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A B S T R A C T   

Wastewater quality modelling plays a vital role in planning and management of wastewater 
treatment plants (WWTP). This paper develops a new hybrid machine learning model based on 
extreme learning machine (ELM) optimized by Bat algorithm (ELM-Bat) for modelling five day 
effluent biochemical oxygen demand (BOD5). Specifically, this hybrid model combines the Bat 
algorithm for model parameters optimization and the standalone ELM. The proposed model was 
developed using historical measured effluents wastewater quality variables, i.e., the chemical 
oxygen demand (COD), temperature, pH, total suspended solid (TSS), specific conductance (SC) 
and the wastewater flow (Q). The performances of the hybrid ELM-Bat were compared with those 
of the multilayer perceptron neural network (MLPNN), the random forest regression (RFR), the 
Gaussian process regression (GPR), the random vector functional link network (RVFL), and the 
multiple linear regression (MLR) models. By comparing several input variables combination, the 
improvement achieved in the accuracy of prediction through the hybrid ELM-Bat was quantified. 
All models were first calibrated using training dataset and later tested using validation and based 
on four performances metrics namely, root mean square error (RMSE), mean absolute error 
(MAE), the correlation coefficient (R), and the Nash-Sutcliffe model efficiency (NSE). In all, it is 
concluded that the ELM-Bat is the most accurate model when all the six input were included as 
input variables, and it outperforms all other benchmark models in terms of predictive accuracy, 
exhibiting RMSE, MAE, R and NSE values of approximately, 0.885, 0.781, 2.621, and 1.989, 
respectively.   
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1. Introduction 

Wastewater treatment plants (WWTPs) are an important aspect of cities and towns’ infrastructure because they improve societal 
life and health by treating municipal and industrial sewage and releasing the treated and cleaned wastewater effluent into different 

sectors of industry, agriculture, and society. Releasing and exposing raw wastewater to surface and groundwater resources has a 
significant negative and even hazardous environmental impact owing to the consumption of dissolved oxygen by microbes. Because of 
its biological nature and the infinite components that may be identified, generating raw wastewater is exceedingly difficult in terms of 
chemical composition. Consequently, biological characteristic of wastewater must be adequately controlled during the all treatment 
process, and continuously monitored in order to evaluate the WWTPs’ efficiency. Thus, the five day biochemical oxygen demand 
(BOD5), along with other wastewater variables such as ammoniacal nitrogen (NH3), chemical oxygen demand (COD), and several 
organic compounds, is known as one of the important and critical biological wastewater variables. BOD5 measures the biodegradable 
content of wastewater and dictates the amount of aeration, which is the most energy-intensive stage in WWTPs. On the other hand, 
BOD5 is one of the key indicators for evaluating surface water quality. It is commonly utilized in the monitoring of organic 
contamination in water bodies [1–5]. 

Assessing all of the influent characteristics takes time and necessitates performing difficult experiments and consuming hazardous 
materials, as thoroughly stated in the standard methodology for water and wastewater assessment. To solve this issue, various elec-
trical sensors have recently been created to provide real-time measurements of the quality characteristics of the influent [2,6]. 
Nevertheless, several critical metrics, such as BOD5 and COD, are difficult and expensive to measure using sensors, necessitating the 
creation of mathematical prediction models for calculating their values based on previous data. Without explicitly specifying the 
treatment process using mathematical or chemical formulae, machine learning (ML) is capable of modeling complicated nonlinear 
connections. It provides the opportunity to explore new knowledge of wastewater behavior, which is difficult to detect, in contrast to 
traditional models. ML integration with wastewater treatment processes has been successfully used as a capable soft computing tool to 
boost environmental preservation, optimize plant performance, and improve the treatment process [7,8]. 

Over the course of the past two decades, several studies have applied ML models for modeling and predicting BOD5 in water bodies 
and rivers [9], and some research has dealt with modeling water quality indices in WWTPs [2,10]. For example, Qiao et al. [11] 
employed a fuzzy neural network to account for the nonlinear inaccuracy of the mechanism model of the sewage system. They applied 
a gradient descent approach to adjust the tuning parameters of the network. According to the experimental findings, the applied 
fuzzy-based ML method had better estimation accuracy than the conventional radial basis function (RBF) artificial neural network 

Nomenclature 

AdaBoost adaptive boosting 
ANFIS adaptive neuro-fuzzy inference system 
NH3 Ammonia 
ANN artificial neural network 
BOD5 biochemical oxygen demand 
DT decision tree 
EC electrical conductivity 
XGBoost eXtreme Gradient Boosting 
ELM Extreme Learning Machine 
GRNN generalized regression neural network 
GB Gradient Boosting 
KNN K-Nearest Neighbor 
ML Machine Learning 
OrgN Organic nitrogenous compounds 
OrgP Organic phosphorous compounds 
OP Orthophosphates 
pH Potential of Hydrogen 
RBF Radial Basis Function 
RFR Random Forest regression 
RNN Recurrent Neural Network 
SS Suspended Sediment 
TP Total Phosphorus 
TSS Total Suspended Solids 
WWTP Wastewater Treatment Plant 
M5Tree M5 model tree 
LSSVM least squares support vector machine 
MARS Multivariate adaptive regression Spline  
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(ANN). Heddam et al. [12] developed a model based on a generalized regression neural network (GRNN) to predict the concentration 
of effluent BOD5 at a WWTP, located in the east of Algeria. The constructed GRNN model was built on a function of five effluent 
wastewater quality variables, such as pH, temperature, COD, electrical conductivity (EC) and total suspended solids (TSS). It was 
reported that the developed GRNN model produced consistent and acceptable results for estimating BOD at the WWTP. Yu et al. [13] 
used an extreme learning machine (ELM), which is considered a fast and reliable ANN model, to estimate the BOD5 value at WWTP 
using real-time data. The findings of the study demonstrated the satisfactory capability of the ELM model. 

Alsulaili and Refaie [14] constructed an ANN model to forecast wastewater influent BOD5 at a WWTP located in Kuwait. The 

Table 1 
Summary of the conventional and modern ML models in modeling BOD in WWTPs.  

