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Dendrites are cellular structures essential for the integration of neuronal information.
These elegant but complex structures are highly patterned across the nervous system
but vary tremendously in their size and fine architecture, each designed to best serve
specific computations within their networks. Recent in vivo imaging studies reveal
that the development of mature dendrite arbors in many cases involves extensive
remodeling achieved through a precisely orchestrated interplay of growth, degeneration,
and regeneration of dendritic branches. Both degeneration and regeneration of dendritic
branches involve precise spatiotemporal regulation for the proper wiring of functional
networks. In particular, dendrite degeneration must be targeted in a compartmentalized
manner to avoid neuronal death. Dysregulation of these developmental processes,
in particular dendrite degeneration, is associated with certain types of pathology,
injury, and aging. In this article, we review recent progress in our understanding of
dendrite degeneration and regeneration, focusing on molecular and cellular mechanisms
underlying spatiotemporal control of dendrite remodeling in neural development.
We further discuss how developmental dendrite degeneration and regeneration are
molecularly and functionally related to dendrite remodeling in pathology, disease,
and aging.
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INTRODUCTION

Dendrites are specialized structures designed to receive information from presynaptic neurons or
sensory organs. During postnatal development of the mammalian brain, neurons exhibit extensive
plasticity in which connectivity can be modified in response to neural inputs and/or hormonal
regulation (Parrish et al., 2007a; Jan and Jan, 2010; Emoto, 2011; Batista and Hensch, 2019;
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Molnar et al., 2020). To achieve these changes in connectivity,
neurons often remodel their dendrite shape through a
combination of degeneration and regeneration of local
dendritic branches (Kanamori et al., 2015b; Riccomagno and
Kolodkin, 2015). Owing to technical advances in in vivo
imaging, researchers are now able to fully trace branch
dynamics of single neurons with high spatiotemporal resolution.
These in vivo imaging studies have revealed that developing
dendrites often undergo multiple rounds of regeneration
and regeneration before the establishment of their final
shape (Yasunaga et al., 2010; Kaneko et al., 2011; Takeo et al.,
2015; Nakazawa et al., 2018).

In addition to developmental dendrite degeneration and
regeneration, certain types of neurons remodel their dendritic
arbors in response to injury on dendritic branches (Richardson
and Shen, 2019; Liu and Jan, 2020). The progression of
injury-induced dendrite degeneration and regeneration are
morphologically similar to what was observed in developmental
dendrite degeneration and regeneration, respectively, suggesting
that the developmental and injury-induced remodeling involve
a shared program. However, recent studies indicate that
regulatory mechanisms of injury-induced dendrite degeneration
and regeneration are distinct at least in part from mechanisms
governing either developmental dendrite degeneration and
regeneration or injury-induced axon degeneration and
regeneration (Stone et al., 2014; Thompson-Peer et al., 2016;
Hao et al., 2019; Zhu et al., 2019).

In this review article, we first describe an overview of
diverse types of dendrite degeneration and regeneration in
vertebrates and invertebrates. We then review what is currently
known about the molecular and cellular mechanisms underlying
dendrite remodeling, focusing on the temporal and spatial
control of degeneration and regeneration. We also discuss
how developmental dendrite degeneration and regeneration are
molecularly and functionally related to dendrite remodeling in
pathology, disease, and aging.

DEVELOPMENTAL DENDRITE
REMODELING IN VERTEBRATE NEURONS

Developmental dendrite remodeling is typically achieved by
degeneration and regeneration of local dendrite branches. One
well-studied system is the dendrite remodeling of mitral cells,
the second-order projection neurons in the mammalian olfactory
system (Wong and Ghosh, 2002). In the adult olfactory bulb,
mitral cells extend a single apical dendrite radially that arborizes
a tuft within one glomerulus (Mori and Sakano, 2011; Sakano,
2020). Also, mitral cells extend lateral dendrites that are widely
distributed within a horizontal plane in the external plexiform
layer andmake reciprocal dendrodendritic synapses with granule
cells. This mature arborization pattern is the result of extensive
refinement: during perinatal development, mitral cells extend
dendritic branches to multiple glomeruli, and subsequently,
they lose all but one dendritic branch, maintaining contacts
with a single glomerulus as they mature (Figure 1A; Mori
and Sakano, 2011; Murthy, 2011; Sakano, 2020). This selective
dendrite degeneration in mitral cells is critical to fine-tuning

olfactory circuits involved in odor processing (Inoue et al., 2018;
Fujimoto et al., 2019).

