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Abstract

The phenomena of synchronization, rhythmogenesis and coherence observed in brain net-

works are believed to be a dynamic substrate for cognitive functions such as learning and

memory. However, researchers are still debating whether the rhythmic activity emerges

from the network morphology that developed during neurogenesis or as a result of neuronal

dynamics achieved under certain conditions. In the present study, we observed self-orga-

nized spiking activity that converged to long, complex and rhythmically repeated superb-

ursts in neural networks formed by mature hippocampal cultures with a high cellular density.

The superburst lasted for tens of seconds and consisted of hundreds of short (50–100 ms)

small bursts with a high spiking rate of 139.0 ± 78.6 Hz that is associated with high-fre-

quency oscillations in the hippocampus. In turn, the bursting frequency represents a theta

rhythm (11.2 ± 1.5 Hz). The distribution of spikes within the bursts was non-random, repre-

senting a set of well-defined spatio-temporal base patterns or motifs. The long superburst

was classified into two types. Each type was associated with a unique direction of spike

propagation and, hence, was encoded by a binary sequence with random switching

between the two “functional” states. The precisely structured bidirectional rhythmic activity

that developed in self-organizing cultured networks was quite similar to the activity observed

in the in vivo experiments.

Introduction

Synchronization and the interplay between excitation and inhibition in neural networks play

crucial roles in the organization of rhythmic activity in the brain [1–5]. Rhythmic oscillatory

activity with various frequencies represents a multi-clock substrate for cognitive function,

memory and sleep [6, 7]. However, researchers still question whether the rhythmicity emerges

from the specific network morphology that develops during neurogenesis [7–11] or it is gener-

ated spontaneously due to nonlinear network dynamics mediated by an interplay between

excitation and inhibition that is sustained by a homeostatic balance [12–14]. An answer to this
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fundamental question promises to define the network mechanisms of pathological seizure

activity and, hence, to determine treatment approaches. Many brain network functions, nor-

mal and pathological states have recently been studied using in vitro models [13–23]. In these

models, dissociated neuronal cultures provide researchers a unique opportunity to model net-

work dynamics and rhythmicity in vitro.

Dissociated neuronal cultures plated on microelectrode arrays after culture for several days

in vitro (DIV) spontaneously generate activity in the form of periodic and synchronized net-

work burst discharges [24–26, 15]. The bursts display various spatio-temporal distributions of

spikes recorded at the electrodes during the discharges. Network bursts may be involved in

mechanisms of information encoding [16], memory [17] and chronic neurological diseases,

such as epilepsy [18, 27]. For example, similar burst dynamics develop spontaneously or are

evoked by a stimulus in vivo in the cortex, hippocampus and brain nuclei during brain devel-

opment [19, 20, 28, 29]. These in vivo bursts are associated with a single sharp potential or

with spindle-shaped field oscillations (approximately 10 Hz) [19].

Regular bursts in cultured networks are characterized by variable firing rates. Simulta-

neously, they are composed of highly precise and reproducible spatio-temporal spiking pat-

terns. The spiking patterns are quantified by calculating the values for the timing and the

recruitment order of the first spikes initiating the bursts at each electrode, known as activation

patterns [30]. These patterns were reported to be stable on a timescale of several hours [30–

32]. The profile of the spiking patterns (several tens of milliseconds) at the beginning of the

bursts is also precisely repeated in the subsequent bursts, whereas the middle phase of burst

formation is highly variable [31]. An analysis of spontaneous activity in cultured networks

grown on high-density microelectrode arrays (4096 electrodes) also revealed that only short

intervals in the initial parts of the bursts were reproducible and were associated with spike

propagation in the network from certain initiation points (neurons) [33]. According to the

results of a detailed analysis, bursting activity consists of several motifs that are distinguished

by direction or spike propagation pathways and appear randomly during the recording. Sev-

eral types of patterns, i.e., motifs, have also been observed in the spontaneous bursting activity

using activation patterns (only first spike timings) and spiking frequency patterns [21, 34].

The bursting activity in neuronal cultures changes dramatically during development in
vitro and essentially depends on the initial cell plating density [26, 35]. The minimum plating

density of a cortical culture required to produce bursting activity is 250 cells per mm2 in Neu-

robasal medium (neuronal culture medium) [36]. During the first 3 weeks of development, the

numbers of GABAergic and glutamatergic terminals increase gradually and simultaneously

with the bursting rate [36]. A steady state is reached after 3–4 weeks of culture in vitro in hip-

pocampal [37–39] and cortical [36, 40, 41] cultures. In the mature stages of highly dense cul-

tures, the spiking activity consists of complex sequences of a type of burst often called a

superburst, with durations ranging from several to tens of seconds. Superbursts are only

observed in dense dissociated cultures (2500 rat cortical cells per mm2 grown in Dulbecco’s

modified Eagle’s medium (DMEM) [22, 26], 4000 cells per mm2 grown in Neurobasal medium

supplemented with only blockers of inhibitory connections [18] or 8 x 103 and 106 rat hippo-

campal cells per mm2 grown in DMEM [42, 43]). The overall network activity was very com-

plex and characterized by spontaneous superbursts, which, in turn, may cluster into small

superburst series [44]. Superbursting activity has also been observed in multilayered neural

cultures [45]. High-frequency oscillations resembling network superbursts have been observed

even in small but dense neuronal clusters (up to 40 cells) [35]. Numerical simulation of cul-

tured networks revealed that superbursts occurred at earlier stages of network development in

larger networks (up to 50 000 neurons) compared to smaller networks (up to 11 000 neurons)

[46]. Therefore, the network size is also a crucial parameter [46].

Bidirectional cycling dynamics of living neuronal networks in vitro
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Superbursts in neuronal cultures represent highly coherent spatio-temporal spiking activity

patterns that spontaneously develop in originally non-structured networks due to self-organi-

zation and plasticity [22].