References Case study/Location Applied datasets Models employed Remarks 

[16] Wastewater treatment 
plant at RIPASA, Brazil 

BOD5, COD, Inlet Discharge, Outlet 
Discharge 

Artificial Neural Network 
(ANN) 

The results demonstrated the benefit of 
ANNs in representing highly nonlinear 
interactions, even in a system with 
operational data restrictions. 

[17] El-Asfar WWTP in the 
Greater Cairo district, 
Egypt 

BOD5, Suspended sediment (SS) ANN The generated models continuously 
outperform in the face of variable precision 
and amount of input data. 

[18] Not disclosed due to 
confidentiality 

sewage sample odours ANN Overall, the results show that ANNs may be 
utilized to categorize sewage samples 
collected from various locations of a 
wastewater treatment facility. 

[19] A local WWTP in 
Turkey 

364 daily records of the year 2005 consists 
of COD, Discharge, suspended sediment 
(SS), total nitrogen, and phosphorus 

ANN, MLR The ANN model was proven to be effective 
in calculating the daily BOD5 in the input 
of wastewater biochemical treatment 
facilities. 

[1] WWTP in south Iran WWTP parameters measured over the span 
of almost two years 

ANN It was discovered that filtering the data is 
critical for developing better ANNs models. 
Moreover, adopting a multiple input-single 
output technique yields a superior ANN. 

[11] A small scale 
wastewater treatment 
plant in Beijing 

COD, SS, pH, DO K-means clustering 
method and Fuzzy Neural 
Network 

The simulation results revealed that the 
TSFNN with K-means clustering 
outperforms the other two techniques in 
terms of approximation performance in 
predicting BOD5 levels. 

[12] Sidi Marouane 
Wastewater Treatment 
Plant (WWTP), Algeria 

691 measured data points based on COD, 
TSS, electrical conductivity (EC), 
temperature, and pH 

Generalized regression 
neural network (GRNN) 
and MLR 

Based on the findings of this investigation, 
the created GRNN model can be utilized to 
correctly estimate BOD5 at WWTP. 

[13] Benchmark Simulation 
Model no. 1 (BSM1) 

Discharge, SS, TSS, and other quality 
parameters 

extreme learning machine 
(ELM) based on an 
improved cuckoo search 
algorithm (ICS) 

According to simulation findings, the soft 
sensor model has superior real-time 
performance, high prediction accuracy, 
and better generalization performance for 
BOD5 measurement. 

[14] WWTP in Kuwait Dataset covers seven years of operation, 
containing 2397 observations, including 
influent temperature, pH, conductivity, 
BOD5, COD, and TSS 

ANN The authors discovered that the COD 
characteristic had the most impact in 
predicting BOD5 outcomes. 

[3] Wastewater treatment 
plant in Hong Kong 

Input data consists of COD, TSS, pH, 
Discharge, Zinc, OP-P, Cond, NH3, and 
sediment 

XGBoost, ANN, SVM XGBoost calculated a broad variety of 
BOD5 values, demonstrating consistent 
performance across several test sets. 

[20] Zargandeh WWTP, 
Iran 

A dataset that contains 265 observations 
for the prediction of COD, BOD5, and TSS 

ANN, ANN optimized by 
GA: (MLP-GA) 

The most accurate results were obtained by 
monitoring the prediction model 
performance by modifying the ANN design 
using the GA. 

[21] Benchmark Simulation 
Model no. 1 (BSM1) 

BSM1 model consists of five reaction tanks 
and one settling tank. Thirteen auxiliary 
variables like soluble and insoluble organic 
matters, DO, NH3, and alkalinity 

Broad learning system 
(BLS), SVM, RNN, and 
ANNs 

The overall prediction accuracy of SVM 
and RNN was lower than that of OBLS; the 
performance of SVM and RNN was 
influenced by the environment, resulting in 
lower prediction accuracy and a weaker 
overall prediction impact than OBLS. 

[2] Madinat Salman 
WWTP, Bahrain 

Datasets from four WWTPs, including pH, 
conductivity, TSS, NH3, COD, TP, TN 

RF, GB, DT, and AdaBoost The proposed BOD prediction model was a 
decision-supporting tool to aid WWTP 
operators in acquiring the essential 
information. In general, the RF and GB 
outperformed the other versions. 

[15] Influents of 7 WWTPs 
in Hong Kong 

Monthly data collected from the inflow of 7 
WWTPs over a three-year period. Datasets 
include concentrations of five independent 
variables of TSS, NH3, OrgN, InorgP and 
OrgP 

GEP, MLPNN, MLR, GB, 
RT 

The goal parameters were chosen to be 
BOD5 and COD. The most effective 
indicators for predicting BOD and COD 
were TSS and NH3.  
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collection contains 2397 observations from seven years of operation. Many parameters were assessed, including influent temperature, 
pH, EC, COD, and TSS. The authors discovered that the COD characteristic had the most impact on predicting BOD5 outcomes. Ching 
et al. [3] developed and upgraded a soft sensor by combining ANN, SVM, and eXtreme Gradient Boosting (XGBoost) ML models to 
measure the BOD5 of two distinct WWTPs. The models findings demonstrated that XGBoost could detect the high values better than 
conventional soft sensors. In addition, analyzing the results demonstrated that XGBoost was more accurate than the SVM in some 
specific tests. In another study, Qambar and Al Khalidy [2] applied integrated ML models combined with remote sensing techniques to 
predict BOD5 in four WWTPs. The ML models include tree-based models, such as RF, DT, AdaBoost, and gradient boost (GB) algo-
rithms. They applied the k-fold cross-validation technique for developing and executing the ML models. Based on the sensitivity 
analysis, it was found that pH, NH3, and conductivity are among the most influential parameters in modeling BOD5. It was reported 
that the RF and GB outperformed the other models in general. Recently, Aghdam et al. [15] trained several ML models, including Gene 
expression programming (GEP), multilayer perception neural networks (MLPNN), multi-linear regression (MLR), k-nearest neighbors, 
GB, and regression trees (RT)-based models, for the prediction of monthly BOD5 and COD. Based on the tree-year datasets, the GEP 
modeling findings were shown to be consistent with the underlying chemistry of the wastewater quality parameters. 