Purkinje cells in the cerebellum typically elaborate space-
filling type dendrites in a single parasagittal plane (Figure 1B),
but as in the case of mitral cells, the mature form of Purkinje cell
dendrites involves developmentally programmed degeneration
and regeneration. Recent in vivo imaging studies have revealed
that Purkinje cells establish distinct features of their dendrite
arbors including dendrite branch pattern and orientation over
multiple cycles of dendrite degeneration and regeneration
(Figure 1B). Purkinje cells initially develop multiple dendritic
protrusions from the soma, designated as perisomatic dendrites,
before birth (Sotelo and Dusart, 2009; Takeo et al., 2015). Next,
over 2–3 days Purkinje cells eliminate all perisomatic dendrites.
Finally, they regenerate single stem dendritic branches over
several weeks. In the course of single stem dendrite development,
Purkinje cells initially develop multiplanar dendrites that extend
dendritic arbors into a 3D space (Kaneko et al., 2011). However,
within the next several days, Purkinje dendritic branches
become trimmed and are eventually confined into a single
plane (Figure 1B).

During early postnatal development, certain types of
pyramidal neurons in the mammalian cortex likewise exhibit
highly dynamic rearrangement of dendritic arbors. For example,
layer IV pyramidal neurons in the rodent barrel cortex can be
divided into two distinct subtypes: the spiny stellate neurons
and the star pyramidal neurons (Nakazawa et al., 2018). The
spiny stellate neurons on the edge of the barrel predominantly
form synaptic contacts with thalamocortical axons (Espinosa
et al., 2009; Mizuno et al., 2014; Nakazawa et al., 2018).
In vivo two-photon imaging indicates that this organization
involves selective degeneration of a subset of nascent dendrites.
Spiny stellate neurons typically extend both apical and basal
dendrites by postnatal day 2–3 and then retract all of their
apical dendrites over the next several days while basal dendrites
continue to extend, eventually forming synaptic contacts with
the thalamocortical axons (Nakazawa et al., 2018; Figure 1C).
Interestingly, the extension of the basal dendrites is biased
to the center direction of the barrel, presumably because the
thalamocortical axons mainly innervate the central part of the
barrel, which recruits the basal dendrites of the spiny stellate
neurons (Figure 1C).

A novel type of nerve remodeling is recently reported
in the dorsal root ganglion (DRG) neurons, the nociceptors
that sense pain and itch (Takahashi et al., 2019). Nociceptors
innervate sensory terminals into the epidermis layer and form
free-ending connections with epidermal cells in the skin.
Intravital imaging in the rodent skin reveals that the nerve
ends of nociceptors are highly motile structures that are
continuously remodeled by extension, retraction, and pruning
(Takahashi et al., 2019; Figure 1D). The pruning of the
nerve ends is likely to be vital for the formation and/or
maintenance of the epidermis-nerve interaction because the
nerve ends overshoot to the superficial epidermal layer in
the mouse model of atopic dermatitis, which enhances pain
sensation in nociceptors in the atopic dermatitis model mice
(Takahashi et al., 2019).
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FIGURE 1 | Developmental dendrite remodeling in a variety of neurons. Dendrite remodeling in mitral cells in the murine olfactory system (A), Purkinje cells in the
murine cerebellum (B), layer IV pyramidal neurons in the murine somatosensory cortex (C), dorsal root ganglion (DRG) neuron innervating the murine skin (D),
Drosophila class IV dendrite arborization (C4da) sensory neurons (E), and C. elegans IL2 sensory neurons (F). (A) Mitral cells initially innervate dendrites (blue) to
multiple glomeruli (gray) and later eliminate all but one apical dendrite. (B) Layer IV pyramidal neurons (spiny stellate neurons) initially extend both apical (orange) and
basal (blue) dendrites followed by retraction of the apical dendrites while further extending basal dendrites toward thalamocortical axons (magenta). (C) Purkinje cells
develop multiple dendritic protrusions from the soma, followed by elimination of the whole branches in the first postnatal week. In the subsequent postnatal
development, Purkinje cells elaborate multiplanar dendrites in a 3D space (P18: three colors represent different dendritic branches arising from the soma), then
eventually confine the trees into a 2D space (blue) by trimming branches (P22: Branches with yellow and magenta colors have been eliminated during this period).
Both sagittal and coronal views are shown for P18 and P22 images. (D) Mammalian skin is composed of multiple layers of epidermal cells. Epidermal cells

(Continued)
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FIGURE 1 | Continued
are continuously generated from stem cells and move toward the upper layer
of the skin (arrow). According to this epidermal cell turnover, the tight
junctions (green dots) are also remodeled in the deep epidermal layer. DRG
neurons typically maintain their sensory terminals (blue) underneath the tight
junctions by extension, retraction, and pruning of the nerve ends. (E)
Drosophila C4da neurons replace their larval dendrites with adult-specific
arbors during metamorphosis. After establishing their dendritic fields in the
pupal development, C4da neurons immediately reshape the dendritic arbors
from the radial to the lattice-like structures in the first 1–2 adult days. APF;
after pupal formation. (F) C. elegans IL2 sensory neurons typically elaborate
simple unbranched dendrites in the normal condition. In response to adverse
environmental conditions, however, IL2 neurons undergo dendrite remodeling,
shifting from a bipolar to a multipolar state. This process is reversible: the
arborized dendrites are pruned away after worms are returned to the normal
(non-stressful) environment (bidirectional arrows). Anterior is shown at
the top.

