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Background: Reduction of brain volume (brain atrophy) during healthy brain aging is well documented and de-
pendent on genetic, lifestyle and environmental factors. Here we investigated the possible dependence of brain
gray matter volume reduction in the absence of the Human Leukocyte Antigen (HLA) allele DRB1*13:02 which
prevents brain atrophy in Gulf War Illness (James et al., 2017).
Methods: Seventy-one cognitively healthywomen (32–69 years old) underwent a structuralMagnetic Resonance
Imaging (sMRI) scan to measure the volumes of total gray matter, cerebrocortical gray matter, and subcortical
graymatter. Participants were assigned to two groups, depending onwhether they lacked the DRB1*13:02 allele
(NoDRB1*13:02 group, N=60) or carried the DRB1*13:02 allele (N=11).We assessed the change of brain gray
matter volume with age in each group by performing a linear regression where the brain volume (adjusted for
total intracranial volume) was the dependent variable and age was the independent variable.
Findings: In the No DRB1*13:02 group, the volumes of total graymatter, cerebrocortical graymatter, and subcor-
tical gray matter were reduced highly significantly. In contrast, none of these volumes showed a statistically sig-
nificant reduction with age in the DRB1*13:02 group.
Interpretation: Thesefindings document the protective effect of DRB1*13:02 on age-dependent reduction of brain
gray matter in healthy individuals. Since the role of this allele is to connect to matching epitopes of external an-
tigens for the subsequent production of antibodies and elimination of the offending antigen, we hypothesize that
its protective effectmay be due to the successful elimination of such antigens towhichwe are exposed during the
lifespan, antigens that otherwisewould persist causing gradual brain atrophy. In addition, we consider a possible
beneficial role of DRB1*13:02 attributed to its binding to cathepsin S, a known harmful substance in brain aging
(Wendt et al., 2008). Of course, other factors covarying with the presence of DRB1*13:02 could be involved.

Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).
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1. Introduction

Age-related brain changes are widely regarded as inevitable. Reduc-
tions in gray matter volumewith increasing age have been consistently
reported (Raz and Rodrigue, 2006; Lemaitre et al., 2012;Walhovd et al.,
2011; Jiang et al. 2014); however, considerable heterogeneity in rates of
atrophy have been observed. For instance, prefrontal cortices are more
affected than posterior regions (Raz and Rodrigue, 2006) and some sub-
cortical regions (hippocampus, amygdala, cerebellum) evidence more
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prominent and consistent volumetric reductions than others that
seem relatively impervious to age-related changes (e.g., brainstem)
(Walhovd et al., 2011). Reports of volumetric white matter reductions
with age have been less consistent although compelling evidence sug-
gests a curvilinear association with white matter volume increasing
through middle age before decreasing at an accelerated rate (Allen et
al., 2005; Raz et al., 2005). Owing to varied methodological differences
including sample characteristics and segmentation procedures, results
regarding gray matter and white matter volumetric reductions in spe-
cific areas have been highly inconsistent across studies. Nonetheless,
global atrophy is consistently evident and estimated at 2–5% per decade
for normal aging, with rates of loss increasing with age (Enzinger et al.,
2005; Fjell et al., 2009; Resnick et al., 2003). This stands in contrast to
tp://creativecommons.org/licenses/by/4.0/).
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pathological aging, such as Alzheimer's disease, where rates of 20–30%
volume reduction per decade have been reported (Fox et al., 1999). No-
tably, the rate of atrophy is reduced among the very healthy elderly
(Resnick et al., 2003); however, even among cognitively healthy indi-
viduals, there is considerable variability in rates of atrophy (Raz et al.,
2010).