In order to gain a general insight into the use of conventional and modern ML models for modeling BOD5 at WWTPs, a summary of 
the research conducted in this field is compiled in Table 1. According to the information in Table 1, the initial studies (up to 2012) on 
the application of ML models in modeling BOD5 was confined to the use of ANN, namely feedforward ANN. Nevertheless, the adoption 
of various types of ML models, including SVRs, tree-based (e.g., RT), and ensemble (e.g., XGBoost), has increased. Furthermore, as ML 
models get more complicated, it has been possible in recent years to utilize additional input parameters in models. For example, in the 
research published in 2022 and 2023, more than seven input factors were used to predict BOD5 increases, which led to the 
improvement of the ML outcomes. Therefore, in the present study, we propose a new modelling strategy for better prediction of BOD5 
in WWTPs using an extreme learning machine model optimized using the Bat algorithm (ELM-Bat). The proposed ELM-Bat was 
developed using effluent wastewater quality collected at the Sidi Marouane WWTP, Algeria. The performances of the ELM-Bat were 
compared with those of the multilayer perceptron neural network (MLPNN), random forest regression (RFR),Gaussian process 
regression (GPR), random vector functional link (RVFL), and the standalone multiple linear regression (MLR). The innovation and 
scientific contribution of the present study can be summarized as follow: (i) a novel hybrid ML model was introduced which takes 
advantages of ML and metaheuristic optimization algorithm for improving the prediction of the effluent BOD5, and (ii) the effect of 
several water quality variables on the estimation of BOD5 has been analyzed. The remainder of the present paper is as follow: Section 2 
provides a brief description of the WWTP plant and the dataset used for models development. Section 3 provides the theoretical 
description of the ML models used in the present study. Section 4 was reserved to the experimental results and discussion. In Section 5 
we provide some conclusions and future recommendations. 

Fig. 1. Map showing the location of Sidi Merouane Wastewater Treatment Plant.  
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2. Study area and data used 

2.1. Description of the wastewater treatment plant process 

In the present study, the modelling framework was developed using data collected from the effluent of municipal wastewater 
treatment plant (WWTP) located at Sidi Marouane town, Mila province, Algeria (Fig. 1). The WWTP is realized for treating more than 
20657 m3/day. The WWTP receives wastewater from several sewage stations located near its surface. The plant employs traditional 
wastewater treatment processes consisting of coarse and fins screens, grit, scum, primary sedimentation tanks, activated sludge 
aeration tanks, secondary sedimentation tanks, and final clarification and chlorination facilities [12]. A total of 1235 patterns covering 
the period from August 01, 2009 to July 11, 2013 were collected and divided into training (865) and validation (370) with respect to 
the ratios of (70 %/30 %). Data collected consists of daily effluent chemical oxygen demand (COD), wastewater temperature (Tw), 
specific conductance (SC), wastewater flow rate (Q), total suspended solids (TSS), wastewater pH, and the five-day biochemical oxygen 
demand (BOD5) (Table 2). In Table 2, we report au summary statistic for all variables used in the present study. Hence, the BOD5 was 
used as the predicted variable, i.e., the variable to be modelled; while the COD, pH, Tw, TSS, SC, and the Q, were used as the input 
variables combined together with respect to 09 input combination (Table 3). 

2.2. Performance assessment of the models 

In the present study, four performances metrics were selected for models comparison and evaluation: the root mean square error 
(RMSE), mean absolute error (MAE), correlation coefficient (R), and Nash-Sutcliffe efficiency (NSE) applying Equations (1)–(4). 

MAE=

∑N

i=1

⃒
⃒BOD5pre,i − BOD5obs,i

⃒
⃒

N
(1)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
BOD5obs,i − BOD5pre,i

)2

N

√
√
√
√
√

(2)  

NSE= 1 −

⎡

⎢
⎢
⎢
⎣

∑N

i=1

(
BOD5obs,i − BOD5pre,i

)2

∑N

i=1

(
BOD5obs,i − BOD5obs

)2

⎤

⎥
⎥
⎥
⎦

(3)  

Table 2 
Summary statistics of the effluent Sidi Merouane municipal WWTP.  

Variables Subset Unit Xmean Xmax Xmin Sx Cv R 

Sidi Merouane Wastewater Treatment Plant 
Q Training m3/day 3872.72 14736.00 128.00 2308.88 0.60 − 0.11  

Validation m3/day 3828.70 13221.00 86.00 2266.30 0.59 − 0.09  
All data m3/day 3859.53 14736.00 86.00 2280.18 0.59 − 0.11 

Tw Training ◦C 19.94 28.70 11.10 4.54 0.23 − 0.15  
Validation ◦C 19.93 27.90 9.50 4.71 0.24 − 0.03  
All data ◦C 19.93 28.70 9.50 4.58 0.23 − 0.11 

pH Training // 7.66 8.50 7.00 0.30 0.04 0.25  
Validation // 7.68 8.52 7.01 0.31 0.04 0.28  
All data // 7.67 8.52 7.00 0.30 0.04 0.26 

COD Training mg/L 20.69 56.30 3.50 10.84 0.52 0.63  
Validation mg/L 21.86 59.50 5.30 11.44 0.52 0.69  
All data mg/L 21.04 59.50 3.50 10.99 0.52 0.65 

TSS Training mg/L 10.24 92.80 0.20 10.25 1.00 0.13  
Validation mg/L 9.98 63.20 0.20 9.04 0.91 0.13  
All data mg/L 10.16 92.80 0.20 9.79 0.96 0.13 

SC Training μ.s/cm 1673.08 2290.00 1210.00 170.99 0.10 − 0.24  
Validation μ.s/cm 1665.28 2270.00 1210.00 175.54 0.11 − 0.26  
All data μ.s/cm 1670.75 2290.00 1210.00 171.20 0.10 − 0.24 

BOD5 Training mg/L 8.05 26.00 0.60 5.28 0.66 1.00  
Validation mg/L 8.96 27.00 1.00 5.68 0.63 1.00  
All data mg/L 8.32 27.00 0.60 5.40 0.65 1.00 