DEVELOPMENTAL DENDRITE
REMODELING IN INVERTEBRATE
NEURONS

Drosophila dendrite arborization (da) sensory neurons provide
an excellent model to study the molecular and cellular basis
for dendrite remodeling as class IV da (C4da) neurons undergo
extensive dendrite remodeling during metamorphosis using
multiple distinct cellular strategies (Williams and Truman,
2005; Emoto, 2012; Yu and Schuldiner, 2014; Kanamori et al.,
2015b). Similar to Purkinje cells in the mammalian cerebellum,
C4da neurons establish space-filling type dendrites during the
larval stage within a 2D space between the epidermis and
the musculature (Figure 1E). During metamorphosis in which
flies transit from their larval to adult form within 5 days,
larval C4da dendrites are completely removed from the soma
by ∼24 h after pupal formation (Kuo et al., 2005; Williams
and Truman, 2005). After completion of dendrite pruning,
C4da neurons immediately initiate dendrite regeneration and
re-establish adult-specific dendritic arbors on the epidermis by
eclosion (Shimono et al., 2009; Yasunaga et al., 2010, 2015; Lyons
et al., 2014; Kitatani et al., 2020). Interestingly, the dendritic
arbors of adult C4da neurons are rapidly reshaped from a
radial shape to a lattice-like shape within 24 h after eclosion
(Yasunaga et al., 2010, 2015). This radial-to-lattice reshaping
arises from rearrangement of the existing radial branches into
the lattice-like pattern, rather than extensive dendrite pruning
followed by regrowth of the lattice-shaped arbors over the period
(Yasunaga et al., 2010).

Another good model for dendrite remodeling in invertebrates
is motoneurons of the hawkmoth moth Manduca sexta
(Consoulas et al., 2000). During metamorphosis, muscles
of the larval abdominal body wall are replaced with newly
generated adult muscles, whereas certain larval motoneurons
survive metamorphosis to serve as adult motoneurons in
Manduca (Truman and Reiss, 1976). To reestablish functional
connectivity with adult muscles, motoneurons need to
remodel their dendritic fields. Similar to Drosophila C4da
neurons, Manduca motoneurons initially undergo dendrite
regression followed by a massive extension of adult-specific

trees during pupal development (Levine and Truman, 1985;
Kent and Levine, 1993).

C. elegans sensory neurons are an emerging model system
for studying the molecular basis for developmental dendrite
remodeling. IL2 sensory neurons typically elaborate simple
unbranched dendrites (Figure 1F). In response to adverse
environmental conditions, however, IL2 neurons undergo
dendrite remodeling, shifting from a bipolar to multipolar state
(Schroeder et al., 2013). Intriguingly, this process is reversible:
the arborized dendrites are pruned away after worms are
returned to the normal (non-stressful) environment. Even in
normal development, PVD sensory neurons exhibit dynamic
dendrite remodeling by auto fusion between terminal branches
to establish their characteristic dendritic trees (Oren-Suissa
et al., 2010). Another interesting example of developmental
dendrite remodeling is seen in the GABAergic DVB neurons,
which display male-specific posteriorly oriented outgrowth,
which changes significantly during development and shows
dramatic changes that are experience- and activity-dependent
(Hart and Hobert, 2018).

DENDRITE REMODELING IN PATHOLOGY,
INJURY, AND AGING

Many types of neurons progressively reduce dynamics and
stabilize their dendritic arbors as they mature (Emoto et al.,
2006; Parrish et al., 2007b; Koleske, 2013). However, dendritic
arbors of mature neurons can undergo dramatic regeneration
under pathological conditions such as epilepsy and traumatic
disorder (Murphy and Corbett, 2009). For instance, brain
ischemia in mice induces dendrite remodeling in CA1 pyramidal
neurons (Ruan et al., 2006). Similarly, post-traumatic stress
disorder (PTSD)-like symptoms in mice is associated with the
brain region-specific dendrite remodeling: the total number of
dendrites is decreased in the prelimbic and increased in the
infralimbic cortex (Lguensat et al., 2019).

Laser ablation of a part of dendrites in Drosophila C4da
neurons induces robust dendrite regeneration (Song et al.,
2012). Interestingly, injury-induced dendrite regeneration seems
to be mechanistically distinct from developmental dendrite
regeneration (Tao and Rolls, 2011) as well as initial dendrite
development (Thompson-Peer et al., 2016). For example,
dendritic branches from the same C4da neurons typically
avoid overlapping in developmental regeneration as well as
initial development, whereas dendrites fail to avoid overlapping
with other branches from the same neurons in the injury-
induced regeneration (Emoto et al., 2004; Yasunaga et al.,
2015; Thompson-Peer et al., 2016). Similar to Drosophila C4da
neurons, laser ablation of dendrites in C. elegans PVD neurons at
the L4 stage evokes branch regeneration responses (Oren-Suissa
et al., 2017). Unlike dendrite regeneration in other organisms,
severed primary dendrites grow toward each other and eventually
reconnect via branch fusion.