One of the proposed mechanisms for superbursts is the interaction between the activity of

excitatory and inhibitory neurons in culture. In particular, the addition of inhibitory cells

from the striatum to the hippocampal cultures was used to study their impact on burst dynam-

ics. An increase in the inhibitory cell fraction in neuronal cultures from 20% to 56% signifi-

cantly increases the number of small bursts in the superburst structure [47]. The important

role of GABAergic neurons in the generation of bursting activity has also been confirmed in

network mathematical models in which GABAergic neurons were involved in generating the

small bursts in subsequent superburst [46]. Superbursting activity has been increased by treat-

ing cultures with blockers of inhibitory synapses (bicuculline and picrotoxin) or a low concen-

tration of Mg2+ ions [18, 48] and has been decreased by treating cells with a combination of

Na+ channel blockers and picrotoxin [18].

The investigation of spiking patterns in the superbursts has revealed remarkably precise

repetition of the internal bursting sequence [22]. Superbursts appear with irregular intervals,

but their internal structure contains small bursts with highly regular and reproducible activa-

tion patterns that persist for hours or days [26]. In another study of cortical cultures during the

mature stage (4–6 week in vitro), definite motifs observed in the burst activation pattern corre-

sponded to a specific oscillation phase during the ultra-slow oscillations (<0.01 Hz) [12].

These ultra-slow oscillations also represent superbursts with regular intervals. Spiking pattern

motifs were found to be strongly conserved across multiple oscillation cycles, repeating them-

selves with high spatio-temporal precision.

According to one recent mathematical model,high neurite and synapse densities may also

influence small bursts in the superburst subsequences [46]. Stable rhythmic activity in the

form of propagating synchronized bursts over several minutes was induced in cortical cultures

treated with inhibitors of GABAergic synaptic transmission in another study [13]. This peri-

odic synchronized activity on the 3–4 second time scale was only observed at the boundaries

of the culture. Thus, the excitatory-inhibitory balance should be an important parameter for

generating stable and reproducible synchronized activity in networks.

In the present study, we observed long superbursting activity with well-defined and repro-

ducible temporal dynamics in spontaneously developed hippocampal neurons cultured on a

microelectrode array (MEA). Regarding the electrophysiological activity, we observed long

(up to 30 seconds) superbursts consisting of subsequences of (up to hundreds of) highly repro-

ducible short bursts in the centre of the cultured network. The spiking frequency in the bursts

was 139.0 ± 78.6 Hz, and the interburst interval ranged from 100–150 ms (11.2 ± 1.5 Hz),

which resembled unique hippocampal activity under in vivo conditions [49]. Spike propaga-

tion pathways during short bursts in all long superbursts were aligned along two major spatial

directions. The long superburst was encoded into two types, each associated with a definite

orientation of spike propagation. The orientation was switched during each single superburst;

in the subsequent superburst, the orientation was determined randomly, with a probability of

switching to the next orientation of approximately 50%. Therefore, the superburst time

sequence was encoded by binary symbols reflecting the spontaneous activation of two domi-

nant spike propagation patterns selected in mature networks of cultured hippocampal cells.

Notably, this well-organized rhythmic activity emerged spontaneously in mature culture net-

works in vitro without any specific stimulation and afferentation. We believe that these self-

organizing dynamics observed during culture development led to a certain excitatory-inhibi-

tory balance, where cycling dynamics serve as a homeostatic functional state of the culture.

Moreover, these findings also suggest a possible mechanism by which different functional
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states (i.e., vortices and synchronized epileptic-like discharges) may spontaneously appear in

brain networks in the absence of stimulation.

Materials and methods

Cell culture

Hippocampal cells were dissociated from embryonic mice (E18) and plated on microelectrode

arrays (MEAs) pre-treated with adhesion promoting molecules of polyethyleneimine (Sigma

P3143) with a final density of approximately 15,000–20,000 cells/mm2 (Fig 1D). Our cultures

were composed of 4–5 layers of the cells. The mice used in our study were received from Insti-

tute of Bioorganic Chemistry Pushchino, Moscow Region, Russia. C57Bl/6 mice were eutha-

nized via cervical dislocation according to protocols approved by the National Ministry of

Public Health for the care and use of laboratory animals. The protocol was approved by the

Committee on the Ethics of Animal Experiments of the Nizhny Novgorod State Medical Acad-

emy (Permit Number: 9–25.09.2014). All efforts were made to minimize suffering. Embryos

were removed and decapitated. The entire hippocampus was dissected under sterile condi-

tions. The cortex, whole medulla and the lower part of the pons were excluded during the dis-

section. Hippocampi were cut in Ca2+- and Mg2+-free phosphate-buffered saline (PBS-minus).

After enzymatic digestion for 25 min using 0.25% trypsin (Invitrogen 25200–056) at 37˚C,

cells were separated by trituration (10 passes) using a 1 ml pipette tip. Next, the solution was

Fig 1. Long superburst activity in hippocampal cultures recorded by the microelectrode array at DIV 35. (A)

Electrophysiological signal of spikes within a long superburst recorded from a single electrode. (B) Long superburst at

a 2 s timescale and a 200 ms timescale (C). (D) Dissociated hippocampal neurons grown on a microelectrode array

(DIV 35). (E) Regular superburst activity with a duration of 1–2 seconds. (F) Initiation burst and subsequent small

bursts were separated by clustering the numbers of spikes per burst. The threshold (the vertical line) was identified

using K-means clustering. (G) Raster plot of a long superburst (left) and a regular superburst (right).

https://doi.org/10.1371/journal.pone.0192468.g001
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centrifuged at 1500 g for 1.5 min, and the cell pellet was immediately re-suspended in Neuro-

basal culture medium (Invitrogen 21103–049) with B27 (Invitrogen 17504–044), glutamine

(Invitrogen 25030–024) and 10% fetal calf serum (PanEco 055). The dissociated cells were

seeded in a 30 μl droplet covering the centre of the culture dish with 1 mm2 electrode region of

the MEA. It resulted in a culture 6–7 mm in diameter. After the cells had adhered (usually in 2

hrs), the dishes were filled with 1 ml Neurobasal medium (NBM) supplemented with B-27 and

0.5 mM glutamine with 10% fetal calf serum. After 24 hrs, the plating medium was replaced

with a medium containing NBM 2% B-27 and 1% glutamine and 0.5% fetal calf serum but

with no antibiotics or antimycotics. Glial growth was not suppressed, given that glial cells are

essential for long-term culture health. Half of the medium was replaced every 2 days. The cells

were cultured under constant conditions of 35.5˚C, 5% CO2 and 95% air at saturating humid-

ity in a cell culture incubator (MCO-18AIC, SANYO).