[Abbreviations: Xmean, mean; Xmax, maximum; Xmin, minimum; Sx, standard deviation; Cv, coefficient of variation; R, coefficient of correlation with 
BOD5, Tw: wastewater temperature, SC: specific conductance, COD: chemical oxygen demand, BOD5: five-day biochemical oxygen demand, Q: 
wastewater flow rate, TSS: total suspended solids, mg/l: milligrams per liter, μ.s/cm: microsiemens per centimeter]. 
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R=

∑N

i=1

(
BOD5obs,i − BOD5obs

)(
BOD5pre,i − BOD5pre

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
BOD5obs,i − BOD5obs

)2 ∑N

i=1

(
BOD5pre,i − BOD5pre

)2

√ (4)  

BOD5obs and BOD5pre are the mean measured, and mean predicted five days biochemical oxygen demand, respectively, BODobs and 
BODpre specifies the observed and predicted five days biochemical oxygen demand, and N shows the number of data points. 

3. Methodology 

3.1. Bat algorithm optimized extreme learning machine (ELM-bat) 

The extreme learning machine (ELM), a successful classification of feedforward neural networks (FFNN), was originally suggested 
and employed by Huang et al. [22,23] document. It can outline utilizing one hidden layer composed from L hidden neurons, N input 
variables, and it can be formulated as follow (Equation (5)): 

f (x)=
∑N

j=1

∑L

i=1
βigi

(
wixj + b

)
(5) 

Were, g(.) = the activation function used by each hidden neuron in the single hidden layer, and βi is the output connection weights 
linking the hidden layer and the output layer. The most employed activation functions are the Gaussian and sigmoid functions in the 
ELM classification. In addition, the Gaussian activation function can be formulated as (Equation (6)): 

g(xi)= h(a, c, xi)= exp
(
− a‖xi − c‖2) (6)  

Where a and c = the activation functions parameters. In addition, the output target variable can be formulated as (Equation (7)). 

y=
∑N

j=1

∑L

i=1
βigi

(
wixj + b

)
= t + ε (7)  

Where ε = the error. During the training process, the connection weights are stabilized in the ELM classification. Namely, random 
values are authorized to activation function of neurons directly instead of applying an iterative process for renewing them. The least 
square method (LSM) can manage the connection weights of output neuron continuously. That is, the approximation error can be 
reduced by calculating the ‖Hβ − T‖2 for the connection weight (β), where T = the target matrix and H = the randomized matrix 
corresponding to the hidden layer. 

ELM trains FFNN with one hidden layer in two steps including random feature mapping and linear parameters solving. In the first 
step, it starts the hidden layer to map the input data into a feature space utilizing the mapping functions, which can be any nonlinear 
continuous functions. In the second step, the connection weights between hidden and output layers can be solved by minimizing 
approximation error [22,23]. The previous articles [22–27] suggested and investigated the special description on the ELM model’s 
application. Fig. 2 shows the schematic diagram of ELM in this study. 

With the high level of advancement gained during the last few years in the area of metaheuristic optimization, several algorithms 
have been developed and successfully used for optimizing ML models. These algorithms have helped in solving several complex 
problems and the improvement of the ML performances was underpinned by a substantial decrease in the running time of the models 
and the error generated during the training of ML models. Among the metaheuristic optimization algorithms, we use in the present 
study the Bat algorithm proposed by Yang [28]. Thus, the Bat algorithm is combined with the ELM model and a new hybrid ML model 
was proposed and called as the ELM-Bat (Fig. 2). The Bat algorithm can be summarized as follow and more details can be found in Refs. 
[28,29]. The Bats are creatures that have the ability to fly anywhere with an exact and fixed objective: the search of preys. However, 
this research of preys is based on the echolocation for localization, and an update of the position and speed of each Bat individual in a 

Table 3 
The input combinations of different extreme learning machine models.  

MLR ELM_Bat MLPNN RVFL RFR GPR Input combination Output 

MLR1 ELM_Bat1 MLPNN1 RVFL1 RFR1 GPR1 Q, Tw, pH, COD, TSS, SC BOD5 

MLR2 ELM_Bat2 MLPNN2 RVFL2 RFR2 GPR2 Tw, pH, COD, TSS, SC BOD5 

MLR3 ELM_Bat3 MLPNN3 RVFL3 RFR3 GPR3 Q, Tw, pH, COD, TSS BOD5 

MLR4 ELM_Bat 4 MLPNN4 RVFL4 RFR4 GPR4 Q, Tw, pH, COD BOD5 

MLR5 ELM_Bat 5 MLPNN5 RVFL5 RFR5 GPR5 Tw, pH, COD, TSS BOD5 

MLR6 ELM_Bat6 MLPNN6 RVFL6 RFR6 GPR6 Q, COD, SC BOD5 

MLR7 ELM_Bat7 MLPNN7 RVFL7 RFR7 GPR7 Q, Tw, COD BOD5 

MLR8 ELM_Bat8 MLPNN8 RVFL8 RFR8 GPR8 Q, SC BOD5 

MLR9 ELM_Bat9 MLPNN9 RVFL9 RFR9 GPR9 Tw, COD BOD5  
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Fig. 2. The ELM_Bat architecture.  
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multidimensional confined escape. Furthermore, the Bats can successfully achieve the hunting operation in total darkness using the 
ration between the emitting sound and receiving sound despite the distances that separate them, which helped them for recognizing 
and differencing the food and the barriers. The Bat algorithm is based on the combination of two parts: (i) the position of the Bat and (ii) 
the traveling velocity of the Bat. Using these two components, Yang [28] provided a mathematical algorithm for problems optimi-
zation, which can be briefly described as follow [30–33]. Using a velocity Vei and a location Xi, a frequency Fr, we can write the 
following equations (Equations (8)–(10)): 

Fri =Frmin
i + β

(
Frmax

i − Frmin
i

)
(8)  

Vet+1
i =Vet

i + Fri
[
Xt

i − Xbest
]

(9)  

Xt+1
i =Vet+1

i + Xt
i (10)  

In the above equations, the ‘’β’’ is a random vector in the range of [0, 1]. In addition to this, the Xbest is the best or optimum position 
obtained during the iterative process. Therefore, for each iteration, the optimum solution is updated based on randomly step as follow 
(Equation (11)): 

Xnew
i =Xold

i + δ × Amean
t (11)  

In the above equation, δ is a random number in the range of [-1, +1], and the Amean
t is the mean loudness calculated for all Bat 

population. More details about the Bat algorithm can be found in Refs. [30–33]. The Bat was used for hybridizing the ELM model and 
for better determination of the weights and biases parameters. In the present study, we use the MatLab code of the Bat algorithm is 
available at: https://www.mathworks.com/matlabcentral/fileexchange/74768-the-standard-bat-algorithm-ba. 

