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Abstract. Many aspects of the study of protein folding and dynamics have been
affected by the accumulation of data about native protein structures and recent
advances in machine learning. Computational methods for predicting protein
structures from their sequences are now heavily based on machine learning tools
and on approaches that extract knowledge and rules from data using probabilistic
models.Many of thesemethods use scoring functions to determinewhich structure
best fits a native protein sequence. Using computational approaches, we obtained
two scoring functions: knowledge-based energy and likelihood of base frequency,
and we compared their accuracy in measuring the sequence structure fit. We com-
pared the machine learning models’ accuracy of predictions for knowledge-based
energy and likelihood values to validate our results, showing that likelihood is a
more accurate scoring function than knowledge-based energy.

Keywords: Knowledge-based energy · Statistical potential · Likelihood ·
Cross-validation · Machine learning · Protein structure prediction

1 Introduction

Proteins are built of one or more linear chains of amino acid residues, which are protein
sequences that fold into three-dimensional structures. Correct folding leads to a native
structure, and knowledge of the native protein structure is essential for understanding the
protein function. A growing amount of structural data in databases such as the Protein
Data Bank (PDB) [1] has led to the development of computational approaches for protein
structure prediction. However, these approaches are often time-consuming and costly or
have low accuracy, so there is a need for effective and accurate computational approaches
to protein structure prediction.

Most of themethods for structure prediction use scoring functions to determinewhich
structure best fits a native protein sequence. Thenative structure generally has a lower free
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energy than the other possible structures under the native conditions [2], which means
that an accurate free energy function can be applied in the prediction and assessment of
protein structures [3], for example, as a scoring function inmeasuring sequence structure
fit. However, calculating the free energy of protein folding (or unfolding) using all-atom
coordinates is impractical because it is computationally demanding, so only a small
fraction of the available conformational space can be explored in this way. Knowledge-
based (KB) approaches that extract knowledge and rules from data are therefore used in
the assessment of an ensemble of structural models produced by computational methods
to find the correct structure that fits a given sequence.

KB free energy (also known as statistical potential or pseudo-energy potential) is
widely used for those purposes. Statistical potential is derived using a mathematical
approach, according to which the statistical preferences of interactions between different
molecules can be described. However, protein folding is a cooperative processwithmany
driving forces, which means that a residue in a given position has an impact on other
residues and, ultimately, on the structure in which the sequence will fold. A way to
describe cooperation is by using a likelihood function.

In this study, we used a one-dimensional (1D) representation of the protein structure
based on the buried or exposed state of the residues to compare the accuracy of the
KB energy (E) and the likelihood of base frequency (L), which are essentially scoring
functions and can be used in protein structure prediction.

Machine learning (ML)–based approaches used in the accuracy assessment of
sequence-structure fit in proteins provide a large set of models that can contribute to
the process by enriching the quantification of different parameters. The ML models can
also be efficiently used to validate results related to the accuracy of the functions by
assessing the sequence structure fit. The large diversity of models bears some problems
related to how and which model is better to choose for a particular case, which can be
overcome by different cross-validation approaches.

To validate our results showing that likelihood is a more accurate measure of the
sequence-structure fit than KB energy, we used ML models. The application of such
ML models to predict likelihood and energy values accordingly provides criteria for
assessing the accuracy and predictability of these two approaches.

2 Problem Description

Proteins interact strongly with surrounding solvents, and the exposure of amino acids
to solvents is a sensitive parameter that can be used to model energetic features on the
protein–solvent boundary [4]. The folding process of soluble proteins also decreases the
surface area in contact with the solvent; this is related to the secondary structures of
proteins. Accurate knowledge of residue accessibility would thus aid in the prediction
of protein structures [5].

The protein residues in a structure are exposed to the solvent to different extents. We
applied KB approaches to describe different types of residue preferences for being in a
buried or exposed state in the protein structure.

In this work, the model of the protein structure is one-dimensional (1D) and uses
only the solvent accessibility of every residue. For simplicity, the solvent accessibility is
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categorized into two states: buried (0) and exposed (1). There are 20 types of amino acid
residues and each of them can be categorized as buried or exposed in a given position
in the protein sequence, so the number of residue classes is 40.

The solvent accessible surface area (SASA) of all the proteins in the two sets is
calculated, and the threshold of the SASA per residue is selected to classify a residue
as buried or exposed. Then, a buried/exposed pattern is assigned to every sequence to
construct an object that describes the protein using the amino acid (AA) sequence and
one structural property – a pattern of the buried or exposed status of the residues.

The sequence-structure pair objects based on the solvent accessibility were used for
optimization of their KB energy or likelihood, accordingly.