Phase-contrast images of cultures were taken weekly to record the status of the culture

using a Leica DMIL HC (Germany) inverted microscope with 10/0.2 Ph1 objectives. Experi-

ments were conducted when the cultures had been grown for 3–5 weeks in vitro.

Electrophysiological methods

Extracellular potentials were collected using 59 planar TiN electrodes integrated into the

USB-MEA-120 system (Multichannel system, Germany). The microelectrode arrays (MEA)

had 59 electrodes (8x8 grid) with diameter of 30 μm and spaced 200 μm apart (Fig 1A). Data

were recorded simultaneously from 59 channels at a sampling rate of 20 kHz/channel. All sig-

nal analysis and statistics were performed using the custom-made software Meaman in Matlab

(Mathworks, USA).

Spike detection

The detection of recorded spikes (Fig 1B) was implemented using threshold calculation:

T ¼ NSs; ð1Þ

where σ = median (|x| / 0.6745), which was the estimate of the median normalized to standard

deviation of a signal with no spikes (see [50] for more details), x is the band-pass-filtered (0.3–

8 KHz) signal, and NS is the spike detection coefficient, which was set to 8. The amplitudes of

detected spikes were in the range of 20–200 μV. The minimal interspike interval was set to be

1 ms to avoid the overlapping of neighbouring spikes.

Burst detection

The burst detection method was described in detail in our previous paper [31]. Briefly, we esti-

mated the total spiking rate characteristic, TSR(t), as the number of spikes from all electrodes

within each 5 ms time bin. The rapid appearance of a large number of spikes over all electrodes

in a small (2 ms) time bin was used as the criterion for burst appearance. Threshold detection

was applied to estimate the initiation and termination of the bursts. The burst threshold was

set to TBurst = 0.2 × σTSR, where σTSR is the standard deviation of TSR(t).

The initiation time of the burst was defined as the burst start time, where TSR(t) was greater

than the threshold. Next, the initiation time was adjusted to the first spike from all electrodes

after a supra-threshold time. Finally, the time point at which TSR crossed the threshold after

the burst start time was defined as the burst end time.

Interburst peak intervals (IBPIs) were calculated as the time interval between adjacent

peaks of the spiking rate of detected small bursts. The peaks were separately estimated from

the total spike rate (TSR) diagram of each burst. Examples of the peaks and the interval

Bidirectional cycling dynamics of living neuronal networks in vitro
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between two bursts are presented in Fig 2B. Such measure of interval between “up” states of

the bursts is similar to a measure of oscillation period and frequency in rhythmic activity anal-

ysis of in vivo recordings. Each IBPI corresponded to the instantaneous frequency (IF) of each

pair of the small bursts. All burst pairs were analysed, and IF datasets were used for further sta-

tistical analysis.

Superburst detection

Superbursts and long superbursts in the electrical activity were detected using a previously

described method [51]. First, we defined a Gaussian function with an effective width equal to

50 s. Next, that function was iteratively moved from the beginning of the recording to the end

using a 10 ms time step, while the cross-correlation of the function with the TSR was calculated

for each step. The resulting cross-correlation indicated the amount of synchronized activity

(bursts) that was recorded in each 10 s window. We applied a threshold detection algorithm in

which the threshold was estimated as the superburst detection accuracy coefficient multiplied

by the standard deviation of the calculated cross-correlation to detect superbursts in the spik-

ing activity. The superburst detection accuracy coefficient was estimated empirically and was

equal to 0.4. All time points that crossed the threshold were defined as the beginnings and the

endings of the superbursts [51].

Burst classification

Superbursts consisted of initiation bursts lasting for 50–100 ms and short small bursts lasting

for 30–50 ms. The total number of spikes within initiation bursts ranged from 1000–3000

spikes, whereas each small burst contained 10–500 spikes (Fig 1F). These two types of bursts

were identified using a K-means clustering algorithm.

We analysed activation patterns consisting of first spike timings of the bursts to represent

the spatio-temporal properties of all patterns within small bursts. The first spike timing was

averaged for each electrode and each small burst. Then, the values from all 60 electrodes were

colour coded and plotted on an image using cubic convolution interpolation (Fig 3F, 3G and

3H). This image represented a gradient map of the burst activation profile.

We introduced a vector field map of activation timings in the culture to represent the spatial

properties of spike propagation during burst activation. For each MEA electrode, we calculated

a vector whose direction represented the activation-timing gradient around an area of 3 elec-

trodes (Fig 3F). Notably, the resulting vector field resembled a colour-coded activation pattern.

We defined this spatial representation of the activation pattern as a dynamic pattern.

We applied the K-means clustering method to identify motifs of activation patterns in

small bursts of all long superbursts. The activation patterns for each small burst consisted of

the first spike timings for each of the 59 electrodes of the MEA. This method required a num-

ber of clusters to be estimated. First, we estimated two clusters and evaluated cluster separation

by calculating the Davies-Bouldin (DB) index [32]. The DB index estimates the ratio between

the internal cluster distance and the distance between clusters. Then, the clustering procedure

was repeated for various numbers of clusters (2, 3. . .30), and the DB index was estimated (Fig

4C). The minimum value for the DB index among all tested cluster numbers was 2 or 3, indi-

cating that the activation patterns were optimally clustered into 2 or 3 motifs of small bursts.

Small values for the DB index corresponded to compact clusters whose centres were located

far from each other. DB values ranging from 0 to 1 indicated “robust” clustering. We also

tested the motif separation using the expectation-maximization algorithm (EM clustering).