3.2. Multilayer perceptron neural network (MLPNN) 

The multilayer perceptron neural networks (MLPNN) keeps an input and output layers including one or additional hidden layers 
[34,35]. The classification of ML based model involve one hidden layer in the model configuration, while two or more hidden layers 
combined in the configuration are included in the category of deep learning-based model, respectively [36]. The MLPNN model uses 
the training dataset for determining the necessary model parameters, i.e., the connection weights and biases from the input to the 
hidden layers, and from the hidden to the output layers. In addition, the MLPNN uses the backpropagation (BP) training algorithms for 
obtaining these optimal parameters [37]. From the perspective of gradient calculation and successive adjustment for training pa-
rameters, the conjugate gradient backpropagation algorithm (CGBP) [38] was different from the traditional BP algorithm. The route of 
gradient descent flows down along a course, which is conjugate to the prior stage. The improvement in gradient is considered as 
orthogonal with function minimization compared with the prior stage [39]. Detailed information on the MLPNN’s application and 
implementation can be found in Refs. [36,40,41]. Fig. 3 represents the schematic diagram of MLPNN in this study. 

3.3. Gaussian process regression (GPR) 

In general, Gaussian process (GP) supposes that Gaussian is applied for joint probability distribution of model output. Since GP can 
be trained utilizing a matrix access without prior information of function and dataset, GP feature is suitable to provide the solution of 
complex and nonstationary problems in nature. The hyperparameters in the Bayesian approaches and maximum likelihood can 
manage the scheme of GP, which brings on training performance of an automatic and pertinent choice [42]. The Gaussian process 

Fig. 3. Schematic diagram of MLPNN.  
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regression (GPR) can be explained as a nonparametric probabilistic approach utilizing the idea of spatial smoothing [43]. GPR has 
been implemented in the divergent majors including medicine, engineering, and neuroscience fields [44–46]. In addition, GPR can be 
applied for estimated, forecasted, and predicted questions, and can provide the confidence interval for the matching points, which 
calculate the predictive uncertainty. In addition, GPR calculates a vector-based mean and covariance instead of occupying a 
scalar-based mean and variance values based on GP application [47]. Therefore, the benefit of GPR access is invincible to find the 
missing input data because the training data are merged to calculate the hyperparameters of covariance function. However, since GPR 
is not conscious for diverse choices of covariance, functions in the modeling process [48]; the implementation of covariance function 
can make the performance of GPR stronger than other machine learning models. Readers for this article can find the specific 
description on the development and application of GPR from [25,46,49]. Fig. 4 illustrates the schematic diagram of GPR. 

3.4. Random forest regression (RFR) 

The article of Breiman [50] implemented the random forest based on the solution of regression and classification problems. The 
random forest regression (RFR) which consists of regression tree (RT) and bootstrap aggregation (Bagging), is a perfect model for 
solving actual time problems in diverse geophysical fields including environment [24,36,51], hydrometeorology [52], and hydrology 
[53,54]. RFR carries out the in-built cross-validation processes and training feature utilizing the out-of-bag samples. The training error 
calculated from the mean square error (MSE) could provide a predictive estimation of RFR’s efficiency [55] (Were et al., 2015). In RFR 
modeling procedure, three parameters including ntree (the number of tree to grow), mtry (randomly selected predictor variables), and 
nodesize (the minimal number of observations) are employed. In addition, when the predictors are ignored one by one from RFR, the 
importance of each predictor is calculated utilizing increased MSE. The relative importance of each predictor can be selected from the 
specific operation of RFR. The researches of RFR can be found in Refs. [24,50,54] with detailed description. Fig. 5 provides the 
schematic diagram of RFR. 

3.5. Random vector functional link (RVFL) 

The article of Pao et al. [56] proposed the random vector functional link (RVFL), and the generalization and training of RVFL were 
discussed in Ref. [57]. Therefore, RVFL has been employed to resolve the nonlinear issues in different fields. Tyukin and Prokhorov 
[58] explored the background of simulation and modeling, and connected the unsupervised adjustment of neurons to the input 
variables with subsequent supervised training feature of successive variables. Chi and Ersoy [59] described that RVFL connected 
enhancement neurons with the statistical hypothesis to develop statistical training feature. Based on the RVFL’s modeling and 
simulation, the activation functions cannot be determined completely when the connection weights are generated randomly relying on 
the connection weights between the input and enhancement neurons. The research of Alhamdoosh and Wang [60] investigated that all 
of connection weights were produced utilizing a uniform distribution with [-S, +S], where S = a scale factor. RVFL can be almost 
divided into two classes depending on the approach for calculating the output connection weights. In the first class, it can be written as 
the iterative RVFL, which calculates the connection weights with an iterative feature utilizing the error gradient function. In the second 
class, it can be described as the closed-pattern RVFL, which calculates the connection weights utilizing a single-stage [61]. Fig. 6 
displays the schematic diagram of random vector functional link in this study. The researches of [62–64] described the RVFL’s 
application and employment in detail. 

