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Understanding the Gut Microbiota in Pediatric
Patients with Alopecia Areata and their Siblings:
A Pilot Study

Sneha Rangu', Jung-Jin Lee”, Weiming Hu”, Kyle Bittinger’ and Leslie Castelo-Soccio'"’

A cross-sectional study of 41 children aged 4—17 years with alopecia areata and 41 of their siblings without
alopecia areata was conducted. A total of 51% had the Severity of Alopecia Tool scores in the range of 0—25%,
12% had scores between 26% and 49%, and 36% had scores between 75% and 100%. The fecal microbiome was
characterized using shotgun metagenomic sequencing. A comparison of alpha and beta diversity yielded a
small but statistically significant difference on the basis of Jaccard distance, which measures species presence
and absence between samples. However, a follow-up analysis did not reveal the particular species that were
present more often in one group. The relative abundance of one species, Ruminococcus bicirculans, was
decreased in patients with alopecia areata relative to that in their sibling controls. An analysis of gene ortholog
abundance identified 20 orthologs that were different between groups, including spore germination genes and
genes for metal transportation. The associations reported in this study support a view of pediatric alopecia
areata as a systemic disease that has effects on hair but also leads to internal changes, including differences in

the gut microbiome.
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INTRODUCTION

Alopecia areata (AA) is a T-cell-mediated autoimmune dis-
ease (AID) with unknown pathogenesis and no approved
therapies (Gilhar et al., 2012; Rajabi et al., 2018). Genetic
profiling of AA has shown deficiencies in the mechanisms of
both peripheral and central tolerance (Coda and Sinha, 2011;
Jabbari et al., 2016; Sudrez-Farinas et al., 2015). In other
autoimmune disorders, such as rheumatoid arthritis and in-
flammatory bowel disease, many genetic and mechanistic
parallels exist, and there is a growing body of data about the
role of microbiota in onset and flares. AA risk genes are
shared with many other AIDs such as rheumatoid arthritis,
type 1 diabetes, celiac disease, systemic lupus erythemato-
sus, multiple sclerosis, and psoriasis (Petukhova et al., 2010).
The current off-label immune-suppressive therapies can put
children at short-term risk for infection and long-term risk for
malignancy. In similar autoimmune diseases, there has been
increasing evidence that altering the bacteria of the gastro-
intestinal tract may mitigate the disease. Fecal microbiome
transplantation has been successfully applied to control
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recurrent Clostridioides difficile infection and can be bene-
ficial for inducing the remission of inflammatory bowel dis-
ease (Weingarden and Vaughn, 2017). Owing to its
effectiveness in AlDs, there are ongoing randomized clinical
trials of fecal microbiome transplantation in patients with
rheumatoid arthritis (Zhang, 2019). In 2017, a case study
reported hair growth in two young adults with alopecia
universalis (and inflammatory bowel disease) treated with
fecal transportation for secondary C. difficile infections. Both
subjects previously were refractory to standard therapy
(Rebello et al., 2017). The gut microbiota has been analyzed
in adults with AA but not in pediatric populations. In this
study, we address the knowledge gap by conducting a cross-
sectional study evaluating the microbiome of 41 children
aged 4—17 years with AA and their siblings aged 4—17 years
without AA as control subjects.

RESULTS
Of 41 children with AA, 11 were males, and 30 were fe-
males. Ages ranged from 4—17 years, with 22% of them aged
4—7 years, 27% of them aged 8—11 years, 34% of them aged
12—15 years, and 17% of them aged 16—17 years. Of them,
29 of 41 (71%) subjects identified as Caucasian. AA severity
ranged from mild to severe: 51% had Severity of Alopecia
Tool scores in the range of 0—25% (mild), 12% had scores
between 26% and 49%, and 36% had scores between 75%
and 100% (severe). The most common comorbidity among
subjects with AA was atopy (26.8%), including eczema,
seasonal allergies, food allergies, and asthma. The diet was
predominantly Western/meat eaters (83%), but a small
portion was vegan (2%), vegetarian (2%), gluten free (5%), or
dairy free (7%) (Table 1).