We plotted two principal component coefficients for each activation pattern and highlighted

the estimated clusters in different colours to represent the evaluated clusters (Fig 4D). As in

Bidirectional cycling dynamics of living neuronal networks in vitro
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the previous case, we used the DB index to evaluate the optimal number of clusters with EM

clustering (Fig 4F). This method was applied to 3 principal component coefficients and

divided data into the clusters more accurately (Fig 4H, 4I, 4J and 4K), which were used in sub-

sequent analyses.

Results

First, we analysed the spontaneous activity of the hippocampal cultures. We obtained complex

bursting patterns similar to those reported previously in cortical cultures [26]. An example of

Fig 2. The sequence of small bursts in a long superburst displayed a stable rhythmic structure. (A) Example of the long superburst activity

recorded on the MEA, and a fragment of 5 detected small bursts (B). The green horizontal line represents the burst detection threshold, and

the red vertical lines represent the burst initiation and end time points. (C) Distribution of burst frequencies (the instantaneous frequency (IF)

corresponded to the the interburst peak interval measure (IBPI), see the Methods) in one culture. The median IF (burst frequency) was 9.8 Hz.

(D) Distribution of spiking rate frequency from the electrodes with small bursts in one culture. The mean spiking rate was 178.5 Hz. (E)

Distribution of IFs (n = 6 cultures). The median burst frequency was 11.2 ± 1.5 Hz (mean ± s.d., n = 6 cultures). (F) Distribution of the spiking

rate frequency from the electrodes with small bursts (n = 6 cultures). The spiking rate was 139.0 ± 78.6 Hz (mean±s.d.).

https://doi.org/10.1371/journal.pone.0192468.g002

Fig 3. Small bursts in superbursts consist of patterns with bidirectional activity. (A) Small bursts from several long

superbursts were clustered into spatio-temporal patterns. The DB index (see the Methods) showed a minimum of 3 clusters,

indicating that at most 3 dissimilar groups (motifs) of small bursts are present, according to the activation spiking pattern. (B)

Examples of the bursts from two motifs. Red dots indicate the activation pattern—first spike timings for each electrode.

Examples of the bursts from 3 motifs (C, D, and E) and spatial representation of dynamic patterns (F, G, and H) are shown.

Motif #1 was observed in 10.6% of small bursts, motif #2 was observed in 56.4%, and motif #3 was observed in 32.9% of all

small bursts in the superburst. Examples of two types of long superbursts (I and J) that were composed of the 3 motifs. The left

long superburst consisted of motif #1 bursts (blue markers) and motif #2 bursts (green markers) (F). The second type of long

superburst consisted of bursts of motif #3 (red markers, J).

https://doi.org/10.1371/journal.pone.0192468.g003
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the spikes recorded from a single electrode within a small burst is shown in Fig 1C. After 3–4

weeks of culture in vitro, we obtained the activity described as a superburst (Fig 1E). A typical

superburst consisted of a sequence of 3–20 small bursts of 50–100 ms in duration and a 50–

150 ms interburst interval. During the period of 30–40 DIV, the cultures generated long

superbursts that were similar to regular superbursts, but that lasted for 10–30 seconds and con-

sisted of hundreds of regular small bursts. In summary, we analysed 11 cultures from 3 plating

experiments and observed long superbursts in 8 cultures. Six cultures generated more than 6

long superbursts for at least 20 minutes, which were included in the statistical analysis. In

other cultures, we observed no more than 2 long superbursts. The signals from a single elec-

trode during the long superburst on timescales of 15 and 2 seconds are illustrated in Fig 1A

and 1B. Raster plots of the spiking activity recorded from all 59 electrodes during the superb-

urst and long superburst are shown in Fig 1G. Each point on the raster plot represents the time

at which a spike occurred at a particular electrode. The long superbursts were composed of rel-

atively long initiation bursts (50–100 ms) followed by shorter bursts, i.e., the small bursts. The

initiation bursts and the small bursts were easily identified by K-means clustering (Fig 1F)

using burst firing rate features (see the Methods).

Next, we estimated the frequencies of the small bursts; the initiating bursts and intervals

between the long superbursts were excluded from analysis. We estimated instantaneous

Fig 4. Clustering of the spiking patterns of small bursts in the long superburst. (A) K-means clustering of the activation patterns revealed two motifs (green and blue

dots) plotted by principal component analysis (PCA) coefficients. (B) Dynamic patterns represent the average activation patterns of two motifs identified using K-means

clustering. The colour represents the average first spike timing of the bursts. (C) Dependence of the DB index on the number of clusters estimated using the K-means

analysis. (D) Clustering of the same spiking patterns using EM clustering applied to the two principal components. (E) Dynamic patterns of motifs identified using EM

clustering. (F) Dependence of the DB index on the number of clusters estimated using EM clustering and its average (G) (mean±s.d., n = 6 cultures). (H) EM clustering

of the spiking patterns applied to the 6 motifs estimated from the three principal components. (I) Dynamic patterns of the 6 motifs estimated by EM using 3 principal

components. (J) Dependence of the DB index on the number of clusters estimated using EM clustering with 3 principal components and its average (K) (mean±s.d.,

n = 6 cultures).

https://doi.org/10.1371/journal.pone.0192468.g004
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frequencies of the detected bursts using the interburst peak interval measure (IBPI) (see the

Methods) (Fig 2A). Each IBPI corresponded to the instantaneous frequency (IF) of each pair

of the small bursts. Notably, the IFs were not normally distributed (Kolmogorov-Smirnov test,

p<0.01), and the median value of the IF was estimated for each culture. A typical example of

the IF distribution for a small burst sequence in one culture is shown in Fig 2C. Moreover, a

median value of the IFs represented a bursting frequency, which was stable and equal to 9.8

Hz. Less than 5% of the IFs ranged from15-30 Hz in presented example. Then, the bursting fre-

quencies were averaged for all cultures, and a mean value was equal to 11.2 ± 1.5 Hz

(mean ± standard deviation, n = 6 cultures). An average histogram of the IFs for all 6 cultures

is illustrated in Fig 2E demonstrating high reproducibility in various preparations. Most of the

IFs were concentrated in the range from 8 to 15 Hz.

