimal feedback gain in the Meth-

ods section.

Modeling the learning: Complexity constrained control. So far we described a standard

optimal control problem, consisting of finding the control signal which generates trajectories

that maximize the value functional, Eq 12. Such models are widely used in fields such as air-

craft and naval navigation and control. Biological organisms, however, are subject not only to

performance and energetic (metabolic) limitations, but also to complexity, or information pro-

cessing constraints. These constraints include memory as well as the information processing

limitations involved in sensing and acting. Therefore, we introduce a measure of complexity

that quantifies the information required for action selection. This measure is defined by com-

paring two actions, the one selected by the current policy and a default action that corresponds

to the choices of a naive animal (that does not know where the platform is located). Under this

definition, the complexity of a sequence of actions increases as the trajectory it generates

becomes increasingly distinguishable from a naive one.

Formally, we introduce an additional functional, IDt ½xt; ut�, representing the complexity of a

trajectory generated by a given control signal ut:

IDt ½xt;ut� ¼
1

2

XT� 1

t¼1

DKL Pðxtþ1 j xt;utÞkPðxtþ1 j xtÞ
� �

; ð14Þ

where DKL(P(xt + 1jxt, ut) jj P(xt + 1jxt)) is the Kullback-Leibler (KL) divergence between the

state transition likelihood of the trajectory xt, under the control signal ut:

Pðxtþ1 j xt; utÞ � N ðADtxt þ BDtut;SDtÞ; ð15Þ

and the state transition likelihood of the same trajectory under the free (uncontrolled) model:

Pðxtþ1 j xtÞ � N ðADtxt;SDtÞ: ð16Þ

The KL divergence, also called relative entropy, is a measure of the difference, in information

theoretic terms, between two probability distributions [6]. The KL divergence between two

discrete distributions, P1 and P2, is defined as follows:

DKLðP1kP2Þ ¼
X

x

P1ðxÞ log
P1ðxÞ
P2ðxÞ

: ð17Þ

It is non-negative and equals zero only when the two distributions are almost everywhere

equal. Our use of the KL divergence as a measure of complexity is based on a result from large

deviations theory known as Sanov’s theorem [5]. In our context, Sanov’s theorem states that

the likelihood of a naive trajectory to achieve a certain value is determined by the minimal

obtainable KL divergence between a controlled trajectory distribution that achieves that value

and the naive trajectory distribution. Furthermore, controlled trajectories with a larger KL

divergence are exponentially less likely to occur under the naive behavior. Thus, our
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complexity functional, Eq 14, is a natural measure of how (un)likely is it for a particular con-

trolled behavior to occur with respect to the naive distribution. While it is possible to provide a

continuous time version of complexity, at least in the Gaussian noise case, it is simpler and

more transparent in the discrete case which is anyway what we computed on the empirical

data (see Computing the theoretical value-complexity curves in the Methods section for

details).

We combine the complexity with the value functional (Eq 12), weighted by a non-negative

parameter β, to obtain the following so-called free energy functional:

FDt½xt;ut; b� ¼ IDt½xt;ut� � bVDt½xt;ut�: ð18Þ

The negative sign of the value is introduced since we will eventually minimize, rather than

maximize, the free energy. By analogy to statistical physics, the non-negative Lagrange multi-

plier β plays a role analogous to inverse temperature in thermodynamic free energy [7].

The complexity constrained optimal control problem consists of finding, for any value of β,

the control signal which minimizes the free energy functional, Eq 18, under the model dynam-

ics, Eq 10. Minimizing the free energy functional prescribes the optimal trade-off, determined

by β, between low complexity, i.e., minimizing the complexity term IΔt[xt, ut], and high value,

i.e., maximizing the value term VΔt[xt, ut]. Thus, minimizing the free energy is equivalent to

finding the simplest paths that achieve the value given by VΔt[xt, ut]. These paths are simplest

in the sense of minimizing IΔt[xt, ut], that is, they are the most similar to the free swimming

paths. Alternatively, the solution is equivalent to maximizing the value VΔt[xt, ut] among all

paths whose complexity is constrained to a given level IΔt[xt, ut].

When β� 0, corresponding to high thermodynamic temperatures, the free energy consists

of the complexity term only, and the optimal solution is close to the naive swimming behavior

(which minimizes the complexity by definition). Conversely, when β is very large, correspond-

ing to low temperatures in the thermodynamic analogy, the complexity term becomes negligi-

ble and the optimal solution becomes the optimal control solution of the original LQR

problem, maximizing the value. For intermediate β values, the trajectories that minimize the

free energy represent a balance between minimization of complexity and maximization of

value.

Importantly, the complexity constrained optimal control for a given β value, obtained by

minimizing the free energy (Eq 18) subject to the dynamics (Eq 10), results in a linear feedback

control signal:

ubt ¼ � K
b

Dtðxt � �xÞ; ð19Þ

where the optimal feedback gain matrix, Kb

Dt, now depends on β (see Computing the optimal

feedback gain in the Methods section).

Fitting the model to data. We applied the model to swimming paths from wildtype mice

and mice with a heterozygous mutation in the Pogz gene (pogo transposable element-derived

protein with zinc finger domain). Heterozygous loss-of-function mutations in the human

POGZ gene are associated with intellectual disability and autism spectrum disorder. See Exper-

imental procedures in the Methods section for more details about these mice.

The parameters of the model were estimated from the behavior of the wildtype mice data in

three steps, described in detail in subsection Estimating model parameters of the Methods sec-

tion. First, we estimated the parameters of the free model (Eq 1) using the first swimming trial

of each mouse. Next, we estimated the parameters of the value functional (Eq 8). This time the

data consisted of the last swimming trial of each mouse. Finally, we estimated the value of the

learning parameter β, using the rest of the swimming paths, grouped by day.
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The free model parameters, estimated using maximum likelihood from the first trials of

each wildtype mouse, were as follows:

ðk̂; ĝ; ŝq; ŝpÞ ¼ ð3:7g=cm2; 0:47g=cm; 1:1cm=s; 4:5cm=s2Þ: ð20Þ

The estimated harmonic oscillator is stable and underdamped, with a damping coefficient of:

z ¼ g=ð2
ffiffiffiffiffiffiffi
mk
p

Þ � 0:03; ð21Þ

and an angular frequency of:

o ¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z

2
p

�
ffiffiffiffiffiffiffiffiffi
k=m

p
� 0:43rad=s; ð22Þ

where o0 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
is the undamped angular frequency.

Next to the wall (r = 60cm), these estimates imply a swimming speed of v = ωr� 26cm/s, in

agreement with typically reported mean swimming speeds for mice [8, 9].

The value functional weight matrices, Q, R and N, were estimated using the final trials of

each wildtype mouse. Since many weight matrices can result in the same steady state feedback

gain, and therefore in the same trajectory, we estimated the feedback gain matrix K directly,

and used it to infer a particular choice of Q,R and Nmatrices corresponding to that feedback

gain (see Estimating model parameters in the Methods section for details). We initially esti-

mated the 2 × 4 feedback gain matrix K with no constraints on its entries. This yielded the fol-

lowing non-parametric maximum likelihood estimate K̂NP:

K̂NP ¼
0:21 � 0:07 0:22 � 0:30

� 0:02 0:17 0:32 0:33

 !