Fig. 4. Schematic diagram of GPR.  
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4. Results and discussion 

4.1. Models evaluation and comparison 

In the present study, a new hybrid model based on the combination of extreme learning machine and Bat algortihm (ELM-Bat) was 
proposed for modelling effluent five days biochemical oxygen demand (BOD5). In order to show the superiority of the proposed ELM- 
Bat method, five standalone ML models were also tested and used to compare their performances with those of the ELM-Bat. The 
flowchart of the proposed modelling framework is depicted in Fig. 7. The Matlab code of the ML model is given in the Supplemental 
Files (Text S1.). They are respectively, the MLPNN, RVFL, GPR, RFR, and the standalone multiple linear regression model (MLR). 
Furthermore, in order to perform sensitivity analysis faster, the results are experimentally performed taking into account several input 
combination and in total 09 combinations having different input variables were evaluated and examined in the present study as stated 
in Table 4, and only the results in the validation stage were analyzed hereafter. It can be seen from Table 4 that when the models use 
the all six input variables, i.e., the Q, Tw, pH, COD, TSS, and SC, the best predictive accuracies were obtained using the ELM_Bat1. More 
precisely, the ELM_Bat1 exhibited less prediction error and large fitting capability: the RMSE and MAE values were approximately 
equal the values of ≈2.621 mg/L and 1.989 mg/L, respectively, while the R and NSE values were approximately ≈0.885 and ≈ 0.781, 
respectively. It was found that, the R-values, i.e., the correlation coefficients, exhibited by the ELM-Bat models are scattered in the 
range of ≈0.452 (ELM_Bat8) to ≈0.885 (ELM_Bat1) with a mean value of approximately ≈0.802. For the lower R-value likely below 

Fig. 5. Schematic diagram of RFR.  

Fig. 6. Schematic diagram of Random Vector Functional Link (RVFL).  
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Fig. 7. Flowchart of the proposed modelling framework for five days biochemical oxygen demand (BOD5).  
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≈0.450 obtained using the ELM_Bat8, it might be whether the training is unsuccessful or the input variables does not helped in a better 
simulation of the BOD5. When we have a look to the all developed algorithms in the present study, the lowest R-value was achieved 
using the same input combination, i.e., using the effluent flow (Q) and the specific conductance (SC) for which the values of ≈0.288, 
≈0.452, ≈0.370, ≈0.342, ≈0.375, and ≈0.368 were obtained using the MLR8, ELM_Bat8, MLPNN8, RVFL8, RFR8 and GPR8, 
respectively. Therefore, we can conclude that, the combination of the Q and SC is not a good solution for modelling BOD5. Finally, 
overall comparison between the models based on the four numerical performances reported in Tables 4 and it is obvious that the 
number of input variables increase leads to a significant improvement with an increase of the R and NSE values, and a decrease of the 
RMSE and MAE values of the ELM_Bat1. More precisely, when the ELM_Bat1 is compared to the others benchmarks models, the RMSE 
and MAE values were decreased by 34.40 % and 33.27 %, 29.56 % and 29.46 %, 29.29 % and 29.71 %, 24.77 % and 25.58 %, 23.27 % 
and 23.88 %, respectively. It is clear from the above results that, the GPR1 was ranked in the second rank after the ELM_Bat1, while the 

Table 4 
Performances of different machine learning models for BOD5 prediction.  

Models Training Validation 

R NSE RMSE MAE R NSE RMSE MAE 

MLR1 0.678 0.459 3.856 2.853 0.707 0.492 3.996 2.981 
MLR2 0.661 0.436 3.937 2.913 0.709 0.492 3.997 2.990 
MLR3 0.659 0.435 3.943 2.940 0.704 0.485 4.025 2.990 
MLR4 0.657 0.432 3.954 2.946 0.702 0.481 4.040 3.013 
MLR5 0.646 0.418 4.001 2.979 0.707 0.486 4.019 3.001 
MLR6 0.664 0.441 3.922 2.900 0.684 0.460 4.120 3.055 
MLR7 0.646 0.417 4.003 2.956 0.688 0.461 4.117 3.042 
MLR8 0.277 0.077 5.038 4.050 0.288 0.102 5.437 4.203 
MLR9 0.625 0.391 4.092 3.024 0.689 0.460 4.121 3.058 
ELM_Bat1 0.824 0.679 2.971 2.246 0.885 0.781 2.621 1.989 
ELM_Bat2 0.821 0.675 2.991 2.194 0.856 0.732 2.903 2.197 
ELM_Bat3 0.823 0.677 2.982 2.236 0.865 0.746 2.828 2.181 
ELM_Bat 4 0.813 0.661 3.053 2.286 0.829 0.687 3.138 2.392 
ELM_Bat 5 0.806 0.649 3.105 2.265 0.838 0.701 3.066 2.312 
ELM_Bat6 0.781 0.610 3.274 2.441 0.822 0.673 3.205 2.465 
ELM_Bat7 0.795 0.631 3.184 2.373 0.850 0.720 2.964 2.211 
ELM_Bat8 0.554 0.307 4.364 3.270 0.452 0.183 5.067 3.876 
ELM_Bat9 0.768 0.590 3.360 2.395 0.820 0.669 3.228 2.467 
MLPNN1 0.872 0.759 2.574 1.896 0.763 0.560 3.721 2.820 
MLPNN2 0.865 0.748 2.634 1.928 0.746 0.541 3.797 2.795 
MLPNN3 0.857 0.734 2.707 1.985 0.770 0.573 3.664 2.710 
MLPNN4 0.842 0.710 2.826 2.102 0.768 0.586 3.608 2.750 
MLPNN5 0.831 0.690 2.921 2.111 0.770 0.587 3.603 2.724 
MLPNN6 0.778 0.606 3.294 2.433 0.656 0.417 4.280 3.162 
MLPNN7 0.794 0.631 3.185 2.340 0.692 0.454 4.142 2.986 
MLPNN8 0.507 0.256 4.522 3.441 0.370 0.100 5.318 4.085 
MLPNN9 0.739 0.546 3.533 2.508 0.757 0.567 3.688 2.773 
RVFL1 0.817 0.668 3.020 2.297 0.765 0.563 3.707 2.830 
RVFL2 0.797 0.635 3.170 2.350 0.744 0.543 3.790 2.883 
RVFL3 0.807 0.651 3.098 2.338 0.752 0.559 3.722 2.807 
RVFL4 0.803 0.645 3.124 2.277 0.742 0.502 3.957 2.841 
RVFL5 0.798 0.636 3.162 2.316 0.692 0.438 4.204 2.960 
RVFL6 0.755 0.570 3.437 2.574 0.650 0.368 4.458 3.290 
RVFL7 0.661 0.436 3.938 2.896 0.699 0.486 4.021 3.053 
RVFL8 0.328 0.106 4.959 3.957 0.342 0.114 5.277 4.217 
RVFL9 0.666 0.443 3.915 2.852 0.727 0.522 3.876 2.963 
RFR1 0.914 0.813 2.269 1.592 0.790 0.614 3.484 2.673 
RFR2 0.910 0.807 2.301 1.610 0.784 0.609 3.505 2.644 
RFR3 0.908 0.805 2.315 1.620 0.795 0.621 3.451 2.656 
RFR4 0.905 0.802 2.334 1.623 0.793 0.621 3.453 2.644 
RFR5 0.902 0.796 2.367 1.629 0.782 0.606 3.520 2.662 
RFR6 0.870 0.734 2.706 1.941 0.695 0.483 4.033 3.082 
RFR7 0.872 0.739 2.679 1.898 0.750 0.556 3.736 2.812 
RFR8 0.770 0.535 3.577 2.693 0.375 0.122 5.255 4.064 
RFR9 0.846 0.705 2.850 1.997 0.739 0.545 3.781 2.800 
GPR1 0.823 0.676 2.987 2.245 0.795 0.629 3.416 2.613 
GPR2 0.814 0.660 3.059 2.239 0.784 0.612 3.493 2.645 
GPR3 0.804 0.644 3.129 2.330 0.795 0.631 3.406 2.595 
GPR4 0.784 0.613 3.262 2.428 0.786 0.616 3.476 2.686 
GPR5 0.810 0.653 3.090 2.244 0.784 0.614 3.486 2.627 
GPR6 0.726 0.527 3.608 2.647 0.705 0.497 3.979 3.050 
GPR7 0.761 0.577 3.410 2.515 0.734 0.538 3.813 2.869 
GPR8 0.414 0.170 4.778 3.712 0.368 0.135 5.215 4.124 
GPR9 0.705 0.496 3.722 2.660 0.751 0.561 3.717 2.814  
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MLR1 was ranked in the last rank with the highest poorest performances. 
As shown in Table 4, for scenarios 2 and 3, for which only five input variables were included in the models, the ELM_Bat2 and 