The concept of pseudo-energy was introduced to biology by the seminal paper of
Tanaka and Scheraga [6]. They assumed that residues behave like molecules interacting
in gas, and they used the observed frequencies of the contacts between different types of
residues in known X-ray structures. Using these data, they calculated the “free energies”
(�G°) of the contact between different types of amino acids using a formula exported
from statistical chemistry:

�G◦ = −RTXijXiXj (1)

where Xij is the frequency of the observed contacts between the residues of type i and
the residues of type j, XiXj represents a multiplication of these frequencies (statistical
expectation of the contact between residue i and residue j), R is the gas constant, and T
is temperature.

In this study, using parameters obtained from a set of 200 native protein structures,
we calculated the KB energy of proteins, as seen in Eq. 2:

kbE(protein) =
∑j

1
Ei[0 or 1] (2)

where i is the type of residue according to the position of the protein sequence, j is the
length of the protein, and Ei[0 or 1] is the KB energy of the i-th residue, which can be
buried [0] or exposed [1].

Likelihood is also widely used in biology, for example, in the case of phylogenetics.
In this paper, we applied the following formula:
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where Pi[0 or 1] is the observed frequency of the residues in the buried/exposed state in
the entire database, ni[0 or 1] is the number of residues of a given type in a given protein,
and (n1[0] + . . . n20[1]) is equal to the length of the protein.

The object design is highly simplified, and the reduction of 3D structural information
to 1D lowers the possible accuracy of the scoring. Therefore, it is possible to optimize
a native sequence-structure pair, for example, by changing the pattern to better fit the
native sequence according to the selected criteria. The resulting pattern will be different
from the native one (because the criteria is imperfect), and the accuracy of the criteria
can be assessed by calculating the identity of the resulting pattern to the native pattern.
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Using the two criteria – KB energy and likelihood, separately, in two optimization
experiments, we were able to conclude that the likelihood is less erroneous than the KB
energy as a criterion of the sequence-structure fit.

The concept for this study is to test the accuracy of the two criteria for measuring
the sequence-structure fit by using a ML approach.

Machine learning can be applied for multiple purposes in protein folding and struc-
ture prediction: measuring the sequence-structure fit, designing energy functions, or
analyzing protein simulation data.

In this work, we applyMLmodels to evaluate the accuracy of the two properties, KB
energy and likelihood, that can be used as scoring functions. We have already assessed
that likelihood is a more accurate measure of the sequence-structure fit. The goal of
this study is to validate that using ML models. We want to check whether the model
predictions of the likelihood values will be more accurate than those of KB energy.
That will show that the likelihood provides the possibility of better use of structural
information in prediction than the KB energy.

A common method to estimate the quality of model predictions is to use cross-
validation and calculate the average prediction performance across test samples. Here,
we use cross-validation in the context of predictive modeling. This is one of the most
widely used data resampling methods to assess the generalizability of a predictive model
and to prevent overfitting. To build the final model for the prediction of real future
cases, the learning function (or learning algorithm) f is usually applied to the entire
learning set. The purpose of cross-validation in the model-building phase is to estimate
the performance of the final model on new data.

Cross-validation divides the training data into several disjointed cohorts of approxi-
mately equal size. Each cohort is used in turn as testing data, while the remaining cohorts
are used as training data. The prediction model built on the training data is then applied
to predict the class labels of the testing data. This process is repeated until all cohorts
have been used as the testing data once, and then the prediction accuracies of all the
blinded tests are combined to produce an overall performance estimate.

3 Related Work

Different bioinformatics and statistical approaches can be used to predict the 3D structure
of a protein from its amino acid sequence. Many of these approaches can be viewed as
sequence-structure fitness problems. In evaluating a hypothetical structure, such as the
fitness of a sequence for a structure, one must be able to distinguish between correct and
incorrect structures (to identify the structural states that have a high probability of being
observed in given environmental conditions). Success or failure depends crucially on the
underlying description of structural states and on the evaluation scheme of sequence-
structure fitness [7].

Based on the thermodynamic hypothesis [2], computational studies of proteins,
including structure prediction, folding simulation, and protein design, depend on the
use of a potential function to calculate the effective energy of the molecule. In protein
structure prediction, the potential function is used either to guide the conformational
search process or to select a structure from a set of possible sampled candidate structures
[8].
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Two fundamentally different approaches exist to obtain a potential energy function
[9]. The first is an inductive approach [4], amathematicalmodel that describes the system
is assumed without previous knowledge about the physical principles. The resulting
potential is directly extrapolated tomore complexmolecules by assuming that a common
behavior will exist in both cases [9]. The second approach is deductive (or KB). In
order to obtain an accurate description of the potential energy function, experimental
data from large macro-molecular-solvent systems should be used [9]. The parameters
of the potential functions are extracted from a database of known protein structures
[4]. Because of the deductive nature f this approach, which incorporates many physical
interactions (electrostatic, van derWalls, cation interactions) and the extracted potentials
do not necessarily reflect true energies, it is often referred to as the “knowledge-based”,
“empirical”, or “statistical” effective potential function or scoring function [8].