: ð23Þ

The structure of this matrix led us to specify the following parametric form for K, reducing the

number of free parameters from 8 to 3:

K ¼
Kr 0 Kt cosðKaÞ � Kt sinðKaÞ

0 Kr Kt sinðKaÞ Kt cosðKaÞ

 !

; ð24Þ

The maximum likelihood value for the parametric form of K was:

K̂ ¼
0:20 0 0:24 � 0:29

0 0:20 0:29 0:24

 !

; ð25Þ

corresponding to the fitted parameters K̂ r ¼ 0:20; K̂ t ¼ 0:38; K̂ a ¼ 0:89. The structure of K̂
indicates that the force applied by the mouse can be decomposed into a radial component that

drives it towards the platform and a tangential one that counteracts the tendency to rotate

around the center of the tank. The ratio Kr/Kt = 0.53 describes the relative magnitude of the

radial force component with respect to the tangential one. The log-likelihood values of the two

versions of K were similar; namely −1.5983 for K̂ and −1.5992 for K̂NP.

We estimated the maximum likelihood β values for each mouse over the 4 training days

using all paths of that mouse on each day, excluding the ones used for estimating the model

parameters; i.e., the first path on the first day and the last path on the last day (see Estimating β
in the Methods section for details). The resulting mean β values for the four days were β1 =

0.22, β2 = 4.5, β3 = 36.8 and β4 = 475, for days 1-4 respectively. Thus, the β parameter increased

by a factor of roughly 10 from day to day, even from day 3 to day 4, when the latency to plat-

form largely saturated (see below). This observation suggests that the learning process in the
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water maze is richer and more intricate than suggested by the standard performance features

such as latency to platform.

Model validation. To illustrate the properties of the model fit, we simulated free (β = 0)

and optimal (β =1) trajectories, and compared them to the empirical trajectories of naive

and trained mice respectively. Fig 2 qualitatively compares empirical trajectories with typi-

cal trajectories generated by the model. Trajectories of naive mice are compared to trajecto-

ries generated by the uncontrolled model (top), and trajectories of trained mice with those

generated by the LQR model to optimal control (bottom). The paths are not expected to be

identical, since this would require the noise used in the simulation to match the unknown

noise that presumably occurred during the actual experiment. Rather, the figure illustrates

the comparable characteristics of the resulting swimming paths. For visualization purposes,

the simulated trajectories of naive mice are subjected to a hard boundary condition at the

perimeter of the tank. This boundary condition is not imposed by the model as this would

introduce a hard non-linearity which would greatly complicate the analytical solution. Nev-

ertheless, despite its simplicity, the model can reproduce both the quasi-circular meander-

ing of the naive mice, and straighter, platform directed swimming paths that are typical of

the trained mice.

We quantitatively compared the model-generated paths with the empirical values of several

water maze performance measures. We considered trajectory duration (latency to platform),

trajectory length, average velocity, and the mean distance to the platform during the trajectory

(a learning measure sometimes referred to as the Gallagher Index [10]). We computed each of

Fig 2. Empirical and model generated trajectories. Top: empirical trajectories generated by naive (day 1) mice (left)

and simulated trajectories generated by the uncontrolled model (right). Bottom: empirical trajectories generated by

trained (day 4) mice (left) and simulated trajectories generated by the optimal control model (right). Initial positions,

indicated by filled squares, and velocities, were matched between empirical and simulated trajectories. Trajectories

simulated by the uncontrolled model are confined to tank boundaries.

https://doi.org/10.1371/journal.pcbi.1008497.g002
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these these values at six time points (Fig 3): the first swimming path of each mouse (compared

with the uncontrolled model, β = 0), the average for all the rest of the swimming paths on day

1, all swimming paths of day 2, all swimming paths of day 3, the swimming paths of day 4

except for the last one (compared with model swimming paths with the corresponding β for

each day), and the average value for all the last swimming paths of each mouse (compared

with the controlled model, β =1).

For the experimental data, all of these values decreased throughout training. For the model

(as a function of β), path length, latency and mean distance to the platform also decreased

monotonically. Thus, β behaves as a (single) learning parameter, representing the gradual tran-

sition from naive to trained navigation behavior. Quantitatively, the total distance to the plat-

form (Fig 3a) was well estimated, presumably because the model was mostly fitted to distance

data. The mean latency to the platform and the mean distance to the platform were also quite

well estimated by the model. The mean velocity (Fig 3c) was less well estimated by the model,

although the average measured values were still within one standard deviation of the average

simulated values.

Change of control during learning. We next wanted to see how the learned control

changed as function of β. Fig 4 shows a single empirical trajectory of a mouse released at the S
starting location on the first day of training. For every 5th sample point along the trajectory,

the actual velocity vector is shown in black and model predicted velocity vectors, for 75 linearly

spaced β values between 10−2 and 102, are shown with a color scale representing the magnitude

of β. As expected, higher β values (shown as red and yellow arrows) resulted in predicted

Fig 3. Model and empirical performance measures. The first and last empirical data points represent the trials used

for training the uncontrolled (blue) and optimal control (green) models. The four mid points (black) represent the

four training days. The empirical points shown are for the E release location. Error bars indicate standard deviations.

The shaded areas represent one standard deviation above and below the average computed from the simulated

swimming paths. The red line in panels A, B and D correspond to the minimum achievable value for the

corresponding parameter, computed using a straight swimming path from the release location to the platform, using

the mean velocity over all trials from the corresponding release location.

https://doi.org/10.1371/journal.pcbi.1008497.g003
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velocity vectors rotated towards the platform, compared to those predicted by lower β values

(green and blue arrows). The velocity vector corresponding to the value of β that best fits the

data are shown in the insets (dashed black arrows). The predicted velocity vectors represent

expected values: the actual velocity vectors (solid black arrows) include the contribution of the

noise, represented in the lower inset of Fig 4 by the gray circle. The actual velocity vectors were

mostly consistent with those predicted by the model, although they tended to be closer to

velocities corresponding to intermediate β values.

As suggested from Fig 3c, the lengths of the model velocity vectors were a non-monotonic

function of β, decreasing for intermediate values and then increasing again for large β values

(Fig 4 top inset). Thus, the model predicted that swimming speed would decrease first, then

increase again as the mice converge upon the optimal control. This trend was not observed;

rather, swimming speed decreased slightly on average between the first and last day.

Value and complexity during learning. A fundamental property of the theoretical model

is that it provides an optimum performance bound to which the empirical behavior can be

compared. To carry out this comparison, we plotted the value and complexity of each empiri-

cal trajectory against each other and compared them to the theoretically derived optimum (Fig

5). The green line represents the value-complexity curve, which is a theoretical bound on the

maximal expected value (ordinate) that can be achieved for a given complexity (abscissa) level,

as detailed subsection Computing the theoretical value-complexity curves of the Methods sec-

tion. Initially, the empirical trajectories had low values but the value rapidly increased towards

its maximal value of 0. Complexity, however, behaved differently for different mouse groups.