Dendritic branches often degenerate as animals age, and this
dendrite degeneration seems to be accelerated in aging-related
neurodegenerative diseases (Lin and Koleske, 2010; Adalbert
and Coleman, 2013). Aging-associated dendrite degeneration is
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also observed in Drosophila C4da neurons and C. elegans PVD
neurons (Shimono et al., 2009; Lezi et al., 2018). In the course
of aging-associated dendrite degeneration in PVD neurons, from
day 1 to day 9 of adulthood, varicosity-like structures are
progressively formed along the dendritic branches (Lezi et al.,
2018). Further, fragmented microtubules are often observed in
aged PVD dendrites, but not young dendrites. These progressive
changes in dendrite morphology are similar to characteristics
of the degenerating dendrites observed in mammalian and
Drosophila neurons (Emoto et al., 2006; Kanamori et al., 2013,
2015a; Koleske, 2013), implying that the underlying molecular
mechanisms might be similar.

TEMPORAL CONTROL OF DENDRITE
REMODELING

Neural Activity in Developmental Dendrite
Remodeling
In the developing mammalian nervous system, the neural
activity often drives fine-tuning of the functional neural
circuits throughmultiple cellular mechanisms including dendrite
remodeling (Wong and Ghosh, 2002). Indeed, glutamate
receptor (NMDA and AMPA receptors)-mediated synaptic
transmission is required for dendrite remodeling in the layer
IV neurons in the rodent barrel cortex (Figure 1C; Mizuno
et al., 2014; Nakazawa et al., 2018). Similarly, pharmacological
manipulation of afferent activity in the postnatal mice dampens
the multiplanar-to-monoplanar transition of dendritic trees in
Purkinje cells (Kaneko et al., 2011; Figure 1B).

In many sensory systems, the spontaneous activity generated
by the sensory organ often fine-tunes connections to produce
a precise nearest-neighbor relationship from sensory to higher-
order neurons. For instance, in vivo imaging of the neonatal
mouse brain reveals a propagating wave of activity from the
retina through the entire visual system in the brain (Feller et al.,
1996; Ackman et al., 2012; Ackman and Crair, 2014). Similarly,
the spontaneous activity generated in the developing cochlea
propagates to auditory brain regions (Tritsch et al., 2007). In both
cases, pharmacological or genetic inhibition of the spontaneous
activity disturbs functional refinement of the sensory circuits
(Triplett et al., 2009). Dendrite remodeling in mitral cells is
largely unaffected in mice lacking function of the olfactory cyclic
nucleotide-gated (CNG) channels that are required to evoke
odor-triggered signaling in mitral cells (Lin et al., 2000) although
a small delay in the remodeling was observed. Furthermore,
in vivo imaging of dendrite remodeling in mitral cells indicates
that over 50% of mitral cells complete dendrite remodeling
before the animals’ birth (Togashi et al., 2020), supporting the
idea that odor-evoked activity in mitral cells is dispensable
for dendrite remodeling. Indeed, a recent study suggested that
spontaneous activity, rather than evoked activity, in the olfactory
circuits might play a role in dendrite remodeling in mitral cells
(Fujimoto et al., 2019).

In contrast to the vertebrate nervous system, there
is little evidence supporting the role of neural activity
in developmental dendrite degeneration and regeneration

in invertebrates. However, several reports suggest activity-
dependent mechanisms in certain types of dendrite remodeling.
For example, injury-induced dendrite regeneration requires
neural activity in larval C4da neurons, although the neural
activity is dispensable for initial dendrite growth during
embryonic/larval stages as well as developmental dendrite
remodeling during metamorphosis (Thompson-Peer et al.,
2016). Unlike C4da neurons, neural activity promotes dendrite
growth in developing Drosophila motoneurons (Vonhoff et al.,
2013), but it remains to be determined whether activity might
act in dendrite remodeling. Studies on Manduca motoneurons
suggest a potential role of neural activity in dendrite remodeling
during metamorphosis (Duch and Levine, 2002; Duch and
Mentel, 2004).

Transcriptional Control of Developmental
Dendrite Remodeling
Multiple aspects of dendrite development including remodeling
processes are often under transcriptional control. Dendrite
remodeling in Purkinje cells is regulated by the thyroid hormone
and its receptor Retinoic acid-related orphan receptor alpha
(RORα). RORα was originally identified as the gene responsible
for the ataxic mutant mouse staggerer (Sidman et al., 1962;
Gold et al., 2007). Purkinje cells in staggerer mutant mice
exhibit atrophic, fusiform-like dendrites lacking spiny branchlets
(Landis and Sidman, 1978; Soha and Herrup, 1995). Further,
overexpression of RORα in wild-type Purkinje cells accelerates
dendrite regression in organotypic cultures (Boukhtouche et al.,
2006). These data suggest that RORα mediates the regression
of dendrites in the early phase of development. Besides,
recent studies suggest that RORα is required not only for the
branch regression early in dendrite development but also for
dendrite growth in later developmental stages through regulating
expression levels of multiple different genes (Takeo et al., 2015;
Hatsukano et al., 2017).