We characterized the fecal microbiome of all subjects
using shotgun metagenomics and recovered 2.7 million read
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Table 1. Patient Characteristics (N = 41)

Characteristics Value
Sex assigned at birth, n (%)
Male 11 (26.8)
Female 30 (73.2)
Age, y, n (%)
47 9 (22.0)
8—11 11 (26.8)
12—15 14 (34.1)
16—17 7 (17.1)
Race, n (%)
American Indian or Alaska Native 0 (0)
Asian 5(12.2)
Black or African American 2 (4.9
Indian 1(2.4)
Native Hawaiian or Other Pacific Islander 0 (0)
White/Caucasian 29 (70.7)
Other 3(7.3)
Refused 12.4)
Diet, n (%)
Western 34 (82.9)
Vegan 12.4)
Gluten free 2 (4.9)
Dairy free 3(7.3)
Vegetarian 1(2.4)
Comorbidities, n (%)
Yes 26 (63.4)
No 15 (36.6)
Conditions reported, n (%)
Belly pain 6 (14.6)
Food allergy 6 (14.6)
Constipation 3(7.3)
Eczema 2 (4.9)
Asthma 2 (4.9
Down syndrome 2 (4.9)
Seasonal allergy 1(2.4)
Diarrhea 1(2.4)
Lactose intolerant 12.4)
GERD 1(2.4)
Autism 1(2.4)
Headaches 102.4)
Sarcoidosis 12.4)
Cerebral palsy 1(2.4)
SALT score, n (%)
0—-25 21 (51.2)
26—49 5(12.2)
50—74 0 (0)
75—100 15 (36.6)

Abbreviations: GERD, gastroesophageal reflux disease; SALT, Severity of
Alopecia Tool.

pairs per sample (median value) after removal of low-quality
sequences and human DNA (Figure 1). Our statistical ana-
lyses of microbiome diversity and abundance accounted for
sibling pairs and included age as an additional variable.
Microbiome alpha diversity, assessed by species richness and
Shannon diversity, was not different between subjects with
AA and their sibling controls (Figure 2a). Likewise, an anal-
ysis of Bray—Curtis distance between fecal microbiomes did
not reveal systematic differences in the abundance of bac-
terial species (Figure 2b). However, an analysis of Jaccard
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distance, which measures the fraction of species present in
one sample but not in the other, indicated a small but sta-
tistically significant difference (permutational ANOVA test,
R* =0.014, P=0.01) (Figure 2b). Although the effect size for
AA was smaller than the estimated effect size for age, we
nonetheless searched for species-level taxa that were differ-
entially present or absent between the study group and
matched control subjects. We identified 32 bacterial species
with nominal P-values lower than 0.05, but none were sta-
tistically significant after correction for multiple comparisons
(Figure 3).

We next examined the taxonomic and gene function sig-
natures of the microbiome in children with AA. Our search
for taxa with relative abundance differences between patients
with AA and their sibling controls identified one species,
Ruminococcus bicirculans, with lower relative abundance in
patients with AA (linear mixed model, P = 0.02) (Figure 4a).
Our tests of bacterial gene ortholog abundance yielded 20
genes that differed between patients with AA and their sibling
controls (P < 0.05 for all) (Figure 4b). The relative abundance
of two spore germination genes, gerKA and gerKC, were
decreased in children with AA, whereas two genes for metal
transportation, fbpA and ctpC, were increased. We found one
multidrug resistance gene, coding for a transporter protein,
which had a higher relative abundance in children with AA.
Thus, our analysis of bacterial species and gene orthologs
revealed minor but statistically significant microbiome dif-
ferences in children with AA.