Fig 4. Model predictions along a trajectory as a function of β. Actual and model predicted vectors for different β
values shown at several points along an empirical path from the first day starting at the S release location. The black

arrows represent the actual velocity vectors at the same point. Model predicted vectors corresponding to large β values

(red and yellow arrows), are better oriented towards the platform than the those corresponding to smaller β values

(blue and green). The non-monotonic speed profile (arrow length) as a function of beta can be seen in the top inset

(red border). The standard deviation of the velocity noise is shown as a grey circle around the tip of the predicted

velocity vector in the bottom inset (blue border). The velocity vectors corresponding to the estimated value of β that

best fits the data (β = 0.273) are indicated by dashed black arrows in the insets.

https://doi.org/10.1371/journal.pcbi.1008497.g004
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For female wildtype mice, it exhibited a non-monotonic profile, increasing between days 1-2

and then decreasing, reaching the vicinity of the knee of the theoretical value-complexity curve

on the late trials (cool gradient colored line). A two-sample Kolmogorov-Smirnov test showed

a significant difference in trajectory complexity between days 2 and 4 for wildtype female mice

(D = 0.33, p = 0.03). Thus, for these mice the learning dynamics can be partitioned into two

phases: initial optimization (value increase) followed by late compression (complexity

decrease). This two-stage learning dynamics was not observed in mutant females (warm gradi-

ent colored line) or male mice groups. As discussed below, this interaction between genotype

and sex was significant.

We proceeded to quantitatively analyze the statistical properties of value and complexity as

learning quantifiers over successive training days in the water maze. When compared on mea-

sures such as latency to platform, both wildtype mice and mice heterozygous to the mutated

Pogz gene showed substantially equivalent rates of learning (Fig 6, left). A linear mixed effect

model (fixed factors: day, sex and genotype; random factor: mouse) showed significant effects

of day (F(3, 595) = 12.1, p = 1.0 × 10−7) and genotype (F(1, 595) = 10.7, p = 0.0011), with the

heterozygous mice taking longer, on average, to reach the platform (see Fig 6, left). No signifi-

cant effect of sex (F(1, 595) = 0.201, p = 0.65) or interactions with sex were observed (for exam-

ple, the sex✕genotype interaction (F(1, 595) = 1.47, p = 0.22) was not significant).

The value tended to follow the latency to platform (Fig 6, center), except that value

increased as latency to platform decreased. A linear mixed effect model (fixed factors: day, sex

and genotype; random factor: mouse) showed significant effects of day (F(3, 595) = 53.5,

p = 1.3 × 10−30) and genotype (F(1, 595) = 4.81, p = 0.03). There was also a weakly significant

Fig 5. Value-complexity curve. Each point represents an empirical trajectory from a single release location (N). The

axes show the value (ordinate) and complexity (abscissa) of each trajectory with the theoretically optimal curve plotted

in green. Complexity tended to be lower for the mutant (heterozygous) animals compared to the wildtypes (warm and

cool color scales respectively), and more so for females (circles) than for males (squares). While mean value tended to

increased monotonically with training for both mutant and wildtype females (warm and cool gradient lines

respectively), the mean complexity of wildtype females exhibited a non-monotonic profile, increasing on days 1-3 and

decreasing on day 4. Trials from all six mouse batches are superimposed, with color hue indicating serial position

within each batch. Large circles represent the daily mean value and complexity levels of wildtype (cool colors) and

mutant (warm colors) female mice. Error bars are displayed for every 5th trial to reduce visual clutter.

https://doi.org/10.1371/journal.pcbi.1008497.g005
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genotype✕day interaction (F(3, 595) = 2.71, p = 0.044). This reflected the somewhat faster

increase in value of the wildtype (particularly of the female) relative to the heterozygous mice.

As in the case of latency to platform, there were no significant effects or interactions with sex

(for example, the sex✕genotype interaction was not significant, F(1, 595) = 0.291, p = 0.59).

The new complexity measure introduced here showed sex✕ genotype interactions (Fig 6,

left) and facilitated the discovery of interesting trajectory features. The linear mixed effect

model (fixed factors: day, sex and genotype; random factor: mouse) showed significant effects

of day (F(3, 595) = 8.68, p = 1.2 × 10−5) and genotype (F(595, 1) = 20.3, p = 7.6 × 10−6) as well

as significant interactions for sex✕day (F(3, 595) = 4.87, p = 0.0023), genotype✕day (F(3, 595)

= 25.6, p = 1.2 × 10−15) and sex✕genotype✕day (F(3, 595) = 3.77, p = 0.011). Indeed, complex-

ity was substantially smaller for the female heterozygous mice relative to all other subgroups;

i.e., the male heterozygous as well as the wildtype mice of both sexes, but mostly on days 1-3,

reaching the level of wildtype mice on day 4.

We then examined the the swimming behavior of female heterzygous mice in order to find

out why their complexity was reduced to such an extent. We observed that these mice had a

tendency to practically stop moving and simply float for short periods of time mid-swim. To

quantify this flotation behavior, we marked path segments in which the speed of the mouse

was lower than 1/10 of its mean speed along the trajectory (Fig 7). Since such flotation behav-

ior is consistent with the uncontrolled model, it reduced the integrated complexity along the

swimming path. A linear mixed effect model for the number of floating episodes (fixed factors:

day, sex and genotype; random factor: mouse) showed a significant genotype effect (F(1, 606)

= 33.1, p = 1.4 × 10−8) as well as a sex✕genotype interaction (F(1, 606) = 9.81, p = 0.002), con-

firming that the heterozygous females had a significantly larger number of such episodes rela-

tive to the other groups. These observations suggested that reduced complexity may be related,

Fig 6. Trajectory statistics. Median path latency, value and complexity (ordinate) vs. trial day (abscissa) for female

(top) and male (bottom) mice. Bottom and top bar edges indicate the 25th and 75th percentiles respectively. To reduce

heteroscedasticity, ordinate data was transformed using a Box-Cox transform with power coefficients of: −0.29, 0.20,

−0.19 (for latency, value and complexity data respectively).

https://doi.org/10.1371/journal.pcbi.1008497.g006
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at least partially, with slower swimming velocities. Indeed, a significant correlation was found

between complexity and mean swimming velocities (r(813) = 0.31, p = 5 × 10−20) as well as a

significant reduction in mean velocity between days 2 and 4 for trajectories of female wildtype

mice (two sample Kolmogorov-Smirnov test, d = 0.36, p = 0.016).

Discussion

Summary

Navigational learning requires the determination of the forces needed to guide the movement

of an object towards a desired location, typically under constraints such as minimizing latency

or energy consumption. These problems have been studied by scientists and engineers for cen-

turies. Major advances were made possible by the advent of the digital computer and the aero-

space industry in the 1940s, leading to the development of feedback and optimal control

theory [11], which are the pillars of modern navigation systems. While optimal and feedback

control frameworks have been used to study sensorimotor systems [12–14], they have rarely

been applied to mammalian navigational learning. This may be because control theory focuses

on finding optimal trajectories by minimizing (or maximizing) a single performance criterion,

whereas biological learning often requires satisfying several, possibly unknown and conflict-

ing, optimization constraints.

We modeled mouse behavior in the water maze as a control system that operates optimally

under complexity constraints. A control system consists of a dynamical system that can be

steered using a control signal. Optimal control entails the selection of a control signal that opti-

mizes a known value functional. Here, the dynamical system encapsulates the physical essence

Fig 7. Flotation behavior. Trajectories of female (top) and male (bottom) wildtype (left) and heterozygous (right)

mice released at theNE location. Blue circles indicate trajectory segments in which the speed of the mice was slower

than 10% of the mean velocity along the trajectory.

https://doi.org/10.1371/journal.pcbi.1008497.g007
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of the problem—motion of the mouse through a viscous medium. The tendency of naive mice

to swim in wide, quasi-circular arcs near the wall of the tank led us to model their trajectories

with the dynamics of a stochastic, damped oscillator. Naive model trajectories were shaped by

a balance between the tendency of the noise-free trajectories to converge spirally towards the

center of the pool on the one hand, and the noise that drives the trajectories outwards on the

other hand. This simple model captured properties of naive mice motion surprisingly well.