The BTB/POZ-type transcription factor BTBD3 is required
for dendrite remodeling of the layer IV pyramidal neurons in
the rodent barrel cortex (Matsui et al., 2013). Since BTBD3 is
translocated from the cytosol to the nucleus in response to
neural activity in pyramidal neurons, BTBD3 might function
downstream of neural activity in dendrite remodeling. Similar
dendrite remodeling defects in layer IV pyramidal neurons are
observed in neurons defective for the transcription factor Lhx2
(Wang et al., 2017). Lhx2 is required for BTBD3 expression
in somatosensory neurons in response to neural activity
(Wang et al., 2017). Since Lhx2 is constitutively expressed
in developing somatosensory neurons, Lhx2 likely functions
as a permissive factor for BTBD3 expression in response to
neural activity.

Dendrite remodeling in invertebrates is likewise subject to
transcriptional control, with signaling by the steroid hormone
ecdysone playing a key role in timing and execution ofDrosophila
C4da sensory neuron remodeling (Kuo et al., 2005; Williams
and Truman, 2005). The molting hormone ecdysone is secreted
from the prothoracic gland at precisely timed developmental
intervals, with each peak of ecdysone triggering a major
developmental transition (Yamanaka et al., 2013). One of the
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largest ecdysone pulses occurs at the end of larval development
and triggers the initiation of metamorphosis, during which
larval structures including sensory dendrites are extensively
remodeled to the form they will take in the adult (Thummel,
2001). The ecdysone hormone binds to the nuclear receptor
composed of a non-covalent heterodimer of two proteins, EcR
and USP, which, in turn, induces multiple target genes. Among
the downstream targets, the transcription factor SOX14 mediates
dendrite pruning in C4da neurons as Sox14 expression is induced
during the early metamorphosis in an EcR/USP-dependent
manner, and Sox14 mutant C4da neurons show defects in
dendrite pruning presumably in part through inducing the
E3 ligase Cullin1 (Wong et al., 2013). Although in vivo targets
of Cullin1 in dendrite pruning remain unclear, one potential
outcome might be the reduction of Akt levels in C4da neurons,
leading to suppression of dendrite growth.

The transcription factor AP-1 (Jun) has been implicated in
activity-dependent dendrite growth in Drosophila motoneurons
(Hartwig et al., 2008; Vonhoff et al., 2013). Recent reports suggest
that AP-1 likely acts downstream of JNK signaling in both
developmental and injury-induced dendrite degeneration (Hao
et al., 2019; Zhu et al., 2019), yet its transcriptional targets in
dendrite remodeling remain elusive.

MicroRNAs Trigger Developmental and
Injury-Induced Dendrite Regeneration
MicroRNAs (miRNAs) have recently emerged as key factors
regulating developmental timing in the nervous system (Sun
et al., 2013; Shenoy and Blelloch, 2014). Although miRNAs
appear to play both positive and negative roles in axon
regeneration after injury (Mahar and Cavalli, 2018), roles
for miRNAs in dendrite regeneration have been elusive.
A recent genetic screen in Drosophila C4da neurons has
identified the miRNA miR-87 as a critical regulator of dendrite
regeneration (Kitatani et al., 2020). miR-87 knockout impairs
dendrite regeneration after developmentally-programmed
pruning, whereas miR-87 overexpression in C4da neurons
causes precocious initiation of dendrite regeneration. Genetic
analyses indicate that the transcriptional repressor Tramtrack69
(Ttk69) is a functional target for miR-87-mediated repression
as ttk69 expression is increased in miR-87 knockout neurons
and reducing ttk69 expression restores dendrite regeneration
in miR-87 neurons. Given that Ttk69 prevents progenitor
cell differentiation by suppressing the expression of genes
required for neural fate specification (Xiong and Montell,
1993; Li et al., 1997; Kniss et al., 2013), miR-87 might suppress
Ttk69 function to reactivate the ‘‘neural differentiation’’
program including dendrite regrowth in C4da neurons.
Interestingly, miR-87 is required for dendrite regeneration
after acute injury in the larval stage, as well as developmental
dendrite regeneration (Kitatani et al., 2020). Since the miR-87
expression is upregulated in C4da neurons upon dendrite
injury and functions by suppressing ttk69 expression, the
miR-87-mediated ttk69 suppression is a common intrinsic
mechanism to drive developmental and injury-induced
dendrite regeneration.