Numerous possible modifiers of age-related atrophy have been in-
vestigated with mixed findings. Among the most consistently investi-
gated and supported individual difference factors that contribute to
variability in brain atrophy are health factors such as hypertension, dia-
betes mellitus, alcohol consumption, smoking, vascular pathology, and
stress (Enzinger et al., 2005; Raz and Rodrigue, 2006). Notably, all of
these factors have been linked to inflammation which, when chronic,
damages the brain and other organs, particularly among genetically vul-
nerable individuals (Licastro et al., 2005). In terms of genetic influence
on age-related brain changes, perhaps themost widely studied contrib-
utor of age-related brain changes is apolipoprotein E (apoE) E4, a well-
established Alzheimer's disease susceptibility gene (Corder et al., 1993;
Lambert et al., 2013). In cognitively healthy participants, presence of the
E4 allele has been associated with brain atrophy (Enzinger et al., 2005),
and gene dose effects have been reported such thatwhole brain atrophy
rates increasedwith the number of E4 alleles (Chen et al., 2007). Others,
however, have reported a steeper rate of hippocampal atrophy in apoE
E4 carriers relative to non-carriers, but no effects on whole brain vol-
ume (Moffatt et al., 2000). Still, others have reported little influence of
apoeE E4 on change in regional brain volumes (Raz et al., 2010). Thus,
despite robust associations between apoE genotype and pathological
cognitive aging (e.g., Alzheimer's disease), its role in healthy aging is
less clear. Furthermore, it is unlikely that a single genetic factor would
account for the observed variability in age-related brain atrophy.

Additional genetic contributions to brain aging include the Human
Leukocyte Antigen (HLA) genes. HLA genes, located in the Major Histo-
compatibility Complex (MHC) of chromosome 6, play a central role in
immune system functioning (Meuer et al., 1982). HLA Class II molecules
facilitate antigen-specific control of the immune system via production
of antibodies and ultimately elimination of pathogens. Successful elim-
ination of pathogens by specific antibody production hinges in part on a
match between the pathogen and the HLA protein. In the absence of a
match, the pathogen is not eliminated and can persist in the body caus-
ing inflammation, cell damage, and autoimmunity (Institute of
Medicine, 2012). Indeed, immune-mediated neuroinflammation has
been implicated in the development of several age-related diseases in-
cluding Alzheimer's disease (Heneka et al., 2015; Heppner et al.,
2015), and various pathogens have been detected in brain tissues of in-
dividuals with Alzheimer's disease (Mawanda and Wallace, 2013),
supporting an association between inability to eliminate pathogens
and brain disease. Furthermore, recent reports indicate that various
loci within the HLA region appear to be involved in Alzheimer's related
brain atrophy (Wang et al., 2017). Finally, recent genome-wide associa-
tion studies have identified several HLA gene variants as promoting sus-
ceptibility to Alzheimer's disease including HLA-DRB5/HLA-DRB1 and
HLA DRB1*15:01 (Lambert et al., 2013; Steele et al., 2017). Notably,
HLA DRB1*15:01 has been associated with several neurological dis-
eases, leading some to suggest it may be associated with pan-neuronal
disease susceptibility (Steele et al., 2017).

What, then, about the converse? That is, are there HLA genes that
broadly promote protection? In fact, it has been demonstrated that
the DRB1 gene is associated with enhanced cognitive abilities among
cognitively healthy adults (Payton et al., 2006). HLA genes, however,
are highly polymorphic with some DRB1 variants promoting protection
and others conferring disease susceptibility. Thus, investigating HLA-
disease associations at the protein level provides the most clarity with
regard to health outcomes. In the specific case of DRB1, for instance,
DRB1*13:01 and DRB1*13:02 which differ only by a single amino acid
residue (Hov et al., 2011) have very different disease associations.
While some protective effects have been observed for DRB1*13:01
(van der Woude et al., 2010), it has been shown to be a risk factor for
various conditions (Fainboim et al., 2001; Hov et al., 2011; Pando et
al., 1999). In contrast, DRB1*13:02 appears to exert broadly protective
effects, particularly with regard to immune-related disorders
(Bettencourt et al., 2015; Furukawa et al., 2017; Hov et al., 2011). Simi-
larly, we have demonstrated protective effects of HLA-DRB1*13:02 on
Gulf War Illness (Georgopoulos et al., 2016), a neuroimmune condition
(Georgopoulos et al., 2017). Notably, we have demonstrated that the
protective effects of DRB1*13:02 extend to brain volume, sparing sub-
cortical atrophy (James et al., 2017) that is characteristic of GulfWar Ill-
ness (Christova et al., 2017). Thus, it seems that DRB1*13:02may confer
broad protection against conditions affecting the brain. Given the well-
established protective effects of DRB1*13:02, we evaluated in the pres-
ent study the effect of DRB1*13:02 on brain volume in cognitively
healthy women. We hypothesized that DRB1*13:02 carriers would ex-
hibit reduced atrophy relative to non-carriers.