The control signal consisted of the learned forces applied by the mouse to steer itself towards

the platform. The complexity of the swimming paths was measured by how different they were

from paths generated through a non-informative choice, in our case zero control, where swim-

ming direction was determined by the dynamical system driven by isotropic Gaussian noise.

Learning is quantified by the relaxation of the constraints on the complexity, making it possi-

ble to achieve higher value. We estimated the parameters of the problem (the dynamical sys-

tem as well as the value functional) from data. This formulation makes it possible to define

novel quantifiers of mouse behavior, namely value and complexity, which are theoretically-

derived and uncover new features of the learning process.

We validated the model by using the initial and final trials of wildtype mice as training data

for the uncontrolled and controlled model parameters respectively, and then used these

parameters to estimate the value and complexity of the remaining trials of wildtype mice as

well as all mutant mice trials. Thus, the final trajectories of wildtype mice, as well as those

which were statistically similar to them, tended to cluster near the optimal value just below 0

in the value-complexity curve (Fig 5 top green horizontal bounding line). Similarly, all initial

wildtype trajectories, and those similar to them, clustered near the minimal complexity of 0

(Fig 5 left green vertical bounding line). Other trajectories, whose properties diverged from

both initial and final wildtype ones, were scattered over the value-complexity plane, with their

distance from the ordinate and abscissa reflecting their divergence from optimal and naive

behaviors respectively.

We illustrated the usefulness of this approach by comparing data from wildtype and mutant

mice. The new quantifiers were more sensitive than the standard measures of mouse behavior

(such as latency to platform) to differences in the behavior between mouse strains. They

revealed behavioral features that were undetected by standard performance measures used to

quantify behavior in the water maze.

Importantly, the current work was designed to provide a normative model of the trajectory

learning process in the water maze using first principles such as Newtonian dynamics, optimal

control theory and information theory. In consequence, the model deals with behavioral vari-

ables—the motion trajectories—and not with the underlying neural mechanisms. Neverthe-

less, the model provides information about high-order internal variables—the weighing

matrices for the value and the value-complexity trade-off variable β, which can be used to link

neural processes with the observed dynamics of learning. Importantly, β provides an efficient

summary statistic of the learning state of the animal at a given time. As mice gained more

detailed information regarding the location of the platform, and found out how to couple this

information with the appropriate motor commands, they were able to generate more precise

movements towards the platform from any point in the tank. This process is quantified by the

increase in the estimated values of β.

Does it work?

The model is highly simplified in that the mouse is modelled as a point particle, and the intro-

duction of the central force that imposed the tendency for circular swimming paths may seem

artificial. Nevertheless, despite its simplicity, the model captures and quantifies subtle
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trajectory features. First, the numerical values of the estimated parameters were reasonably

close to the (very few) reported values in the literature [15, 16]. Second, we compared four

properties of the measured swimming paths to those of paths generated by the model. For

three of these (total path length, latency to platform, and mean distance to the platform during

the swimming path), the model paths matched well with the observed ones. Mean velocity had

the correct range of values, although it failed to show the predicted non-monotonic depen-

dence on the trade-off parameter β. This may be due to the noise introduced by numerical dif-

ferentiation, which required additional smoothing that is not part of the model.

What accounts for the effectiveness of the model? First, because of learning is measured by

a single parameter, β, the model made it possible to evaluate the day to day changes in the con-

trol used by the mice directly from the observed data. Next, the quadratic value functional

encapsulated well the time and energy costs inherent to the underlying biological mechanisms.

Finally, the complexity constraint is theoretically grounded in large deviations theory [5]. The

combination of all three provides a simple yet powerful model.

Obviously, the model can be refined. For example, a more realistic description of swimming

trajectories could be obtained by using non-linear dynamics or a different noise model, e.g.,

multiplicative, control-dependent noise which has been proposed as more suitable for the

description of sensorimotor behavior than additive, control-independent one [17]. The physi-

cal constraints could be captured in a more natural way by imposing a hard boundary corre-

sponding to the walls of the water maze instead of the central force we used. One disadvantage

of these approaches is that they may require the introduction of artificial devices to reproduce

the tendency of mice to swim in circular arcs close to the walls on their initial exposure. More

fundamentally however, we simplified these aspects of the model in order to connect a “micro-

scopic”, moment-by-moment description of mouse behavior with a single parameter that con-

trols the “macroscopic” learning dynamics through a transparent, tractable formalism,

allowing the estimation of parameters from empirical trajectory ensembles.

The model could also be extended by treating the state vectors of both mouse and platform

as unknown variables which need to be estimated by the mouse. In its current formulation, the

model implicitly assumes that the mouse knows its exact location and velocity. Real mice, how-

ever, have only imprecise knowledge of their location and velocity, and must therefore gener-

ate, and presumably update, internal estimates of these values. Similarly, the model assumes

that trained mice know the exact, stationary, position of the platform. A more comprehensive

model model could use noisy estimates instead of the (fully known) mouse and platform state

variables. Indeed, an important component of control theory, which was not explicitly utilized

in this work, deals with the problem of optimally estimating unknown states based on noisy

observations. In the case of linear observations with Gaussian noise, the maximum likelihood

estimator is the well known Kalman filter [18]. Importantly, it is mathematically equivalent, or

dual, to the LQR problem, where the cost functional weight matrices Q and R are interpreted

as the precision (inverse covariance) matrices of the prior state estimate and observation noise

respectively. Furthermore, the optimal control of a linear Gaussian system with linear Gauss-

ian observations is given by the same feedback gain as in Eq 9 but with the estimated state

replacing the real one (a result known as the certainty equivalence principle [4]). Thus, replac-

ing the mouse and platform states with noisy, linear observations would not alter the form of

the optimal control solution. Rather, it would decrease the relative weight of the state term in

the value functional. While beyond the scope of this work, such an extension of the model also

suggests possible comparisons between the state estimation variables in the model and in the

brain, as indexed by electrophysiological data from place cells in the hippocampus or grid cells

in the entorhinal cortex. This extension would provide a full closed loop model relating neuro-

nal activity to navigational learning and behavior.
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Is the model novel?

While previous attempts have been made to model rodent navigational learning, they have

mostly focused on explaining spatial map formation in terms of hippocampal place cell con-

nectivity or activation features [19–24]. The current model is different, in that it supplies a

high-level description of the learning process itself, without linking it directly with its neural

implementation. Furthermore, while previous models describe learning dynamics using an

array of neural-network weight and activation parameters [19, 20] the current model uses a

single parameter, namely β, for the same purpose (Fig 3). These differences distinguish the cur-

rent model from previously suggested models of water maze navigational learning, making it

difficult to directly compare them.

In recent years there has been increasing use of information theoretic measures in machine

learning and neuroscience. In a series of studies, Frankland and coworkers [25–27] demon-

strated how entropy and KL divergence may be used as sensitive quantifiers of water maze task

performance. The spatial distribution of each path in these studies was approximated by a

Gaussian distribution, and then various information theoretic measures were extracted from

these distributions. While our model uses information theoretic measures, they are applied in

different ways. For example, our model does not assume that the spatial distributions of the

paths are Gaussian. Rather, the dynamical noise, consisting of the local discrepancies between

the empirical behavior and the prediction of the model at each point along the path, is nor-

mally distributed.