Intrinsic Signaling in Dendrite
Degeneration and Regeneration After
Injury
In the axonal degeneration after injury, namely Wallerian
degeneration, numerous signaling molecules are identified
including NMNATs, SARM, MAPKs, and JNKs, and their
roles in the axon degeneration seem to be conserved between
invertebrates and vertebrates (Gilley and Coleman, 2014; Mahar
and Cavalli, 2018). By contrast, much less is known about
signaling pathways in dendrite regeneration after injury. Recent
studies reported that JNK signaling is involved in both
developmental and injury-induced dendrite degeneration in
Drosophila C4da neurons (Hao et al., 2019; Zhu et al., 2019).
In both cases, JNK acts through the canonical downstream
effectors AP-1 (Jun) and Fos, but JNK signaling might play
different roles in developmental and injury-induced dendrite
degeneration (Hao et al., 2019; Zhu et al., 2019).

mTOR signaling promotes dendrite regeneration as well as
axon regeneration after injury in vertebrates and invertebrates
(Park et al., 2008; Duan et al., 2015; Agostinone et al., 2018;
Beckers et al., 2019). Interestingly, mTOR is locally upregulated
through local translocation of mRNAs at the injury sites in the
axon regeneration (Terenzio et al., 2018), but how an injury could
trigger the local translation remains elusive. Given that mTOR
is required for both axon and dendrite regeneration, similar
local translation for mTOR might work in dendrite regeneration
as well.

The regenerative capacity of dendrites declines with age
at least in invertebrates, which is the case in Drosophila
C4da neurons (DeVault et al., 2018) and C. elegans PVD
neurons (Kravtsov et al., 2017). In PVD neurons, the
age-dependent dendrite regeneration is inhibited in part by
the Insulin/IGF1 signaling pathway (Kravtsov et al., 2017).

SPATIAL CONTROL OF DENDRITE
REMODELING

Extrinsic Regulation
Cellular Interactions
Since most axon pruning involves the removal of axons that
had already made synaptic connections, axon pruning is tightly
associated with synapse elimination. Indeed, repulsive signaling
molecules such as Semaphorins and Ephrins are required
for a large-scale axon degeneration in developing mammalian
nervous systems (Riccomagno and Kolodkin, 2015). By contrast,
no obvious requirement for repulsive molecules has been
reported in developmental dendrite pruning. A recent study
reported that a weak but significant delay in dendrite pruning
in mitral cells is observed in mice lacking Sema7A and its
potential receptor PlexinC1 (Inoue et al., 2018). Given that
Sema7A is upregulated by the odor-evoked activity in olfactory
sensory neurons and that Sema7A and PlexinC1 are both
required for synapse formation (Inoue et al., 2018), Sema7A
and PlexinC1 might contribute to synapse formation and/or
stabilization of between sensory neuron axons and mitral cells
dendrites. It remains to be elucidated whether Sema7A and
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PlexinC1 could contribute to the removal of the synapse
connections through repulsive signaling. Indeed, the Semaphorin
signaling functions in both synapse formation and disruption
in the Drosophila giant fiber system (Godenschwege et al.,
2002) and in synapse removal in murine hippocampal neurons
(Liu et al., 2005).

In the case of the nerve end pruning in rodent nociceptive
sensory neurons (Takahashi et al., 2019), in vivo imaging
reveals that the nerve-epithelial interactions likely play a role
in the spatial control of pruning, as the nerve ends tend to be
pruned underneath the tight junctions within the epithelial cells
(Takahashi et al., 2019). It is thus likely that tight junctions might
provide unknown spatial cues to the nerve ends.

Environmental Cues
The interactions between dendrites and the extracellular matrix
(ECM) have been implicated in regulating the structural
plasticity of dendrites in vivo (Fujioka et al., 2012). For
instance, blockage of the integrin-ECM interaction in retina
ganglion cells or genetic ablation of the integrin-mediated
signaling in adult cortical neurons causes progressive retraction
of dendritic branches (Moresco et al., 2005; Marrs et al.,
2006). ECM modifications in the nervous system are typically
achieved by the concerted actions of several different proteases
that are secreted by neurons and glial cells in vertebrates
and invertebrates (Yong, 2005; Page-McCaw et al., 2007).
In particular, matrix metalloproteases (MMPs) are the likely
regulators in dendrite development and pathology (Sekine-
Aizawa et al., 2001; Szklarczyk et al., 2002). Indeed, the
dendrite reshaping of Drosophila C4da neurons after eclosion is
triggered through ECM modification by the epithelial-derived
MMP2 (Yasunaga et al., 2010). In addition to the dendrite
reshaping, Drosophila MMP2-mediated ECM modification is
associated with the reduced capacity of dendrite regeneration
with aging as inhibiting MMP-2 preserves the ability of dendrite
regeneration in C4da neurons as the animal aged (DeVault
et al., 2018). In the mouse cerebellum, the membrane-type
5 MMP (MT5-MMP; also named MMP-24) is highly expressed
in developing dendrites of Purkinje cells (Sekine-Aizawa et al.,
2001), implying a potential role of MT5-MMP in PC dendrite
remodeling. Importantly, MMP expression levels are elevated
after nervous system injury and in several neuronal pathologies.
Furthermore, after a seizure, MMP-9 mRNA is transported
to dendrites and synapses in the hippocampal DG of kainic
acid-treated rats (Konopacki et al., 2007). Thus, MMP-mediated
EMC modification might contribute to injury and pathology-
induced dendrite remodeling as well as developmental dendrite
remodeling. MMP activity is required for axon degeneration and
regeneration (Andries et al., 2017).