2. Materials and Methods

2.1. Participants

Seventy-one cognitively healthy women (mean age± SEM, 54.17±
1.23 years, range: 32–69 years) participated in the current study after
providing informed consent, in adherence to theDeclaration of Helsinki,
and were financially compensated for their time. All study protocols
were approved by the appropriate Institutional Review Boards. Their
cognitive status was assessed using the Montreal Cognitive Assessment
(MoCA; http://www.mocatest.org/); all women had MoCA scores N 25,
(28.1 ± 0.16, mean ± SEM, N = 71).

2.2. HLA Genotyping

DNA isolation was carried out from 3 ml of whole blood drawn in
EDTA tubes, using a commercially available kit (ArchivePure cat.
2300730) from 5Prime (distributed by Fisher Scientific or VWR) with
an expected yield of 50–150 μg of DNA. The purified DNA samples
were sent to Histogenetics (http://www.histogenetics.com/) for high-
resolution HLA Sequence-based Typing (SBT; details are given in
https://bioinformatics.bethematchclinical.org/HLA-Resources/HLA-
Typing/High-Resolution-Typing-Procedures/ and https://
bioinformatics.bethematchclinical.org/WorkArea/DownloadAsset.
aspx?id=6482). Their sequencing DNA templates are produced by
locus- and group-specific amplifications that include exon 2 and 3 for
class I (A, B, C) and exon 2 for class II (DRB1, DRB3/4/5, DQB1, and
DPB1) and reported as Antigen Recognition Site (ARS) alleles as per
ASHI recommendation (Cano et al., 2007).

2.3. ApoE Genotyping

DNA samples were genotyped using PCR amplification followed by
restriction enzyme digestion (Reymer et al., 1995). Each amplification
reaction contained PCR buffer with 15mmol/L MgCl2 ng amounts of ge-
nomic DNA, 20 pmol apoE forward (5N TAAGCT TGG CACGGC TGT CCA
AGG A 3N) and reverse (5N ATA AAT ATA AAA TAT AAA TAA CAG AAT
TCG CCC CGG CCT GGT ACA C 3N) primers, 1.25 mmol/L of each
deoxynucleotide triphosphate, 10% dimethylsulfoxide, and 0.25 μL
Amplitaq DNA polymerase. Reaction conditions in a thermocycler in-
cluded an initial denaturing period of 3 min at 95 C, 1 min at 60 C, and
2 min at 72 C; followed by 32 cycles of 1 min at 95 C, 1 min at 60 C,
and 2 min at 72 C; and a final extension of 1 min at 95 C, 1 min at
60 C, and 3min at 72 C. PCR products were digested with HhaI and sep-
arated on a 4% Agarose gel which was stained with Ethidium Bromide.
Known apoE isoform standards were included in the analysis.

Fifty-three out of 71 participants (74.6%) lacked the apoE4 isoform,
whereas 18/71 (25.4%) carried it.

http://www.mocatest.org
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2.4. MRI Data Acquisition and Preprocessing

All data were acquired using a 3T MR scanner (Achieva, Philips
Healthcare, Best, The Netherlands) with a phased array SENSitivity
Encoding (SENSE) 8-channel head coil for reception. For each partici-
pant a high resolution T1-weighted image Turbo Field Echo (T1w TFE
SENSE) was obtained (168 sagittal slices, TR = 8.1932 ms, TE =
3.752 ms, Acquisition matrix 256 × 256, Flip angle 8°, voxel size
0.9375 × 0.9375 × 1 mm). A T2-weighted image (T2w VISTA HR
SENSE) was also obtained (180 slices, TR = 2500 ms, TE =
363.072 ms, acquisition matrix 256 × 256, voxel size = 0.7813 ×
0.7813 × 1 mm).

A 704-core High Performance Computing system (CentOS 6.5 Linux,
Rocks 6.1.1) with Matlab R2012 (64 bit), Human Connectome Project
(HCP humanconnectome.org) pipeline with FreeSurfer (FS; http://
surfer.nmr.mgh.harvard.edu) HCP version (freesurfer-hpc) was used
for data processing. MRI data with high contrast between gray matter,
white matter, and cerebrospinal fluid as well as high spatial resolution
are necessary for accurate results. We acquired T1w and T2w images
with high spatial resolution (≤1 mm2) to achieve precise surface recon-
struction. Standard FS software requires only T1w images as input.
However, we used a modified version of FS, implemented in the struc-
tural HCP pipeline, which utilizes both T1w and T2w images to elimi-
nate uncertainty due to the fact that dura and blood vessels are
isointense to gray matter in the T1w image alone. In addition, T2w al-
lows improved pial surface reconstruction (Glasser et al., 2013). Specif-
ically, we used the first 2 structural HCP pipelines, namely PreFreeSurfer
and FreeSurfer. One goal of the PreFreesurfer pipeline is to align the T1w
and T2w images. PreFreeSurfer pipeline processing was followed by
FreeSurfer pipeline processingwhich is based on FS version 5.2with im-
provements. We thus obtained estimated total intracranial volume
(eTIV), total gray matter volume, cerebrocortical gray matter volume,
and subcortical gray matter volume.
2.5. Data Analysis