ELM_Bat3 exhibited the lowest RMSE and MAE, and the highest R and NSE values compared to the all other algorithms. For numerical 
comparison, the ELM_Bat3 exhibited R, NSE, RMSE, and MAE values of approximately ≈0.865, ≈0.746, ≈2.828 mg/L, and ≈2.181 
mg/L, respectively, while the RVFL3 was found to be the less accurate ML model having R, NSE, RMSE, and MAE values of approx-
imately ≈0.752, ≈0.559, ≈3.722 mg/L, and ≈2.807 mg/L, respectively, ranked just after the MLR3 who exhibited the lowest nu-
merical performances. It is demonstrated in Table 4 that, the numerical values of the four performances metrics obtained using the 
ELM-Bat are higher that other models regardless of the input variables and especially, the models prediction errors are the smallest. 
However, an important point to be noted is that, the configuration of the RFR, MLPNN, GPR and RVFL models takes less computational 
time compared to the ELM-Bat models. 

For the models having only four input variables and taking into account the four metrics, i.e., the R, NSE, RMSE and MAE on the 
validation dataset are illustrated in Table 4, we can see these that the RMSE and MAE are the lowest for the ELM-Bat 4 and ELM-Bat 5, 
while the R and NSE are the highest among all developed models. As shown in Table 4, the RMSE and MAE values of the ELM_Bat5 are 
3.066 mg/L and 2.312 mg/L, respectively, which are all the lowest of the six prediction models (i.e., the models having the same input 
variables). The RMSE value of the ELM_Bat5 model decreases by more than 23.71 %, 14.90 %, 22.51 %, 11.20 %, and 11.795 % 
compared to the MLR5, MLPNN5, RVFL4, RFR4 and GPR4, respectively. In addition to this, the MAE value of the ELM_Bat5 model has 
particularly large decrease from 3.001 mg/L to 2.312 mg/L (22.96 %) compared to the MLR5, from 2.724 mg/L to 2.312 mg/L (15.125 

Fig. 8. Scatterplot of measured against predicted five days biochemical oxygen demand (BOD5) using the best machine learning models for the 
validation stage: (a) ELM-bat, (b) MLPNN, (c) RVFL, (d) RFR, (e) GPR, and (f) MLR. 
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Fig. 9. Comparison between measured and predicted five days biochemical oxygen demand (BOD5) using the best machine learning models: 
validation stage. 
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%) compared to the MLPNN5, from 2.841 mg/L to 2.312 mg/L (18.62 %) compared to the RVFL5, from 2.644 mg/L to 2.312 mg/L 
(12.55 %) compared to the RFR5, and from 2.686 mg/L to 2.312 mg/L (13.92 %) compared to the GPR5. Further comparison between 
the models as reported in Table 4 revealed that, based only on three input variables (i.e., Q, Tw and COD), the R and NSE values of the 
ELM_Bat7 model (R = 0.850, NSE = 0.720) are higher than other models, showing that its model fitting performance is the best. In 
Table 4, the numerical values of RMSE and MAE of ELM_Bat7 model (RMSE = 2.96, MAE = 2.21) are generally less than the benchmark 
methods showing it high capability in reducing the error between the measured and predicted BOD5. In conclusion, the ELM_Bat7 
model has the best predictive performance and the relatively better fitting capability over the six models. 

It can be seen from Fig. 8 that, based on the scatterplot of measured and predicted data, the ELM_Bat model was characterized by 
less scattered data compared to the all other models, while the MLR model was the model for which the data were highly scattered 
exhibiting the poorest predictive accuracies. Furthermore, it can be seen from Fig. 9 that the fluctuation trend of the red line (i.e., the 
calculated data) is relatively close to the fluctuation trend of the blue line (i.e., the measured data) than all other curves. Thus, it is 
more remarkable that, the blue and red lines have the biggest degree of superposition and the closet fluctuation trend. 