The current model can be viewed as an analytically tractable formulation of the reinforce-

ment learning framework [1] in the context of linear dynamical systems. Policies consist of

selecting the appropriate control signals. Thus, our model falls within current frameworks for

studying agents learning to operate in a known environment (e.g. [28]), but has the advantage

of closed form solutions for the optimal policies using the Kalman gain (Eq 9).

The introduction of complexity constraints constitutes the most important theoretical con-

tribution of the current paper to modeling behavior in the water maze, providing new insights

into the learning process. The complexity cost is situated within a general theoretical frame-

work relating path optimization and complexity constraints via the “free energy” functional

[29]. Optimal and adaptive control, and in particular the LQR with Gaussian noise, were ini-

tially framed as entropy minimization problems by Saridis [30]. Later work by Todorov [31]

and Kappen [32] showed that a family of non-linear, stochastic optimal control problems can

be efficiently solved by writing the control cost as a KL divergence. Recently, a similar heuristic

has been proposed as a basis for biologically plausible mechanisms underlying the brain’s abil-

ity for flexible, yet biased, planning and decision making [33]. In contradistinction to these

models, here we use the KL divergence, relative to a naive prior, as a quantifier for computa-

tional constraints on goal directed behavior, rather than a heuristic for simplification of certain

non-linear optimal control problems.

The combination of value and costs within the free energy functional formalism (Eq 18)

is related to rate distortion theory and the information-bottleneck method [34, 35]. In the

information-bottleneck case, β quantifies the mutual information between an internal vari-

able (e.g., the compressed representation of relevant sensory information in the brain of the

mouse) and a target variable (e.g., the distribution of optimal control vectors from each

point in phase space). In contrast, here we do not have access to the joint distribution of sen-

sory inputs and optimal actions. Thus, β does not directly control mutual information

between these variables and a compressed internal representation. Instead, β controls the

tradeoff between policy complexity and the LQR value. Complexity can nevertheless be con-

sidered as a proxy for compression, where maximal compression (β = 0) corresponds to the
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behavior of naive animals while full information (β =1) corresponds to the optimal LQR

solution.

Was it worth the effort?

Of the two quantifiers we used here, the value and the complexity, the value functional is closer

to standard measures used to quantify mouse behavior in the water maze, such as latency to

platform. While the choice of a suitable quantifier remains somewhat arbitrary (see [26] for a

comparison between popular performance measures), the value as defined here is a theoreti-

cally-derived optimal choice, in the sense that it estimates the animal’s own performance crite-

rion (at least on average across mice). Furthermore, we show here that the value functional is

more informative than the latency to platform. For example, while the latency to platform

reached saturation by the third day of training and potentially even before, the value continued

to increase monotonically throughout training (Fig 6).

The most important results of this study involve the other quantifier we introduced in this

work, the complexity of the swimming paths. First, we observe that at least in wildtype female

mice, complexity exhibited non-monotonic behavior during training in that it first increased

and then decreased (Figs 5 and 6). This observation suggests that the learning process in the

water maze can be roughly divided into two consecutive stages: path optimization and path
simplification. In the first stage, task performance was optimized (increasing value), while

behavior became more complex (increasing complexity). In the second stage, complexity

showed a downward trend, representing simplification of the swimming paths. In the mutant

mice, this behavior was not observed, and complexity increased throughout learning, together

with value.

Interestingly, a similar dual-stage learning process has recently been observed in deep neu-

ral network learning dynamics [36], where the learning process has also been shown to consist

of two stages also: prediction optimization, corresponding to value increase in our setting, fol-

lowed by data compression, corresponding to complexity reduction. This similarity may

reflect a fundamental feature of learning dynamics in general, suggesting that initially, high

complexity levels may be utilized to optimize performance (value), whereas at later stages of

learning irrelevant complexity is discarded to obtain simpler solutions while not compromis-

ing the performance.

The other important result of this paper consists of the use of complexity to differentiate

between the behavior of WT and mutant mice (Figs 6 and 7). In the mutant mice, particularly

in females, complexity was overall lower than in WT mice. The difference between males and

females resulted in an interaction between genetic status and sex. This interaction was not

observed in the latency to platform, and would have been missed using standard measures of

behavior in the water maze. We therefore looked specifically for those features of the swim-

ming paths that could cause this reduction of complexity in the female mutant mice. We

found periods of almost motionless floating that were more common in female, mutant mice

than female wildtype mice or male mice of both genetic types. These periods reduced total

path complexity since motionless periods were more consistent with the uncontrolled than

with the controlled model. While they did somewhat increase latency to platform (Fig 6), this

increase was hardly detectable given the overall variability in the data. In contrast, these epi-

sodes affected the complexity very strongly. Complexity served here as a powerful tool for

identifying novel behavioral features that differentiate between mice of different genotypes

and sex. In particular, the reduced complexity of the mutant mice is consistent with low IQ

and abnormal behavior observed in humans with mutations in POGZ, although in humans an

interaction with gender has not been described.
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Methods

Ethics statement

All experiments were approved by the Institutional Animal Care and Use Committee. The

Hebrew University is an AAALAC accredited institution.

Experimental procedures

For a detailed description of the water maze spatial learning task protocol see [37]. We ana-

lyzed data from wildtype mice and mice with a heterozygous mutation in the Pogz gene (pogo

transposable element-derived protein with zinc finger domain). The generation of the Pogz+/−

mice with deletion of exons 13-19 has been described previously [38]. Heterozygous loss-of-

function mutations in the human POGZ gene are associated with intellectual disability and

autism spectrum disorder independent of gender [39]. The heterozygous progeny was gener-

ated by crossing heterozygous mice with wildtype mice. All mice had a C57BL/6 genetic back-

ground. Both male and female animals, mutants and their wildtype littermates were used for

the behavioral experiments.

For analysis and parameter estimation we used a data-set of water maze trajectories from

M = 51 mice (WTs: 11 males, 13 females; HETs: 12 males, 15 females). The full data set thus

consisted of 51 × 4 × 4 = 816 trials, 49 of which were excluded from analysis due to missing

samples or measurement errors, resulting in a total of 767 analyzed trials.

Model discretization

To compute the discrete-time matrices (Eqs 10, 11 and 13), we introduce the matrix exponen-

tial operator which is defined, for any square matrix M, by:

expM ¼
X1

n¼0

Mn

n!
: ð26Þ

The discrete-time approximations of A and B can now be defined as follows:

ADt ¼ expðADtÞ; ð27Þ

and:

BDt ¼ A� 1ðADt � IÞB: ð28Þ

The discrete-time approximation of the noise covariance matrix, Sξ, is denoted by SΔt, and

given by the solution of the following Lyapunov equation:

ASDt þ SDtAT � ADtSAT
Dt þ Sx ¼ 0; ð29Þ

which can be efficiently computed; e.g., using the MATLAB built-in lyap function. Finally,

the discrete-time approximation of the cost functional weight matrices, Q, R and N, denoted

by QΔt, RΔt and NΔt respectively, can obtained via the following relations [40]:

QDt NDt

NT
Dt RDt

 !

¼ FT
22
F12; ð30Þ
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with:

exp

� AT 0 Q N

� BT 0 NT R

0 0 A B

0 0 0 0

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

T

Dt

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

¼
F11 F12

0 F22

 !