We also estimated the mean spiking frequency for each electrode during small bursts exclu-

sively during the intra-burst periods (Fig 2B, the red rectangle marks the period in a sample

burst). For the raster plot presented in Fig 1A, the spiking frequency at most electrodes ranged

from 100–300 Hz, and the mean frequency was 178.5 Hz (Fig 2D). On average, the spiking fre-

quency per electrode was 139.0 ± 78.6 Hz (mean ± standard deviation, n = 6 cultures, 264

active electrodes) (Fig 2F).

Next, we analysed spiking patterns in sequences of small bursts within a long superburst

recorded for 30 minutes. The set of the first spikes in the burst recorded from all electrodes

was considered the activation pattern [31]. We applied the EM clustering algorithm for 3 prin-

cipal component features to investigate different motifs (clusters) of activation patterns. This

method required the estimation of a number of clusters. First, using two clusters, we evaluated

the cluster separation by calculating the DB index (see the Methods). Then, the clustering pro-

cedure was repeated for various numbers of clusters (2, 3. . .30), and the DB index was esti-

mated (Fig 3A). The minimum value for the DB index among all tested numbers of clusters

was 3, indicating that the activation patterns were optimally clustered into 3 motifs in the pre-

sented raster plot. The activation patterns and profiles of the spiking patterns in the bursts

from separate clusters (motifs) represented different sequences of spike occurrence, i.e., differ-

ent dynamics of the spike propagation (Fig 3B). Note that the difference in the first spike time

sequence in the pattern can be visually observed in Fig 3. Representative raster plots for all

small bursts from all 3 motifs are shown in Fig 3C, 3D and 3E. We averaged the activation pat-

terns and calculated the dynamic patterns to investigate the spatio-temporal properties of all

patterns within each motif (see the Methods (Fig 3F, 3G and 3H)). The first spike timings from

all 59 electrodes were colour coded and plotted on the image created using cubic convolution

interpolation. Surprisingly, burst activation was implemented in the form of wave-like spike

propagation dynamics with a wide wave front. Arrows represent the gradient of activation

times, i.e., the mean direction of spike propagation during burst initiation across each elec-

trode. Eventually, the patterns were organized into a uniform direction in space. Remarkably,

motifs #1 and #2 presented similar directions of the activation pattern, from the upper elec-

trodes to the bottom of the MEA, whereas motif #3 presented the opposite direction.

Next, we analysed the sequence in which the motifs appeared in the structure of the long

superburst. Some of the long superbursts (Fig 3I) comprised bursts of motifs #1 and #2,

whereas other long superbursts in the same recording (Fig 3J) mainly comprised bursts of

motif #3.

Notably, the firing rate in the burst sequence (Fig 3J, TSR—total spiking rate) was quite var-

iable, but the sequence of the first spike timings, i.e., the activation patterns, of the bursts

remained largely unchanged.

Furthermore, we verified the clustering results for activation patterns using EM clustering

for two principal components (PCs) and three PCs and K-means clustering (see the Methods).
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We applied all three methods to one data set; we varied the number of clusters and estimated

clustering using the DB index as shown in Fig 3A. Using K-means and EM clustering with 2

PCs, the DB index had a minimum at 2 clusters (Fig 4C and 4F), whereas the DB index calcu-

lated using EM with 3 PCs had a minimum at 6 clusters (Fig 4J). Interestingly, when whole

activation patterns (spike timing over 59 electrodes) were reduced to 2 principal components,

they were clustered into only two motifs, whereas the patterns reduced to 3 PCs were clustered

into 6 motifs. We illustrated all patterns with a colour scale on the 2 PC plots for K-means clus-

tering and EM 2PC clustering (Fig 4A and 4D) and on the 3 PC plot for EM 3PC clustering

(Fig 4H) to visualize the clustering results. Even without clustering, the patterns in the 3 PC

space were visually identified as the 6 cluster set, whereas K-means and EM 2PCs could only

identify 2 clusters. However, we observed the 2 motifs identified using the other algorithms

among the 6 motifs (Fig 4B, 4E and 4I). On average, the optimal number of motifs (minimum

DB index) calculated using EM clustering for 2 PCs (Fig 4G) and EM for 3 PCs (Fig 4K) dis-

played a clear minimum value of 2 clusters (n = 6). Interestingly, in all cases, a visual inspection

of the clustering identified two major motifs associated with global spike propagation path-

ways across the MEA. We applied the analysis described below to emphasize this finding.

The activation patterns were characterized by one major direction of a spike propagation

pathway. For each pattern, we estimated the angle of the major direction by averaging all 59

vectors (Fig 5C). Next, the clustering of the major direction angles revealed two major direction
motifs in the raster plot (Fig 5A and 5B). The value of the DB index was equal to 0.08 (Fig 5D),

which represents two robustly separable clusters, as shown in the histogram of the major direc-

tion angles (Fig 5F). Means of the angles from two motifs were equal to 29˚ and 302˚, and the

difference was statistically significant (t-test, p<0.01). Interestingly, clustering of the activation

patterns composed of spike timings (EM 2 PCs, Fig 4E) and major directions angles showed

similar dynamic patterns (Fig 5G and video representation S1 Video). The average DB index

of the major direction angle clustering showed that the patterns clearly clustered into two

major directions in all cultures (n = 6 cultures) with long superbursts (Fig 5E). The minimum

value of the DB index in the cluster estimation was equal to 0.33±0.27 (mean and s.d.). Nota-

bly, a DB index with a value less than 1 indicated well-separated clusters when the inter-cluster

distance was greater than the intra-cluster volume.