DISCUSSION

Although we identified only minor differences in this study,
our findings could have implications for the role of the
microbiome in pediatric AA. We hypothesize that a much
larger study would be needed to identify which bacterial
species, if any, might account for the observation in Jaccard
distance. In adults with AA, a predictive model based on the
number of bacterial counts of Parabacteroides distasonis and
Clostridiales vadin BB60 group was used previously to pre-
dict disease status with 80% accuracy (Moreno-Arrones et al.,
2020). The initial presentation of AA is typically the ages of
4—6 years in pediatric patients, which is just at the time that
fecal microbiota transitions from very varied to more similar
to adult microbiota (Avershina et al., 2016; Gilhar et al.,
2012; Ficaro et al., 2020; Rajabi et al., 2018). In early
childhood (under age 4 years), the gut microbiota is charac-
terized by relatively low stability and high responsiveness
toward influencing factors. Influencing factors include the
diet, which has major implications for the establishment of
the gut microbiota (Borde and ;\strand, 2018). This may
explain why genetically susceptible children do not have first
episodes of alopecia until ages 4—6 years and some later.
Influencing factors may also explain the difference in taxa
between subjects with alopecia and their sibling control
group.

The shift of the microbiota from early childhood to adult-
hood may be a key for understanding the host—-microbiota
interaction in patients with AA.

In this study, we found small differences in species and
gene function abundance in the gut microbiome of patients
with AA (Figure 4), which may serve as a nucleus for an
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Figure 1. Heatmap. Heatmap of bacterial species relative abundance in children with AA and their sibling controls. The color scale is graded to show additional

detail at low relative abundance. AA, alopecia areata.

improved understanding of environmental triggers such as
diet and antibiotic exposure in pediatric AA. R. bicirculans
has been reported as decreased in other autoimmune dis-
eases (Bibbo et al., 2020; Forbes et al., 2016) and has the
selective capacity to aid with uptake of nutrients from
polysaccharides (Dassa et al., 2014). Consequently, we
might hypothesize that this observation is diet associated.
We know that dietary patterns play a role in genetically
susceptible hosts, but this might provide evidence for why
some are more likely to develop the disease. As for the dif-
ferences in bacterial gene abundance, we identified genes
that were associated with spore germination and multidrug
resistance. Most members of the Clostridia family are spore-
forming bacteria, including R. bicirculans. Thus, the result is
broadly compatible with our taxonomic results. Our

observation of increased abundance among multidrug-
resistant genes might suggest a microbial response to anti-
biotic exposure. Future studies may explore this association
by collecting long-term antibiotic exposure data in pediatric
subjects with AA.

MATERIALS AND METHODS

The study was approved by the Children’s Hospital of Philadelphia
(PA) Institutional Review Board (#18-01550), and parents/guardians
gave their written informed consent to participate, and children
provided assent. Patients with AA aged 4—17 years were identified
through medical record review. Children were excluded if antibi-
otics were taken in the last 6 months. Eligible subjects were provided
with home stool collection kits with instructions for putting a tray on
the toilet and then transferring to a sterile container and package.
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Figure 3. Candidate species. Candidate species were identified as present (black square) or absent (white square) more often in the gut microbiome of children
with AA (uncorrected P < 0.05, corrected P > 0.05 for all species shown). AA, alopecia areata.

Figure 4. Species and gene ortholog a
abundance in the gut microbiome. (a)

Relative abundance of Ruminococcus 1e-01 -
bicirculans in patients with AA and
their sibling controls. Lines connect
samples from sibling pairs. (b) The
estimated effect size for relative
abundance differences in 20 gene
orthologs where statistically
significant relative abundance
differences were identified. Effect size
estimates were determined from linear
mixed models of log-scaled gene 1e-04-
ortholog abundance versus age and

disease status. Positive estimates

correspond to genes that are higher in Affected patient  Sibling control
affected patients. Error bars extend to

one standard error above and below

the estimate. AA, alopecia areata.