: ð31Þ

Estimating model parameters

We use the trajectories of wildtype mice to estimate the most likely model parameter values

given the empirical data. We start by computing the log-likelihood of the free model by consid-

ering the residual terms:

�it ¼ xitþ1
� ADtxit ð32Þ

which, under the free model assumptions, should be independent, zero mean Gaussian ran-

dom variables with covariance matrix SΔt:

Pð�itÞ � N ð0;SDtÞ: ð33Þ

Now, we can express the free model log-likelihood:

Lðy0
j fxi

1
. . . xiTig

MWT

i¼1
Þ ¼ log

YMWT

i¼1

YTi � 1

t¼1

Pðxitþ1
j xitÞ ¼ log

YMWT

i¼1

YTi � 1

t¼1

e� 1
2
�i
T
t S� 1

Dt �
i
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞ
4detSDt

q ¼

�
XMWT

i¼1

Ti � 1

2
ð

1

Ti � 1

XTi � 1

t¼1

�i
T

t S
� 1

Dt �
i
t þ log detSDt þ 4 log 2pÞ

ð34Þ

where θ0 = (k, γ, σq, σp) are the free model parameters and �it are the discretized free model

residuals (Eq 32) using the sampled trajectory points xi
1
; . . . ; xiTi for the first trajectories of the

i-th wildtype mouse (i = 1, . . .,MWT). Numerically maximizing the log-likelihood function

over the training data yields the maximum likelihood estimate of the free model parameters:

y
0

ML ¼ ðk̂; ĝ; ŝq; ŝpÞ ¼ arg max
y0

Lðy0
j fxi

1
; . . . ; xiTig

MWT

i¼1
Þ: ð35Þ

The estimated continuous time dynamics matrix and noise covariance were:

Â ¼

0 0 1 0

0 0 0 1

� 0:18 0 � 0:02 0

0 � 0:18 0 � 0:02

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

; ð36Þ
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and

Ŝx ¼

1:09 0 0 0

0 1:09 0 0

0 0 19:8 0

0 0 0 19:8

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

: ð37Þ

Next, we use the last trial trajectories of each wildtype mouse to estimate the matrices that

define the cost functional, Q, R and N. Estimating a cost functional from a set of trajectories is

known as the inverse optimal control problem, and it goes back at least to the early 1960s [41].

In this problem, rather than starting with a known optimization functional and finding the

optimal trajectories, the optimized trajectories are known and we want to find a quadratic cost

functional that can explain them. The inverse optimal control problem is ill-defined since typi-

cally there are many weight matrices that result in the same steady state feedback gain and

therefore in the same optimal trajectory. Thus, in order to obtain a unique correspondence

between the steady state optimal feedback gain K and the weight matrices which produce it,

we constrain the solution to weight matrices of the following form (see [42] for details):

Q ¼ KTK; R ¼
1 0

0 1

 !

; N ¼ � KT: ð38Þ

For this choice of parameters, the functional J (Eq 7) reduces to

E
1

2

Z T

0

kKððxðtÞ � �xÞÞk2
þ kuðtÞk2

� 2KðxðtÞ � �xÞTuðtÞÞ
� �

dt
� �

ð39Þ

so that J = 0 identically for the optimal solution. As shown in the Boundary conditions and

transients section, this choice of parameters also simplifies the solution of the optimal control

problem by eliminating temporal transients.

We proceed to estimate the optimal feedback gain matrix, K, which best fits the late trajec-

tory dynamics. We use maximum likelihood on the optimal control model (Eqs 5–9) with the

2X4 entries of K as the unknown parameters. To obtain a likelihood function similar to Eq 34

we express the discretized optimal control model residuals as:

�i
�

t ¼ xitþ1
� ½ADtxit þ BDtKDtðxt � �xÞ� ð40Þ

which under the noise assumptions, are independent, zero mean Gaussian variables with

covariance matrix SΔt (Eq 29):

Pð�i�t Þ � N ð0;SDtÞ: ð41Þ

Letting ~xi
1; . . . ; ~xi

Ti
denote the last trajectory taken by the i-th wildtype animal (i = 1, . . .,

MWT), we can write the log-likelihood as:

L ðy
�
j f~x i

1
. . . ~x iTig

MWT

i¼1
Þ ¼

�
XMWT

i¼1

Ti � 1

2
ð

1

Ti � 1

XTi � 1

t¼1

�i
�T

t SDt�
i�
t þ log detSDt þ 4 log 2pÞ

ð42Þ

where θ� = K is the optimal control feedback gain matrix. All other variables in Eq 42 can be
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computed using the known matrices A, B, S. The estimated optimal feedback gain matrix is

obtained by maximizing Eq 42:

y
�

ML ¼ K̂ ¼ arg max
y�

Lðy� j f~x i
1
; . . . ; ~x iTig

MWT

i¼1
ÞÞ: ð43Þ

Since K is a 2X4 matrix it has 8 parameters which need to be estimated. In practice, how-

ever, it can be well approximated by a matrix with the following structure:

y
�
¼ K ¼

Kr 0 Kt cosðKaÞ � Kt sinðKaÞ

0 Kr Kt sinðKaÞ Kt cosðKaÞ

 !

ð44Þ

in which the parameter Kr describes a restoring force proportional to the displacement from

the platform, whereas the two remaining parameters, Kt and Kα, describe a rotation of the

velocity vector that tends to point it in the direction of the platform. Thus the radial compo-

nent Kr can be thought of as a force by which the animal attempts to reduce its distance to the

platform, while Kt and Kα represent the animal’s effort to rotate itself towards the correct

azimuth.

Using the maximum likelihood estimated parametric form of K̂ (Eq 25), the values

obtained for Q and N are:

Q̂ ¼ K̂ TK̂ ¼

0:40 0 0:48 � 0:58

0 0:40 0:3 0:4

0:48 0:58 1:4 0

� 0:58 0:48 0 1:4

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

� 10� 1; ð45Þ

and

N̂ ¼ � K̂ T ¼

� 0:20 0

0 � 0:20

� 0:24 � 0:29

0:29 � 0:24

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

: ð46Þ

Computing the theoretical value-complexity curves

Once we estimated the free and controlled model parameters, using the initial and final trials

respectively (Eqs 34 and 42), we can calculate the optimal trade-off between value and com-

plexity for each value of β in the free energy functional (Eq 18). For this we derive a closed

form solution of the free energy minimization problem. We need to determine the complexity

constrained optimal control signal, ubt which minimizes the free energy (Eq 18) at any given β
for the linear model dynamics. Since both P0 and Pβ are normal distributions, we can calculate
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the complexity cost explicitly using the formula for the KL divergence between two Gaussians:

IDt½xt;ut� ¼
1

2

XT� 1

t¼1

DKL Pbðxtþ1 j xtÞkP0ðxtþ1 j xtÞ
� �

¼

1

2

�
ðmb � m0Þ

T
S� 1

0
ðmb � m0Þ þ TrðS� 1

0
SbÞ � log

detS0

detSb

� 4
�

ð47Þ

where μβ, Sβ and μ0, S0 denote the means and covariances of Pβ and P0 respectively. Since

S0 = Sβ = SΔt, the last three terms in Eq 47 cancel out and the complexity cost reduces to the

mean difference term:

IDt½xt;ut� ¼
1

2
ðmb � m0Þ

T
S� 1

0
ðmb � m0Þ ¼

1

2
uTt B

T
DtS

� 1

Dt BDtut: ð48Þ

The mean free energy (Eq 18) can thus be rewritten as:

FDt½x; u; b� ¼
1

2

XT

t¼1

�
uTt B

T
DtS

� 1

Dt BDtutþ

bððxt � �xÞTQDtðxt � �xÞ þ uTt RDtut þ 2ðxt � �xÞTNDtutÞ
�
¼

b

2

XT

t¼1

�
ðxt � �xÞTQDtðxt � �xÞ þ uTt R

b

Dtut þ 2ðxt � �xÞTNDtut
�
;

where we denote:

RbDt ¼ RDt þ
BT
DtS

� 1

Dt BDt
b

: ð49Þ

Thus we can restate the complexity constrained LQR problem as a standard LQR problem

with a β-regularized control cost weight matrix RbDt replacing RΔt. The optimal complexity con-

strained control signal at each β is given by:

ubt ¼ � K
b

Dtðxt � �xÞ ð50Þ

where Kb

Dt is computed from the discrete dynamics and cost functional matrices (see Comput-

ing the optimal feedback gain below for details).

We can now use ubt , the mean complexity constrained optimal control signal at each β
value, to compare the value-complexity trade-off of the empirical trajectories with the theoreti-

cal optimum. To do so, we simulated the optimal control dynamics at each β and each release

point using the solution of the discrete-time problem (Eq 10), with the maximum likelihood

estimates for AΔt and SΔt (Eq 35) for the free dynamics parameters and the theoretically com-

puted ubt (Eq 58) for the optimal control signal. The simulations were computed at 50 logarith-

mically spaced β values between β = 10−5 and β = 105 and the value and complexity measures

(Eqs 11 and 14) were averaged over 1, 000 repetitions of the simulation with identical initial

conditions. Since many of the experimental paths were missing their first few seconds due to

experimental limitations, we replaced the nominal release point with the mean empirical start-

ing point; i.e., the first position registered by the tracking device, over all trials from a given

release point. This resulted in the value-complexity curve (Fig 5) for each of the four (mean)

release positions. For each complexity level (abscissa) the value-complexity curve shows the

maximal value (ordinate) which can be obtained by a trajectory with that complexity level,
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starting at the mean release position. Equivalently, for each value (ordinate), the curve marks

the minimal amount of complexity (abscissa) required to achieve it.

Computing the optimal feedback gain

The continuous-time optimal control feedback gain matrix, K, is computed from the continu-

ous-time dynamics and value functional matrices as follows. Generally, K = K(t) is a time vary-

ing gain:

KðtÞ ¼ � R� 1ðBTSðtÞ þ NTÞ ð51Þ

where S(t) is the solution of the following differential Riccati equation, see Derivation of the

Riccati equation for details:

� _SðtÞ ¼ ATSðtÞ þ SðtÞA � ðSðtÞBþ NÞR� 1ðBTSðtÞ þ NTÞ þ Q: ð52Þ

In the case β =1 (optimal control) the situation was simplified substantially, since the matri-

ces solving the inverse control problem were selected so that S(t) = 0 is the solution to Eq 52,

so that K(t) is constant (see the Boundary conditions and transients section below). For finite

β, we observed that S(t) rapidly converged to a steady-state value. We neglected the effects of

the rapidly decaying transients by using the solution of the following quadratic matrix equa-

tion, known as the continuous-time algebraic Riccati equation [4]:

ATSþ SA � ðSBþ NÞR� 1ðBTSþ NTÞ þ Q ¼ 0: ð53Þ

The resulting value of S was used to compute the feedback gain matrix K using Eq 51.

In the discrete-time case, the optimal control feedback gain matrix, KΔt, is given by:

KDt ¼ ðBTDtSDtBDt þ RDtÞ
� 1
ðBT

DtSDtADt þ NT
DtÞ; ð54Þ

where SΔt is the solution of the following discrete-time algebraic Riccati equation [4]:

SDt ¼ AT
Dt SDtADt � ðAT

DtSDtBDt þ NDtÞðBTDtSDtBDt þ RDtÞ
� 1
ðBT

DtSDtADt þ NT
DtÞ

þQDt:

ð55Þ

Section Computing the theoretical value-complexity curves, shows how to reduce the com-

plexity-constrained optimal control to a discrete LQR problem with a modified cost func-

tional. The feedback gain matrix, Kb

Dt, can then by expressed using a formula analogous to Eq

54:

Kb

Dt ¼ ðBTDtS
b

DtBDt þ R
b

DtÞ
� 1
ðBT

DtS
b

DtADt þ NT
DtÞ; ð56Þ

where:

RbDt ¼ RDt þ
BT
DtS

� 1

Dt BDt
b

; ð57Þ

and SbDt is the solution of the following discrete-time algebraic Riccati equation:

SbDt ¼ AT
Dt S

b

DtADt � ðAT
DtS

b

DtBDt þ NDtÞðBTDtS
b

DtBDt þ R
b

DtÞ
� 1
ðBT

DtS
b

DtADt þ NT
DtÞ

þQDt;

ð58Þ

which is analogous to Eq 55 in the standard LQR case. Thus, the free energy minimization

problem can be reduced to a standard LQR problem and solved using the same methods [35].
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Estimating β
To compare the value and complexity of the empirical trials to the theoretical optimum we

need to estimate β for the empirical trials. We do so by using maximum likelihood again, as in

Eq 42, with the trajectories of each mouse taken as observations and β as the estimated param-

eter. The estimated β is then used in Eq 50 to determine the control signal.

Although we considered β to be a parameter characterizing the learning stage, rather than

the specific swimming path of the mouse, the estimates of β turned out to be sensitive to the

trial-specific starting state. We therefore estimated a single β value for each training day and

each mouse by grouping the trajectories from all four starting locations for each mouse/day

combination. We expressed log(β) as a quadratic function of the day:

logðbiÞðdayÞ ¼ b0 þ b1ðdayÞ þ b2ðdayÞ
2
; ð59Þ

where i = 1, . . .,M and the parameters b0, b1 and b2 are estimated for each mouse separately.

We used a quadratic function since it is the simplest one that can account for the non-linear

dependence of β on training day, which was observed in many cases.

Given the values of β for each mouse on each of the four training days, we can calculate the

value as well as the complexity of all the empirical trajectories. Note that the value-complexity

curve is an expectation, and therefore does not bound the single path values. Nevertheless, we

do not expect single path values far beyond the average curve.

Large deviations theory and Sanov’s theorem

In this section we provide a theoretical justification for the choice of our complexity functional

(Eq 14) based on a result from large deviations theory known as Sanov’s theorem [5]. The the-

ory of large deviations is concerned with the asymptotic behavior of extreme values, i.e., far

from the expected ones, of sequences of probability measures. As an example consider the fol-

lowing question: what is the probability that 1

n

P
iXi is larger than 3

4
when Xi are all drawn i.i.d.

from a Bernoulli 1

3

� �
distribution? This event represents a large deviation from the expected

value of 1

3
, and its probability decays exponentially with n, i.e., it is equal or smaller to e−nα for

some α. The smallest such α (if it exists), giving the tightest bound on the probability, is an

indication of how extreme is the large deviation.