2.5.1. Basic Analyses
Standard statistical methods were employed to analyze the data

using the IBM-SPSS statistical package (version 25), including linear re-
gression. First, the effect of eTIV was removed by regressing the volume
against eTIV, and taking the residuals. The effect of age was then esti-
mated in a linear regressionwhere the residuals above were the depen-
dent variable, and age was the independent variable. Such regressions
were performed for two groups, namely (1) participants lacking the
DRB1*13:02 allele (N=60, age range 32–69 years), and (2) participants
carrying the DRB1*13:02 allele (N = 11, age range 37–68 years). No
participant was homozygote for the DRB1*13:02 allele. An estimate of
the average percent change in brain volume with age was obtained as
the percentage of the regression coefficient for age with respect to the
mean volume (adjusted for eTIV).
2.5.2. Assessment of apoE4 Effect
A possible effect of the presence of the apoE4 isoform was assessed

by adding an apoE4 binary covariate to the regression model (0 =
apoE4 absent, 1 = apoE4 present).
Table 1
Age and cognitive score of participants (mean ± SEM) for the three DRB1*13 groups.

DRB1*13:02 absent (N = 60) DRB1*13:02 present (N = 11)

Age (y) 53.8 ± 1.31 55.36 ± 3.16
MoCA 28.07 ± 0.18 28.18 ± 0.38
3. Results

The age and MoCA scores for each group are given in Table 1. Age
and MoCA scores did not differ significantly between groups
(ANOVA). All the results below refer to volumes adjusted for eTIV.

3.1. Total Gray Matter Volume

3.1.1. No DRB1*13:02
There was a highly statistically significant reduction in total gray

matter volume with age in the group lacking the DRB1*13:02 allele
(Fig. 1; slope = volume reduction rate = −2452.8.7mm3/year, P =
.000002, R2 = 0.325, N = 60), amounting to a reduction rate of−4.2%
of the mean volume per decade.

3.1.2. DRB1*13:02
There was no statistically significant reduction in total gray matter

volume in the group carrying the DRB1*13:02 allele (Fig. 2; slope = −
708.6mm3/year, P=0.529, R2=0.046, N=11), amounting to a reduc-
tion rate of−1.2% of themean volume per decade. The slope above was
significantly smaller than the one of the No DRB1*13:02 group in the
preceding section (P = 0.04).

3.2. Total Cortical Gray Matter Volume

3.2.1. No DRB1*13:02
There was a highly statistically significant reduction in total cortical

graymatter volumewith age in the group lacking the DRB1*13:02 allele
(Fig. 3; slope=−2058.8mm3/year, P = 0.00004, R2= 0.310, N= 60),
amounting to a reduction rate of−4.7% of themean volumeper decade.

3.2.2. DRB1*13:02
There was no statistically significant reduction in total cortical gray

matter volume in the group carrying the DRB1*13:02 allele (Fig. 4;
slope = −914.3 mm3/y, P = 0.443, R2 = 0.067, N = 11), amounting
to a reduction rate of −2.1% of the mean volume per decade. The
slope above was significantly smaller than the one of the No
DRB1*13:02 group in the preceding section (P = 0.045).
Fig. 1. Total brain gray matter volume is plotted against age for the No DRB1*13:02 group
(N = 60). Values of volumes are residuals after adjusting for total intracranial volume
(eTIV).

http://humanconnectome.org
http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu


Fig. 2. Total brain gray matter volume is plotted against age for the DRB1*13:02 group (N
=11). Conventions are as in Fig. 1. The dotted line indicates that the slope of the fitted line
did not differ significantly from zero (see text for details).