Current studies are focused on improving knowledge-based potentials used for: pro-
tein structure predictions, [10–12] RNA structure predictions [13, 14], and rational drug
design [15].

More complex KB approaches use the advances of ML for protein structure predic-
tion and sequence-structure fit assessment. Theoretically, the implementation of ML can
be defined as both supervised learning, where the data includes additional attributes that
are expected to be predicted, and unsupervised learning, where the training data con-
sists of a set of input vectors without any corresponding target values. The supervised
learning set of models consists of two groups: classification and regression. The large
background of standard supervised ML methods provides reasonable results, but the
advent of methods based on deep residual networks has shown more promising results
in some cases.

Different ML methods have been applied as a tool for protein structure prediction
based on KB potentials [16, 17]. It is expected that ML forcefields may soon replace
forcefields in protein simulations [18].

Some alternative ML methods for structure prediction, such as probabilistic neu-
ral networks and deep learning end-to-end differentiable networks, have shown wider
applicability [19].

There have also been attempts to apply likelihood functions as a tool for protein
structure predictions using the multiple sequence alignment of related proteins as input
data [20, 21]. Multiple sequence alignment shows which residues are evolutionarily
related. A likelihood function indicates the probability of contact between different
residues.

A significant problem inusingMLmodels for sequence-structurefit is how tovalidate
the results. Very often, this process is based on cross-validation of the outcomes of the
applied models. Cross-validation is primarily used in applied ML to assess the potential
and the accuracy of certain ML models for certain data. This means that it is possible
to use a limited sample to estimate how the model will perform in general when used to
make predictions on data not used during training. The cross-validation model can be
used to estimate any quantitative measure that is appropriate for the data and the model.
The use of cross-validation in sequence to structure fit evaluation models is discussed in
[22].
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4 Data Description

For the purposes of the study, we used two datasets: 1) a set of 200 protein structures
for the calculation of the parameters used in KB energy and likelihood determination,
and 2) a set of 45 protein structures for the optimization experiments. The first dataset
was extracted from a selection of nonhomologous proteins [23]. The second dataset for
testing purposes was obtained from the non-redundant PDB chain set of proteins with a
sequence-similarity cut-off BLAST p-value of 10e−7, which is the most non-redundant
of the given. The testing set contains 45.pdb files that meet the following criteria: having
0% unknown, incomplete, or missing residues or residues with incomplete side-chain;
having only one chain (subunit) in the PDB entry; and not containing any heterogens
(except for water). The models were determined by X-ray crystallography.

The sequence of every one of the 245 selected proteins is extracted from the .pdb
file using Biopython [24, 25].

The solvent accessible surface area (SASA) of the residues is a geometric measure of
exposure to the solvent. SASA is typically calculated by methods involving the in- silico
rolling of a spherical probe, which approximates a water molecule, around a full-atom
protein model [26]. The SASA of the protein molecule is the surface area traced by the
center of the probe. A classical approximation commonly used to calculate SASA is the
Lee and Richards (L&R) approximation [27], where the surface is approximated by the
outline of a set of slices [28].

In this work, the Python module of FreeSASA, an open source C library [28], is used
to calculate the solvent-accessible areas. SASA values for every residue in the protein
are obtained by a high precision L&R calculation (probe radius: 1.400; slices: 100) using
the default on FreeSASA ProtOr radii [29].

The relative solvent accessibility (RSA) of a residue indicates its degree of burial
in a structure. The RSA calculation is important because different amino acids are of
different sizes, so they also differ in area. To disregard these differences, the relative
exposure (RSA) is calculated by normalizing the surface area of the residue in the
structure by the surface area of the same type of residue in some reference state (e.g. the
residue X in an extended tripeptide, such as Gly-X-Gly). RSA values are calculated by
dividing the absolute SASA by the maximum solvent accessibility (maxSASA). Values
for maxSASA based on ProtOr radii were extracted from the default reference values
used in the FreeSASA classifier.

The calculated RSA was further divided into two states, using an exposure threshold
of 0.1 (10%). Namely, a residue is considered buried (marked as 0) when RSA ≤ 0.1
and exposed (marked as 1) when RSA > 0.1. Each residue in a chain is then assigned
to class 0 if it has an RSA lower than or equal to 0.1 and to class 1 if the RSA is higher.