In C. elegans PVD neurons, an antimicrobial peptide, namely
NLP-29, secreted from the epidermis drives aging-associated
dendrite degeneration (Lezi et al., 2018). NLP-29 expression
is increased along with aging under the control of the innate
immune signaling pathway, and the secreted NPL-29 is received
by the G protein-coupled receptor NPR-12 in PVD neurons
(Lezi et al., 2018). As expected from its regulation by the
innate immune signaling, NLP-29 is also required for the fungal

infection-associated dendrite degeneration in PVD neurons
(Lezi et al., 2018).

Intrinsic Regulators
Caspase Activity and Intracellular Calcium Levels
Developmental dendrite degeneration is often achieved in
a compartmentalized manner (Kanamori et al., 2015b;
Riccomagno and Kolodkin, 2015). How neurons can
compartmentalize the degeneration activities into particular
branches is an important issue to be addressed. Caspases are
required for dendrite pruning as well as axon degradation, and
the caspase activity is typically restricted in dendritic branches
during dendrite pruning in Drosophila C4da neurons (Kuo et al.,
2006; Williams et al., 2006) and in axonal branches in Wallerian
degeneration (Cusack et al., 2013; Unsain et al., 2013). In the case
of axon degeneration, caspase activity is spatially determined
by the expression of the Inhibitor of apoptosis protein (IAP)
in the soma and dendritic branches, which suppresses caspase
activity in the soma and dendritic branches, therefore confining
caspase activity in the axonal compartment (Potts et al., 2003;
Cusack et al., 2013; Unsain et al., 2013). Also, proteasome
activity spatially controls caspases as well as IAP through local
degradation inWallerian degeneration (Potts et al., 2003; Cusack
et al., 2013; Unsain et al., 2013). Though not yet determined,
dendrite pruning might also utilize similar strategies to restrict
caspase activity.

Another factor that functions in dendrite pruning in a
compartmentalized manner is intracellular calcium (Ca2+).
Time-lapse imaging of pruning dendrites in Drosophila
C4da neurons reveals low frequency (∼0.01 Hz) Ca2+

transients in dendritic branches that are destined to be pruned
(Kanamori et al., 2013). Interestingly, these compartmentalized
Ca2+transients are observed ∼3 h before dendrite severing,
and completely predict the location and timing of the dendrite
pruning. The voltage-gated Ca2+ channels (VGCCs) are
responsible for generating Ca2+ transients, and mutant
C4da neurons lacking the VGCC activity show significant
defects in dendrite pruning, suggesting that the dendritic Ca2+

transients are predominantly composed of Ca2+ influx through
VGCCs. Given that VGCCs are activated by depolarization
of membrane potential, membrane potential might be locally
changed in dendritic compartments, which in turn drives
Ca2+ transients. Subsequent calcium signaling activates the
Ca2+-dependent protease calpains that promote dendrite
degeneration cooperatively with the activity of caspases
(Kuo et al., 2006; Williams et al., 2006; Kanamori et al.,
2013). Unlike caspase activity, Ca2+ transients are restricted
in particular dendritic compartments in part by physical
barriers that are formed in the proximal dendrites (Kanamori
et al., 2015a). Interestingly, calpains and caspases function
cooperatively in both developmental and injury-induced
axon degeneration in the mouse visual system (Yang et al.,
2013). It is thus likely that the Ca2+ transient-activated
protease system functions in axon degeneration as well
as dendrite degeneration in invertebrates and vertebrates.
Additionally, a recent article reports that the low-frequency
Ca2+ transients drive not only dendrite pruning but also
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synapse pruning in the neuromuscular junctions in Drosophila
(Vonhoff and Keshishian, 2017).

Rearrangement of Cytoskeletal Structures
Microtubule (MT) organization is important for both the
degeneration and regeneration of dendritic trees (Rolls et al.,
2020). In developmental dendrite degeneration in Drosophila
C4da neurons, MT breakdown is the earliest detectable event
in dendrite pruning (Williams and Truman, 2005; Kanamori
et al., 2015a; Herzmann et al., 2018). MT breakdown and
subsequent disassembly in developmental dendrite degeneration
are mediated by multiple factors including Kat-L60, Fidgetin,
and Par-1 (Lee et al., 2009; Tao et al., 2016; Herzmann et al.,
2017). Also, MT polarity organization in dendrites is a critical
factor for efficient degeneration of dendrites. Unlike mammalian
dendrites, dendritic MTs exhibit the minus-end-out polarity in
DrosophilaC4da dendrites (Stone et al., 2008). Knockdown of the
genes involved in the control of the dendrite MT polarity such
as patronin and kinesins causes significant defects in dendrite
pruning in Drosophila C4da neurons (Herzmann et al., 2018;
Wang et al., 2019).