We shifted from analysing long superbursts to analysing regular superbursts for the pres-

ence of stable spike propagation pathways to determine whether this form of well-defined bidi-

rectional dynamics is a unique feature of long superbursts. Regular superbursts are also

composed of an initial burst (100–150 ms) followed by 3–10 small bursts (Fig 5H). The profile

of the small bursts within regular superbursts was less clearly organized than that in the long

superburst. In many cases, we were not able to clearly separate the small bursts due to the high

variability of activity during development. In this example, 2 clusters could not be estimated

correctly because one cluster contained more than 95% of all patterns. Additionally, the DB

index was not monotonic (Fig 5I), in contrast to long superburst clustering (Fig 5D), suggest-

ing the absence of the motifs. Indeed, the histogram of all major directions from this raster

plot (Fig 5K) indicated the existence of one cluster (e.g., motif) with an average angle of 192˚.

The characteristics of the DB index averaged over 5 raster plots (n = 5 cultures) did not indi-

cate any clustered structure. Notably, for 2 clusters, the average DB index was equal to 1.06

±0.65 (mean and s.d., excluding one sample with <5% in one motif), which was significantly

different from the mean DB index for the long superbursts of 0.33±0.27 (n = 6 cultures, t-test,

p<0.05). On average, the cluster analysis of the short bursts did not reveal a clear minimum

for the DB index in 2 clusters (Fig 5J, boxplot, red lines—median values), in contrast to the

recordings containing long superbursts (n = 6 cultures) (Fig 5E). Thus, the patterns in the long

superbursts were clustered into two motifs associated with significantly different spike
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propagation directions, whereas regular superbursts did not show this feature. The mean DB

index for the long superbursts 0.33±0.27 was less than 1. These low values indicated the pres-

ence of two clusters without inter-cluster overlapping [52] and, hence, are treated as statistical

evidence of error-free clustering.

Then, we analysed the reproducibility of motif appearance in a long superburst sequence.

Motifs in the long superburst were represented using raster plots (Fig 6A). The vertical black

lines in the plot represent the motifs in the sequence of small bursts in all long superbursts. We

applied EM clustering to the long superburst based on the motif frequency. This analysis iden-

tified two clusters associated with the two types of long superbursts, which are marked in blue

and pink in the motif raster plot (Fig 6A, top). Each type appeared randomly in the sequence.

Surprisingly, the probability of switching between the two types of long superbursts was 50% ±
13% (n = 6 cultures), indicating the random nature of this activity on a macroscopic timescale.

Each long superburst comprised 100–150 small bursts, which were clearly associated with a

certain major angle of the motif (Fig 6B). Surprisingly, the first type in the presented example

was mostly composed of small bursts of motif #1 (96.9% of all small bursts) and, to a lesser

extent, small bursts of motif #2 (3.1%). This finding revealed the presence of stable and

directed spatio-temporal patterns of spike propagation pathways during the long superburst

activity. In contrast, the other type of long superburst was mostly associated with motif #2

(motif #1–18%, motif #2–82%), representing a different direction of spike propagation. Fig 6C

Fig 5. Bidirectional spike propagation pathways form two types of long superbursts. Raster plots of two types (A and B) of the long superburst obtained in one

recording (bottom) and its TSR diagram (top, see the Methods). (C) Schematic of major directions in the spike propagation estimation. (D) Dependence of the DB

index on the cluster number in the clusterization of major directions in representative raster plots of the long superbursts from 6 cultures (E, boxplot). (F) Histogram of

major directions of the bursts from the culture displaying long superbursts. The two coloured clusters in the histogram represent two motifs. (G) Spatial representation

of the dynamic patterns of motifs #1 and #2 indicated different spike propagation pathways after clusterization of the major directions. (H) Raster plot of a superburst

(bottom) and TSR diagram of the superburst (top, see the Methods). The superburst comprised an initial burst (100–150 ms) followed by a subsequence of 3–10 small

bursts. (I) Dependence of the DB index on the cluster number in the clusterization of all major directions of the small bursts in the superburst. (J) Boxplot of the DB

index of the small bursts in superbursts (n = 5). (K) Histogram of major directions of the bursts from cultures displaying superbursts.

https://doi.org/10.1371/journal.pone.0192468.g005
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shows the dynamic patterns of the two estimated motifs,in which these major directions are

clearly visible. On average, the probability of the appearance of each motif within its own type

Fig 6. Switch in the spike propagation pathway during long superbursts. (A) Motif appearance within each superburst. Blue and pink bars mark the two types of long

superbursts observed in one recording. Black vertical lines illustrate bursts of a particular motif type inside each superburst. Note that one superburst type (blue) was

associated with motif #1, and the other (pink) was associated with motif #2. (B) Histogram of major directions for small bursts from cultures displaying long

superbursts. The two coloured clusters in the histogram represent the two motifs after clusterization, which appeared in (A). Motif dynamic patterns #1 and #2 are

illustrated in C with respect to B. In all cases, the motifs from different types of superbursts have clearly different activation gradients (arrow directions) and major

directions (B). The other culture showed similar principal results using the same analysis: two motifs were associated with two types of long superbursts (D), and the

bursts from the motifs had significantly different major directions (E, DB index<0.1) and spatio-temporal activation patterns (F). (G) Switch probability of burst

patterns during a long superburst (motif) and between subsequent long superbursts (superburst type).

https://doi.org/10.1371/journal.pone.0192468.g006
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of the long superburst was equal to 91.5% ± 4.7% (n = 6 cultures). This remarkably high

appearance of the motif in the long superbursts clearly indicated the presence of a stable func-

tional structure of the network and, hence, reproducible dynamics.

We also measured the probability of switching between the motif types in the whole raster

plot without considering long superburst indexing to quantify the stability of the motifs in the

small burst sequences (Fig 6A). The switch probability was quite low, 9% ± 5% (n = 6), indicat-

ing that motifs switched quite rarely. Thus, the spontaneous bursting activity employed two

basic spike propagation pathways (types of motifs) that were activated and sustained during

long superbursts (10–20 sec). Representative images of similar bidirectional activity of the

bursts from another culture are shown in Fig 5D, 5E and 5F. Notably, motifs from different

long superburst types eventually show significantly different DB index directions of spike pat-

tern propagation using major direction measures or dynamic pattern representations. For

each motif, we estimated the mean major angle and the difference between two mean angles.