4.2. Discussion 

In the present study, the most effective ELM_Bat model is chosen through a selection procedure among several machine-learning 
models developed and compared to improve the accuracy of the BOD5 prediction at the municipal wastewater treatment plant (WWTP) 
located at Sidi Marouane, Algeria. The most significant contribution of the present study is the hybridization of the ELM using the Bat 
algorithm, and as a result, the performances of the ELM_Bat was improved. However, although the superiority of the ELM_Bat was 
clearly demonstrated, the following questions will immediately arise: (i) How will this impact the future of BOD5 modelling? (ii) At 
each level of success our approach can be compared to what is already published in the literature? (iii) How many input variables are 
necessary in the model? (iv) What combination of the water quality variables is most appropriate? 

First, it is clear from the obtained results that the inclusion of the all input variables helped in obtaining the best predictive ac-
curacies, i.e., the use of the Q, Tw, pH, COD, TSS, and SC. However, it will more suitable if the ELM_Bat model was evaluated using 
other measured effluent water quality variables, not taken into account in the present study, which certainly impacted the accuracy of 
BOD5 modelling. Second, regarding the number of variables necessary for obtaining high predictive accuracy, we can argue as follow. 
From the best model having six input variables (the ELM_Bat1) to the model having five input variables (ELM_Bat3), for which the SC 
was excluded from the input variables, the overall performances were slightly decreased: (i) the R and NSE were dropped from 0.885 to 
0.781 to 0.865 and 0.746, showing a slightly decrease, while the RMSE and MAE values have started to rise again. The RMSE saw their 
level climb to 2.828 mg/L (+7.32 %) while the level for MAE metric edged up to 2.181 mg/L (+7.32 %). In the other hand, regarding 
the models having only three input variables (Q, Tw, COD), the decrease in the model performances was more pronounced for which 

Fig. 10. Violin plots of the measured and predicted five days biochemical oxygen demand (BOD5) during validation stage for all machine 
leaning models. 
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the RMSE and MAE of the ELM_Bat1 were increased by approximately ≈11.57 % and ≈10.041 %, respectively, but if we consider that, 
a percentage of approximately 11 % is acceptable, we can declare that the ELM_Bat1 is an excellent model with only fewer input 
variables and combining the Q, Tw, COD is an excellent choice. The superiority of the ELM_Bat1 was further highlighted using the 
boxplot and violinplot depicted in Figs. 10 and 11. 

Finally, we compare briefly our results with those reported in the literature. For example, the R-value obtained in the present study 
using the ELM_Bat1 (i.e., R = 0.885) is less than the value obtained using the decision tree (DT) model (i.e., R = 0.970) and less than the 
value obtained using RFR (i.e., R = 0.959) reported in the study of Qambar and Al Khalidy [2,65], and higher than the value obtained 
using the adaptive boosting algorithm (i.e., R = 0.707), and higher than the value obtained using the gradient boosting (GB) (i.e., R =
0.812). By comparison to another investigation conducted by Aghdam et al. [15], for which the GEP (R ~ 0.865), RFR (R ~ 0.841), 
KNN (R ~ 0.822), MLR (R ~ 0.818), MLPNN (R ~ 0.809), GB (R ~ 0.799), and RT (R ~ 0.752) based models were applied and 
compared for modelling BOD5, we can see that our ELM_Bat1 model was more accurate compared to the all previous machine learning 
models. The ELM_Bat1 developed in the present study was found to be more accurate compared to the ANFIS model applied by Ahmed 
et al. [66], who obtained an R-value of approximately (R ~ 0.830). In another study, Solgi et al. [67] have obtained high numerical 
performances using the SVR and ANFIS models for modelling BOD5 with R values of approximately (R ~ 0.918) and (R ~ 0.910) 
slightly higher than the R value obtained in our study (i.e., R ~ 0.885). Further comparison with already published works revealed 
that, the ELM_Bat1 we more accurate compared to the M5Tree and RFR models developed by Golabi et al. [68], i.e. R ~ 0.885 
compared to the value of R ~ 0.751 and R ~ 0.872, respectively. In a study conducted by Najafzadeh and Ghaemi [69], good predictive 
accuracies were obtained using the LSSVM (R ~ 0.850), MARS (R ~ 0.790), MLPNN (R ~ 0.740), ANFIS (R ~ 0.810), and the MLR (R 
~ 0.780) which were all lower than the ELM_Bat1 (i.e., R ~ 0.885) developed in our present study. The obtained results were further 
highlighted using the violinplot (Fig. 10) [70] and the boxplot (Fig. 11), for which the superiority of the ELM_Bat was obvious. 

5. Conclusion 

In this work, a new method for predicting five days biochemical oxygen demand (BOD5) based on extreme learning machine and 
Bat algorithm (ELM-Bat) has been developed. Using in situ measured data, it was found that the proposed method presents some 
advantages relative to other tested machine learning models, i.e., the MLPNN, RFR, GPR, RVFL, and the MLR. The BOD5 time’s series 
can be very accurately simulated and the nonlinearity between the wastewater quality variables and the BOD5 can be easily captured. 
With respect to the other methods, the ELM-Bat correctly and accurately predicts the BOD5 taking into account various input com-
bination of water quality variables. Moreover, it was found that, the ELM-Bat is flexible and provides sufficient predictive accuracies 
using only two input variables where the others models have failed. For example, using only wastewater temperature (Tw) and 
chemical oxygen demand (COD), the ELM-Bat exhibited R, NSE, RMSE, and MAE values of approximately 0.820, 0.669, 3.228 and 
2.467, respectively. Among all analyzed cases, the proposed hybrid ELM-Bat algorithm identified and extracted accurately and 
properly the BOD5. However, an exception for one case was registered for which the predictive accuracies were found to be very low, i. 
e., using only the effluent flow (Q) and the specific conductance (SC); the R, NSE, RMSE, and MAE values were approximately equal to 
0.452, 0.183, 5.067 and 3.876, respectively. Finally, we can argue that, the better performances of the ELM-Bat method in modelling 
effluent BOD5 indicates it’s considerably improved reliability and robustness. Future research may be focused on exploring some 
others optimization algorithms and then develop the predictive models based on the combination of the standalone machine learning 
and metaheuristic algorithms. 
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