Fig. 4. Cortical gray matter volume is plotted against age for the DRB1*13:02 group.
Conventions are as in Fig. 2.
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3.3. Total Subcortical Gray Matter Volume

3.3.1. No DRB1*13:02
There was a highly statistically significant reduction in total subcor-

tical gray matter volume with age in the group lacking the DRB1*13:02
allele (Fig. 5; slope = −203.5 mm3/year, P = 0.000015, R2 = 0.278, N
= 60), amounting to a reduction rate of −3.8% of the mean volume
per decade.
3.3.2. DRB1*13:02
There was no statistically significant reduction in total subcortical

gray matter volume in the group carrying the DRB1*13:02 allele (Fig.
6; slope=−6.7mm3/year, P= 0.948, R2= 0.001, N= 11), amounting
to −0.14% of the mean volume per decade. The slope above was
Fig. 3. Cortical gray matter volume is plotted against age for the No DRB1*13:02 group.
Conventions are as in Fig. 1.
significantly smaller than the one of the No DRB1*13:02 group in the
preceding section (P = 0.0005).

3.4. Effect of apoE4

The absence or presence of apoE4 isoform was not associated with
the frequency of DRB1*13:02 allele (Table 2; x[2]2 = 0.025, P = 0.873).
In addition, the apoE4 covariate (added in the regressionmodel togeth-
er with eTIV and age; see Materials and Methods) was not statistically
significant in any analysis.

4. Discussion

In the present study we investigated the effect of HLA DRB1*13:02
on age-related brain atrophy in cognitively healthy women aged 32–
69 years. We found that brains of participants lacking the DRB1*13:02
Fig. 5. Subcortical graymatter volume is plotted against age for the NoDRB1*13:02 group.
Conventions are as in Fig. 1.



Fig. 6. Subcortical brain gray matter volume is plotted against age for the DRB1*13:02
group. Conventions are as in Fig. 2.

35L.M. James et al. / EBioMedicine 29 (2018) 31–37
allele showed a highly statistically significant age-dependent reduction
of total gray matter volume; in contrast, participants carrying the
DRB1*13:02 allele did not show a significant reduction. Similar effects
were observed separately for the volumes of cerebrocortical and
subcortical gray matter. These results further extend the protective
effect of the DRB1*13:02 on brain gray matter loss in healthy people,
as reported in our previous study on Gulf War Illness (James et al.,
2017).

The purpose and structure of HLA-DRB1*13:02 provides some in-
sights into themechanisms that may confer protection against brain at-
rophy, as observed here. Generally, the goal of HLA Class II molecules
(which includes DRB1*13:02) is to eliminate exogenous antigens by
leading to the production of antibodies against them. This process in-
volves binding of antigens to a groove formed by polypeptide chains
on the HLA molecule in order to create a molecule-peptide complex
that is recognized by CD4+ T-lymphocytes thereby stimulating anti-
body production by plasma cells. Even single amino acid variations
alter the peptide-binding specificity and consequently alter disease as-
sociations as previously discussed with regard to DRB*13:01 and
DRB*13:02 (Hov et al., 2011). With regard to DRB1*13:02, for instance,
a simple search of the Immune Epitope Database (Vita et al., 2015) doc-
uments several associated antigens in humans, including antigens relat-
ed to influenza A and hepatitis B and C, while other HLAmolecules bind
to different antigens. Thus, one's geneticmakeupwith respect to HLA al-
leles determines whether there is a match with specific antigens and
consequently whether antibodies will be produced and offending anti-
gens eliminated. In the absence of a match, an antigen may persist
resulting in potentially deleterious effects including inflammation and
possibly autoimmunity (IOM, 2012). This is what we have referred to
as the “persistent antigen” hypothesis for Gulf War Illness (James et
Table 2
Frequency of occurrence of the apoE4 genotype and the two DRB1*13 groups (see text for
details.)

DRB1*13 absent DRB1*13:02 only Total

ApoE4 Absent 45 8 53
Present 15 3 18
Total 60 11 71
al., 2017). Although the persistent antigen hypothesis was initially
discussed in relation to Gulf War Illness, we suspect it similarly applies
to other diseases affecting the brain, including those associated with
age-related decline, and likely extends to other organ systems as well.