On average, the difference between these angles was 95˚ ± 31.1˚ (mean± s.d. n = 6 cultures).

Surprisingly, these almost perpendicular spike propagation pathways were spontaneously self-

replicated in 6 cultures.

Discussion

In the present study, the neuronal networks formed by mature hippocampal cultures (30 DIV

and older) generated specific network activity with surprisingly long sequences of bursts, i.e.,

long superbursts of up to hundreds of constituent bursts, with highly regular spiking patterns.

In previous studies, superburst activity was reported to display a much shorter duration (up to

ten bursts) [26]. In our experiments, we also observed similar activity, but in addition, more

than 70% of the cultures (8 of 11) at DIV 30–35 began to spontaneously generate long superb-

ursts with durations of up to hundreds of seconds. Six of 11 cultures generated more than 6

long superbursts during at least 30 minutes. The other cultures generated less than 2 long

superbursts with a regular superburst in the background. The precise biophysical mechanism

underlying the long superbursts is still largely unknown. We hypothesize that mature cultures

(DIV from 35) spontaneously organize into networks with an optimal excitatory-inhibitory

balance in which cycling dynamics represent a homeostatic (“natural mode”) pattern that “sus-

tains” the functional connectivity.

This long superbursting activity persisted for several days. Each superburst consisted of

an initial burst with the highest firing rate, followed by a subsequence of small bursts with a

50–100 ms duration and a relatively stable 100–200 ms interburst peak interval (IBPI) (Fig

1). This interval corresponded to the bursting frequency 11.2 ± 1.5 Hz (n = 5) (Fig 2), which

represented hippocampal rhythmic activity [49]. The observation of this type of periodic

bioelectrical activity in a form of theta oscillations in cultures is considered a fundamental

feature of hippocampal network formation, which has been widely investigated in vivo and

in slices in vitro [7–11]. In hippocampal neural networks, the theta frequency ranges from

4–10 Hz, and the beta ranges from 10–30 Hz [53, 54]. Other authors define the theta fre-

quency as ranging from 4–12 Hz and beta frequency as ranging from 12–30 Hz [55]. Our

analysis indicated a fundamental feature of hippocampal networks that generate theta

rhythm, which is involved in behaviour (active motor behaviour [49]), memory tasks and

the complex electrophysiological signatures of the theta and beta frequencies during the

sleep state [14]. Low-frequency synchronized firing in cortical cultures is associated with

classical sleep signatures [14]. The lack of external stimuli during neural network develop-

ment may trigger stable low-frequency spiking activity in cortical and hippocampal cultures

and indicate a functional state of sleep [14].
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The spiking rate in the small bursts was 139.0 ± 78.6 Hz (n = 6), which may be associated

with high-frequency oscillations and sharp wave-associated ripples in the hippocampus (100–

250 Hz) [7, 10] or fast gamma oscillations (90–140 Hz) [56]. A high spiking frequency has also

been observed in regular superbursts, and, hence, is not directly associated with the unique

characteristics of the observed long superbursts. However, the interplay between the dynamics

of small bursts and the generation of high-frequency spiking plays important functional roles

in vivo. High-frequency oscillations have been found to be modulated by slow theta activity in

the isolated rat hippocampus [57] and in vivo [58]. Interestingly, coupling of the theta and

high-frequency oscillations has been observed during rapid eye movement (REM) sleep, slow-

wave sleep and immobility behaviour, whereas ripples are associated with memory consolida-

tion [10].

We postulate that this unique and rare activity appeared in cultures in which a specific bal-

ance of morphology and cell density developed spontaneously from the specific initial condi-

tions due to mechanisms of self-organization. The cell density of neurons that survive to DIV

30 dramatically decreased from 2500 cells/mm2 to 150 cells/mm2 [36]. In another study, the

cell density decreased from 5000 cells/mm2 to 2500 cells/mm2 after two weeks of development

in culture [59]. Hippocampal cultures (E18) with a high density of 106 cells/mm2 grown in

DMEM generate superbursts with a long duration ranging from 46–91 seconds and a relatively

low interburst frequency of 0.4–4.6 Hz [43], which is associated with epileptiform activity [60].

Superbursts have also been observed in E17–E18 rat hippocampal cultures with a high density

of 7800 cells/mm2 [42, 61], but a detailed analysis of activity was not presented. Superbursts

with a frequency of 10 Hz were only observed in the presence of increased cAMP concentra-

tions in cultures with a density of 600 cells/mm2 [62] or with the addition of dissociated striatal

inhibitory cells [47] to cultures with a density of 1000 cells/mm2. In our cultures, the initial cel-

lular density was 15000–20000 cells per mm2. The plated culture contained approximately

250000 cells and formed 4–5 layers. To our knowledge, our study is the first to record spiking

activity under these plating conditions and stage of culture development. Thus, we propose

that the plating density of the cultures was the major factor responsible for the appearance of

this type of activity.

The culture medium was changed every 2 days in our experiments, whereas in other stud-

ies, the medium was changed once or twice a week [15, 26]. Therefore,the frequent changes of

small amounts of medium minimized the physiological stress and sustained the homeostatic

balance during culture development, which may have affected the stable activity of the cultured

network. The densities of glutamatergic and GABAergic synaptic terminals increased during

the first 3 weeks in vitro and then saturated by DIV 30–35 [63]. In cortical [63] and hippocam-

pal cultures [64–66], the ratio of glutamatergic to GABAergic receptors in synapses and somata

during development showed a similar trend to the ratio observed in vivo. The ratio of inhibi-

tory and excitatory cells and the cell density present at DIV 30 in our experiments were also

important components for the development of the in vitro neural networks with such remark-

able features of activity and will be investigated in detail in further studies.

Note that we used the culture medium with a low serum concentration (only 0,4%) which

is much less than usually used for glial cultures (10%) [67–69]. A neuron/glia ratio decreased

after two weeks of culture of hippocampal cells with high density in the conditions of low

serum concentration, indicating proliferation of glial cells [39]. The neuron/glia ratio did not

change between 2nd and 3rd weeks of the culture [39].The inhibition of astrocyte proliferation

can be explained by the effect of accumulated extracellular matrix [51, 70–71] and the contact

inhibition of proliferation [72].