The probability of such large deviations and their rate of decrease (α above) can be esti-

mated using the following result, known as Sanov’s theorem: let X1, X2, . . .Xn be i.i.d random

variables with common distribution Q, and let E denote an arbitrary set of probability distribu-

tions (which typically does not contain Q). Consider now the probability that the empirical

distribution of the Xi’s belongs to the set E, and denote this probability as Qn(E). Sanov’s theo-

rem states that if E fulfills a technical condition (it is equal to the closure of its interior) then:

lim
n!1

1

n
logQnðEÞ ¼ � DKLðP

�jjQÞ; ð60Þ

where,

P� ¼ arg min
P2E

DKLðPjjQÞ ð61Þ

is the information projection of Q onto E, i.e., the distribution in E which is closest toQ in the

Kullback-Leibler (KL) divergence sense. In words, the exponential rate of decrease of the prob-

ability of drawing an atypical distribution is the KL divergence between the true distribution

and the atypical one (or more generally, the information projection onto the set of atypical

distributions).

PLOS COMPUTATIONAL BIOLOGY Computational model of mouse navigational learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008497 December 11, 2020 26 / 31

https://doi.org/10.1371/journal.pcbi.1008497


This mathematical result implies that the difficulty in distinguishing between a typical and

atypical distribution, using some statistical test, is determined by the KL divergence between

them. Thus, the KL divergence between two distributions measures how unlikely it is for a

sample drawn from one distribution to be mistakenly classified as originating from the other.

In the context of our model, the complexity of a controlled trajectory is considered to be higher

when it is less likely to be generated by naive mice. Letting E denote the distribution of trajec-

tories generated by a control signal achieving a certain value, Sanov’s theorem implies that the

likelihood for a such a trajectory to be generated by a naive mouse is determined by the KL

divergence between the controlled and non-controlled trajectory distributions. This is pre-

cisely how our complexity measure (Eq 14) is defined.

Derivation of the Riccati equation

In this section we show how to reduce the Linear Quadratic Regulater (LQR) optimization

problem to that of solving the Riccati differential equation (Eq 52). Since this material is stan-

dard [4], we describe here only the case of continuous-time, deterministic systems. The dis-

crete-time and the stochastic cases can be treated similarly (see [4] for details).

The LQR problem consists of finding a control signal which minimizes a quadratic cost

functional subject to dynamics which are linear in the state and the control. The (determin-

istic) dynamics are given by (cf. Eq 5):

_xðtÞ ¼ AxðtÞ þ BuðtÞ; ð62Þ

and the quadratic cost functional can be written, in the general case, as follows (cf. Eq 7):

J ½xðtÞ; uðtÞ� ¼
1

2
ðxðTÞ � �xÞTSTðxðTÞ � �xÞ þ

1

2

Z T

0

ðxðtÞ � �xÞTQðxðtÞ � �xÞþ
�

uðtÞTRuðtÞ þ 2ðxðtÞ � �xÞTNuðtÞÞdt;

ð63Þ

where ST is a positive semi-definite matrix weighing the cost of deviating from the the desired

state, �x, at the terminal time, t = T (in our model, there is no terminal cost term, i.e., ST = 0,

and see also the following subsection). Such optimal control problems are solved using stan-

dard variational techniques, which result in a differential functional equation called (in this

case) the Hamilton-Jacobi-Bellman (HJB) equation (or simply the Bellman equation in the dis-

crete-time case). The HJB equation provides necessary and sufficient conditions for the opti-

mality of a control signal with respect to a given cost functional. These conditions can be

stated in terms of a set of differential equations involving the following Hamiltonian:

H ½xðtÞ; uðtÞ; lðtÞ� ¼
1

2

�
ðxðtÞ � �xÞTQðxðtÞ � �xÞþ

uðtÞTRuðtÞ þ 2ðxðtÞ � �xÞTNuðtÞ
�
þ l

T
ðtÞ
�
AxðtÞ þ BuðtÞ

�
;

ð64Þ

where λ(t) are Lagrange multipliers, also referred to in this context as the co-state coordinates.

Using this formulation, the state and co-state dynamics can be expressed simultaneously via

the following Hamiltonian equations:

_xðtÞ ¼
@H½xðtÞ; uðtÞ; lðtÞ�

@lðtÞ
; ð65Þ
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with the initial condition:

xð0Þ ¼ x0; ð66Þ

where x0 is the initial state of the system, and:

_lTðtÞ ¼ �
@H½xðtÞ; uðtÞ; lðtÞ�

@xðtÞ
; ð67Þ

with the terminal condition:

lðTÞ ¼ STxðTÞ; ð68Þ

where ST is the terminal cost weight matrix defined in Eq 63 above. The condition for optimal-

ity of the control is given by:

@H½xðtÞ; uðtÞ; lðtÞ�
@uðtÞ

¼ 0: ð69Þ

Performing the differentiations in Eqs 69 and 67 yields the following:

uðtÞ ¼ � R� 1ðBTlðtÞ þ NTxðtÞÞ; ð70Þ

and:

_lðtÞ ¼ � QxðtÞ � NuðtÞ � ATlðtÞ: ð71Þ

The co-state dynamics (Eq 71) can be solved via the ansatz:

lðtÞ ¼ SðtÞxðtÞ: ð72Þ

Substituting Eq 72 into Eqs 70 and 71 gives:

uðtÞ ¼ � R� 1ðBTSðtÞ þ NTÞxðtÞ; ð73Þ

and:

SðtÞ _xðtÞ þ _SðtÞxðtÞ ¼ � QxðtÞ � NuðtÞ � ATSðtÞxðtÞ; ð74Þ

which together with the state dynamics (Eq 65) yields the following equation:

� _SðtÞ ¼ ATSðtÞ þ SðtÞA � ðSðtÞBþ NÞR� 1ðBTSðtÞ þ NTÞ þ Q: ð75Þ

Eq 75 is the Riccati differential equation (cf. Eq 52) which can be solved numerically by inte-

grating backwards in time, starting from the terminal condition S(T) = ST.

Boundary conditions and transients

In this section we justify the use of the algebraic Riccati equation (Eq 53) instead of the differ-

ential one (Eq 52) for solving the optimal control problem in the watermaze model. The opti-

mal control of a time-constrained, or finite-horizon, LQR problem typically contains a

transient component (S(t) in Eq 73) due to the co-state terminal condition (ST in Eq 63). In

our model however, the cost functional (Eq 7) does not contain a terminal cost term, since

that there is no additional penalty for failing to reach the platform at the end of the trial. This

means that the transient term in the optimal control is zero at the terminal time, i.e., S(T) = 0.

To show that the transient term is in fact zero always, we recall our choice of parameterization

for the cost functional matrices Q, R and N in the inverse optimal control problem (see
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Estimating model parameters section, Eq 38), namely:

Q ¼ KTK; R ¼
1 0

0 1

 !

; N ¼ � KT: ð76Þ

For this choice of parameters, the Riccati differential equation (Eq 75), reduces to the following

form:

� _SðtÞ ¼ ATSðtÞ þ SðtÞA � SðtÞBBTSðtÞ � SðtÞBNT � NBTSðtÞ; ð77Þ

from which it can be seen that S(t) = 0 is a valid solution. Thus, the unique solution to Eq 77

consistent with the boundary condition S(T) = 0 is S(t) = 0 identically, indicating that our

choice of cost functional eliminates any temporal transients in the Riccati differential equation,

allowing us to replace it with the algebraic Riccati equation (Eq 53).
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