Thus, we wade into the heated debate regarding whether age-relat-
ed biological changes are universal or reflective of disease (Bulterijs et
al., 2015).While someage-related changesmay be universal, our results
suggests that brain atrophy may not be. That is, given a certain genetic
makeup, age-related brain changes are minimized, as demonstrated in
the present study. Similarly, others have reported on “superagers”,
namely older adults whose performance on cognitive tests is spared
from typical cognitive decline. Recent studies have demonstrated that
preserved cognitive functioning among superagers is reflected in pre-
served cortical integrity. Specifically, it has been demonstrated that
superagers (ages 80+) exhibit enhanced cortical thickness and volume
compared to age-matched normal agers that is indistinguishable from
middle aged (ages 50–65) (Harrison et al., 2012) and even young adults
(ages 18–35) (Sun et al., 2016). Perhaps superagers have won the ge-
netic lottery with respect to HLA, permitting successful elimination of
common pathogens and, consequently, retention of brain volume and
function.

Aging has been referred to as “the consequence of evolutionary ne-
glect, not evolutionary intent” (Olshansky et al., 2002 p. 294). This state-
ment is particularly relevant in light of the highly polymorphic nature of
HLA and its purported role in natural selection via adaptive immunity
(Meyer et al., 2017; Trowsdale and Knight, 2013). Indeed, HLA gene var-
iations have been associated with various viral diseases (e.g., chicken
pox, shingles, cold sores, mononucleosis, mumps) and bacterial infec-
tions (tuberculosis, scarlet fever, pneumonia) (Tian et al., 2017) in addi-
tion tomany autoimmune conditions including diabetes, arthritis, celiac
disease, lupus, ankylosing spondylitis, multiple sclerosis, psoriasis, and
Crohn's disease (Trowsdale and Knight, 2013). Thus, advantage would
be afforded to those with an HLA-profile that maximizes neutralization
and eradication of pathogens.We suspect that HLA-DRB1*13:02may be
particularly advantageous and may promote successful aging.

Finally, we would like to entertain an additional hypothesis for a
possible neuroprotective role of DRB1*13:02, not mutually exclusive
with the persistent antigen hypothesis above. This hypothesis comes
from the observation by Davenport et al. (1995) that DRB1*13:02
binds specifically two epitopes from cathepsin S: DPTLDHHW
HLWKKTYGKQYKE (21–42) and DPTLDHHWHLWKKTYGKQYK (21–
41) (Davenport et al., 1995, Table 1). The binding of the latter peptide
to purified HLA-DRB1 was found to be strong for DRB1*13:02 (IC50,

μM = 20), weak for DRB1*13:01 (IC50, μM = 100), and practically
none for DRB1*01:01 (IC50, μM N 1000) (Davenport et al., 1995, Table
2). Cathepsin S is a protease active in a good range of pH environments,
is mainly expressed in the professional antigen-presenting cells, where
HLA Class II molecules are also expressed, is involved with antigen pre-
sentation to those molecules (Hsing and Rudensky, 2005; Riese et al.,
1996), and is upregulated by interferon gamma (IFN-γ) (Beers et al.,
2003; van's Gravesande et al., 2002). Cathepsin S is also expressed
throughout the brain, and specifically in microglia, where it has been
found to increase with aging and in pathological conditions (Wendt et
al., 2008). It is also involved in secondary brain damage following trau-
matic brain injury, where inhibition of cathepsin S had beneficial effects
on rescuing brain damage and improving neurobehavioral recovery (Xu
et al., 2013).

Wehypothesize that the specific binding of DRB1*13:02 to cathepsin
S (Davenport et al., 1995) might lead to the production of antibodies
that may, ultimately, limit the availability of cathepsin S, thus exerting
an indirect neuroprotective effect, especially in conditions where ca-
thepsin S seems to play a detrimental role, as in aging,
neuroinflammatory conditions, traumatic brain injury, and other brain
diseases, such as Alzheimer's disease (Shi et al., 1994; Munger et al.,
1995; Lemere et al., 1995) and amyotrophic lateral sclerosis (Wendt
et al., 2008).
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5. Limitations of the study

Themain limitation of this study is the small sample size. Larger sam-
ples and longitudinal follow up are needed to further substantiate the
neuroprotective role of DRB1*13:02 regarding brain gray matter loss
with aging and permit an evaluation of the influence of other genetic, life-
style, and environmental factors linked to brain atrophy on the protective
effect observed here. An additional limitation concerns the fact that the
study involved only women participants, and an extension of these find-
ings to men would be important for their generalization. These aspects
are currently under investigation in our Brain Resilience Initiative
(http://healthybrain.umn.edu/womenshealthybrain.shtml).
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