Theta rhythmic activity in the hippocampus has been reported to be induced and modu-

lated by external signals originating from the entorhinal cortex. Based on our results, the
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spiking activity in the range of the hippocampal theta rhythm can be generated in isolated net-

works of hippocampal cells in the absence of stimulation under stable homeostatic conditions.

Further studies using immunohistochemistry will reveal key features of cultures grown under

theseconditions.

Importantly, the superbursting activity observed in cortical cultures did not exhibit the long

and stable rhythmic activity reported here [14, 22, 26]. The reverberation of activity in the

form of periodic synchronized bursts on a time scale of hundreds of milliseconds emerged or

was modulated only in response to the suppression of inhibitory synaptic transmission [18,

48]. Superbursting activity in dense cortical cultures (1000–5000 cells/mm2) from rats and

mice consisted of a sequence of bursts ranging from 0.25 to 1.25 Hz [26,46,73–75]. This activ-

ity was associated with epileptic seizures in vitro [60]. In rat hippocampal slices, similar epilep-

tiform bursts had a high amplitude (1 mV) and a low-repetition frequency (0.5–1.5 Hz),

whereas theta oscillations had a low amplitude (0.5 mV) and a high frequency (5–14 Hz)

[76,77]. Moreover, in postnatal cortical neurons cultured at a high density (4000 cells/mm2),

superbursts were generated with a frequency of 10 Hz in some cases and were induced by

inhibitors of GABAergic synaptic transmission [18]. Therefore, the observation of bursting

activity in the theta and delta ranges may be unique to the hippocampal cultures.

Notably, the recording area of the MEA (1.6 x 1.6 mm) was located in the centre of the cir-

cular culture and had an approximate diameter of 4–5 mm. These spatio-temporal patterns

may be part of a global cycling activity with highly stable specific features of the hippocampus

in vivo—theta rhythmic oscillations. The cycling pattern of the bursting activity might be trig-

gered by pacemaker neurons [78] or may be self-organized in spiral wave dynamics. Similar

spike propagation patterns have been observed in cortical cultures with chemically mediated

inhibition in the network [13]. Disinhibition of GABAa-mediated synaptic transmission by

bicuculline induced episodes of seizures composed of stable, short burst subsequences with

2–3 sec interburst intervals. Further studies using high-density MEA systems or fast CCD cam-

eras for calcium imaging [60] to observe the activity of the whole culture will address these

issues.

By analysing the profile of the spiking patterns in the long superbursts, we found that these

patterns also become well organized and contain a small number (2–4) of basic motifs, in con-

trast to the regular superburst activity (Figs 4 and 5). Based on the results obtained from differ-

ent clustering methods,the patterns of first spike timings in the bursts were segregated into

two clusters (motifs).

These motifs defined the presence of two basic types of spike propagation direction in the

burst activation pattern. These two “functional” directions further defined the activity in the

form of wave-like bidirectional firing patterns that were repeated from burst to burst (Support

S1 Video). The stability of the motif appearance within single long superbursts was 91.5% ±
4.7% (n = 6 cultures). This remarkable re-entry of a stable pattern clearly reveals the stable

functional structure of the network. Considering the spike timing variability in the culture and

clusterization inaccuracy,the motif uniqueness is likely even closer to 100%. Notably, the angle

between two major spike propagation pathways of the small bursts’ activation patterns was 95˚

± 31.1˚ (mean± s.d. n = 6 cultures) (Fig 6B and 6E). These almost perpendicular activity propa-

gation pathways were spontaneously self-organized in 6 cultures and were remarkably stable

during rhythmic bursting. The long superbursts were also clearly clustered into two types

according to the motif appearance in the small burst subsequence (Fig 6A). Each motif

appeared mostly within its own type of the long superburst, with a high probability of 91.5% ±
4.7% (n = 6 cultures), indicating that only one of two motifs was generated during each long

superburst. We postulate that the dynamics of the neural network were quite stable and repro-

ducible on timescales of milliseconds (activation patterns), seconds (small bursts) and tens of
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seconds (long superbursts). Interestingly, on a timescale of minutes,in which several long

superburst were observed in the activity pattern,the motifs switched from one motif to another

with a probability of 50% ± 13% (n = 6 cultures). The switch mainly appeared during the first

small burst in the sequence. The first initiation burst with a longer duration and a higher firing

rate in the long superburst sequence determined that motif. Therefore, the spiking patterns

with unique orientations of activity propagation exhibited an interplay between two complex

dynamic states in the network with a stochastic switch on a timescale of several minutes that

initiated rhythmic activity with a precise activity pattern on a timescale of seconds and milli-

seconds. This conclusion complements the results of a regular superburst study [22] and can

be further extended to the modelling of brain dynamics during development. Based on our

results, hippocampal neuronal cultures display activity with features similar to in vivo condi-

tions. Further studies of plating protocols and neuroengineering methods mimicking realistic

hippocampal tissue conditions may identify key factors involved in the development of a func-

tional structure in neural networks.

Notably, the well-organized global dynamics of spontaneously developing culture networks

are encoded by a binary sequence and are actually represented as a telegraphic signal convey-

ing information about the functional state of the system. We sincerely believe that this stability

and reproducibility of the network states will further permit the control of the switching

between the states in mature cultures and that these cultures will be useful in the design of liv-

ing networks with definite functional properties in hybrid information processing systems

(neurally controlled robots, “brain-on-chip”, etc.).

Supporting information

S1 Video. Spiking activity patterns in long superbursts. Rasters of two types (motifs) of long

superbursts were splitted into time windows of 10 ms duration with 2 ms timestep. The activity

within each time window was converted to an image of 8x8 blocks corresponding to MEA

electrode mapping. Color of each electrode coded a number of spikes within current time win-

dow. First part of the video (A) shows a raster of Fig 5A, second part (B)–Fig 5B. One second

of the video corresponds to 20 ms of spiking activity.

(MP4)
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