1e-02-

1e-03-

Relative Abundance

b Higher in Higher in
sibling controls affected patients

i A -
oy il

K21755 bsdA; LysR family transcriptional regulator,
salicylic acid-responsive activator of bsdBCD 7
K12950 ctpC; manganese/zinc-transporting P—typeEéT;Pazs.éa C
K21138 HDDC3; guanosine—3‘,5'—bis(d£Ehdstaie
3'-pyrophosphohydrolase [EC:3.1.7.2
K01067 E3.1.2.1, ACH1; acetyl-CoA hydrolase [EC:3.1.2.1]

K06297 gerKC; spore germination protein KC

K16881; mannose—1-phosphate uaryl_}zltransferase /
phosphomannomutase FEC: .7.7.135.42.8]

K06295 gerKA; spore germination protein KA

K06410 spoVFA,; dipicolinate synthase subunit A -

K05814 ugpA; sn—glycerol 3—phosphate transport system | i
ermease protein

K02012 afuA, fbpA,; iron(lll) transport system | =
substrate—binding protein !

KO07552 bcr, tcaB; MFS transporter, DHA1 family, multidrug
resistance protein 1

K05815 ugpE; sn—glycerol 3—phosphate transport system el
permease protein 1

K01466 allB; allantoinase [EC:3.5.2.5]

K02083 allC; allantoate deiminase [EC:3.5.3.9] .-.-.:
K09684 pucR; PucR family transcriptional regulator, purine !
catabolism regulatory protein

K21583 grdG; sarcosine reductase complex component B subunit | —.—
alpha [EC:1.21.4.3]
K21473 ripA; peptidoglycan DL—endopeptiEdé\%e‘tRipA

——
——
——
——
—e—i
——i
—e—
o

:

¢

f

{

K21578 grdl; betaine reductase complex component B subunit | e
g P alp%a [EC:1.21.4.4

K13932 mdcD; malonate decarboxylase E%t% s1u$usn7|] o
K13928 mdcR; LysR family transcriptional regulator, malonate |,

utilization transcriptional regulator

-05 00 05 1.0

Estimated difference
gene ortholog abundance

S

4 JID Innovations (2021), Volume 1



Stool kits were mailed to Children’s Hospital of Philadelphia and
were then processed in the Children’s Hospital of Philadelphia
Microbiome Center.

Shotgun metagenomic sequencing was carried out in the Chil-
dren’s Hospital of Philadelphia Microbiome Center. The DNeasy
PowerSoil Kit (Qiagen, Germantown, MD) was used for DNA
extraction. The NexteraXT DNA Library Preparation Kit (Illumina,
San Diego, CA) was used to generate DNA libraries for shotgun
metagenomic sequencing. DNA sequencing was carried out on a
HiSeq 2500 instrument, producing 125 base pair paired-end
sequence reads. Additional samples of DNA-free water and DNA
extraction blanks were processed in parallel with the experimental
samples to assess reagent and laboratory contamination.

Bioinformatics analysis was conducted with the Sunbeam meta-
genomics pipeline (Clark et al., 2019). Taxonomic assignments were
generated with Kraken, version 2.1.1. (Wood et al., 2019). The Kyoto
Encyclopedia of Genes and Genomes database was used to assign
and classify gene orthologs (Kanehisa and Goto, 2000). Species
richness or the number of bacterial species per sample was esti-
mated using a sequencing depth of 10,000 reads per sample.
Shannon diversity or the abundance-weighted species diversity was
calculated using a natural logarithm. Community-level differences
between sample groups were assessed using Bray—Curtis distance
and Jaccard distance between samples. Sample—sample distances
were tested with permutational ANOVA, where permutations were
restricted to randomize samples within sibling pairs (Anderson,
2001). When multiple tests were conducted, P-values were cor-
rected using the method of Benjamini and Hochberg (1995) to
control for a false discovery rate of 5%.
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