A recent study in Drosophila C4da neurons has identified the
receptor tyrosine kinase-like orphan receptor (Ror) as a critical
factor for dendrite regeneration after injury (Nye et al., 2020).
Subsequent studies suggest that Ror promotes TM nucleation for
dendritic branch growth in cooperation with the Wnt signaling
pathway (Nye et al., 2020; Weiner et al., 2020).

Membrane Dynamics
Recent studies in invertebrate models indicate that local
membrane dynamics in dendritic branches impact dendrite
remodeling. In the course of dendrite pruning in Drosophila
C4da neurons, the first morphological alterations are observable
in the proximal regions of dendrites: proximal dendrites actively
form varicosities and dendritic branches progressively become
thinner, which eventually compartmentalizes distal parts of
the dendrites (Williams and Truman, 2005; Kirilly et al.,
2009; Kanamori et al., 2015a). This compartmentalization of
dendritic branches is driven by local endocytosis at proximal
dendrites (Kanamori et al., 2015a). Genetic inhibition of Rab5-
and Shibire/Dynamin-dependent endocytosis suppresses the
dendrite thinning at proximal dendrites and also impairs
initiation of Ca2+ transients in distal dendrites, suggesting that
the local membrane dynamics at proximal dendrites spatially
defines dendrite pruning. In addition to the local endocytosis
at proximal dendrites, global endocytosis contributes to dendrite
pruning in C4da neurons in part through endosomal degradation
of the L1-type cell-adhesion molecule Neuroglian (Nrg; Zhang
et al., 2014; Zong et al., 2018; Krämer et al., 2019). The
Nrg degradation starts from the onset of metamorphosis,
and loss-of-function nrg mutant neurons show precocious
dendrite pruning. Thus, the removal of Nrg from the cell
surface acts as a prerequisite for dendrite pruning. Indeed,
genetic evidence suggests that this global endocytosis for Nrg
degradation functions in dendrite pruning cooperatively with
the local endocytosis for the compartmentalized Ca2+ transients
(Kanamori et al., 2015a).

The type I membrane protein EFF-1, which was originally
identified as a cell fusion-promoting factor, regulates the
complexity of dendritic arbors by pruning excessive dendritic
branches in C. elegans PVD neurons (Oren-Suissa et al.,
2010). Consistently, the pruning process involves not only
dendrite severing and retraction but also dendrite–dendrite auto
fusion. Furthermore, EFF-1 mediates dendrite repair after injury
by promoting membrane fusion between elongating dendritic
branches (Oren-Suissa et al., 2017). Interestingly, AFF-1 fusogen,
a paralog of EFF-1 expressed in neighboring hypodermal cells
but not the neuron, also contributes to dendrite repair, possibly
through extracellular vesicle-cell fusion (Oren-Suissa et al.,
2017). A recent report proposed that EFF-1 regulates PVD
dendrite morphology in part by patterning the cell adhesion
molecule SAX-7 distribution in hypodermal cells (Zhu et al.,
2017). It remains to be elucidated whether similar fusogen
proteins might play a role in developmental and injury-induced
dendrite remodeling in other organisms.

FUTURE PERSPECTIVES

In the past decade, considerable progress has been made
in understanding the molecular mechanisms underlying
dendrite remodeling including branch regeneration and
degeneration in vivo, but many questions remain as to how
the sequential rounds of branch degeneration and regeneration
in developing dendrites are regulated by coordinated actions
of the identified molecules. In particular, spatial regulation
of dendrite degeneration and regeneration is still largely
elusive. For instance, how the layer IV pyramidal neurons
could selectively degenerate and regenerate apical and basal
dendrites, respectively, is unknown (Figure 1D). It is even
harder to imagine how Purkinje cells can confine 3D dendritic
arbors into 2D arbors (Figure 1C). To tackle these interesting
but difficult questions, developing novel optogenetic tools for
local manipulation of molecular activity in dendrites should
be a powerful approach. It should be also useful to develop
in vivo imaging systems to precisely monitor multiple molecular
activities in dendrites. Also, studies using Drosophila models
have provided several molecular clues that could bridge our
knowledge gaps in the spatiotemporal regulation of dendrite
remodeling. First, given that microRNAs are the potential factors
that drive the temporal transition from dendrite degeneration to
regeneration, further identification of the downstream targets
should be an efficient way for further understanding of the
temporal control. Second, Ca2+ transients and Caspase activity
can be good readouts to identify molecules involved in the
spatial control of dendrite compartmentalization. The field
is only at the starting point in terms of understanding how
the components function together in dendrite degeneration
and regeneration.
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