5 Suggested Methodology

For the purposes of this study, we have developed an ML-driven approach for accuracy
assessment of knowledge-based energy (E) and frequency base likelihood (L) for pro-
tein structure prediction. Both approaches are based on statistics of the buried/exposed
properties of residues.
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5.1 Data Preparation for ML

The sequence and pattern of every one of the 245 protein objects are transformed into
numerical values that can be used as parameters in ML models.

To every type of amino-acid residue a) in the sequence, a corresponding number
from b) is assigned:

a) ‘A’,‘R’,‘N’,‘D’,‘C’,‘E’,‘Q’,‘G’,‘H’,‘I’,‘L’,‘K’,‘M’,‘F’,‘P’,‘S’,‘T’,‘W’,‘Y’,‘V’
b) 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29

The sequence of these numbers is specific for every protein and is used as parameter
X1 in theMLmodels. The numbers representing all the residues in one protein sequence
are then added to a value that is later used as parameter (p1) in the ML models.

In the patterns, every buried state (before represented as 0) is assigned the coefficient
0.2, and every exposed state (previously represented as 1) is assigned the coefficient 0.5.
The sequence of these coefficients is then summed to obtain the second parameter (p2).
The purpose of the coefficients is to represent the structural component as a distance.

The values of the KB energy (E) and the likelihood of base frequency (L) are used
in the ML and are calculated for every one of the 245 proteins.

Outliers with values greater than five times the mean distance are removed from the
study. After this filtering, a dataset generated from 244 native protein structures is used.

The 244 samples of the parameter values X1 andX2 are then individually normalized
using the standard normalizer of the scikit-learn Python library [30].

To predict the KB energy and likelihood values, we used three supervised regression
ML models. The chosen models are from python scikit-learn package: 1) Lasso – lin-
ear_model (alpha= 0.1), which is a regression analysis method that performs both vari-
able selection and regularization to enhance the prediction accuracy and interpretability
of the statistical model it produces; 2) Nearest Neighbors Regression (NNR) – kNeigh-
borsRegressor (n_neighbors = 5, algorithm =‘kd_tree’), which is a non-parametric
method used for classification and regression. In both cases, the input consists of the
k closest training examples in the feature space. The output depends on whether k-NN
is used for classification or regression. We use a regression approach where the output
is the property value for the object. This value is the average of the values of k nearest
neighbors. 3) Decision tree regression (DTR) – DecisionTreeRegressor (max_depth =
k). Decision Trees are a non-parametric supervised learning method used for classifi-
cation and regression. The goal is to create a model that predicts the value of a target
variable by learning simple decision rules inferred from the data features.

For every one of the models, a k-fold cross-validation is used to split the set into k
smaller sets for better estimation.

As input, we used 244 samples of:

• Two normalized parameters, X1 and X2, that were obtained from data about the
protein sequence and the protein structure, respectively.

• The actual values for KB energy or likelihood, obtained from formulas (2) and (3).

For k = 3, 5 and 7:
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• The original sample is randomly partitioned into k equal sized subsamples.
• Of the k subsamples, a single subsample is retained as the validation data for testing
the model, and the remaining k − 1 subsamples are used as training data.

• The cross-validation process is then repeated k times, with each of the k subsamples
used exactly once as the validation data.

• The k train score results are then averaged to produce a single estimation (with a
standard deviation).

• The predicted values are plotted against the original data.

The purpose of the suggested methodology is to show the difference in accuracy of
prediction performance of the appliedMLmodels based on the values of the two scoring
functions: KB energy and likelihood.

6 Results and Discussion

The methodology of this study provides results based on the three above-described ML
models and produces scores for comparing the accuracy of these models.

After the data set is normalized, we apply three supervised regression ML models:
lasso regression, nearest neighbor regression, and decision tree regression. We test the
cross-validation splitting strategy of k= 3, k= 5, and k= 7 folds to compare the models
in terms of their accuracy of predicting the scores of KB energy and likelihood.

The graphs in Figs. 1, 2 and 3 show the relatedness of the actual to the predicted
values of every particular model used for KB energy and for likelihood respectively with
cross-validation (cv) k = 5.

Fig. 1. Lasso cross-validation, k = 5

For the KB energy, lasso has worse predictive results than for likelihood, for which
the results are distributed around the fit regression line with very few outliers from the
greater actual value of likelihood.

The results of NNR are similar, with the KB energy estimates more dispersed than
the values for likelihood.

The DTR produces somewhat similar results for the prediction of KB energy and
likelihood values.
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Fig. 2. Nearest neighbor regression cross-validation, k = 5

Fig. 3. Decision tree regression cross-validation, k = 5

These results are evidence that the likelihood prediction using is better than the
KB energy prediction. These results confirm the analytical computational approach of
optimization’s finding that likelihood is superior to KB energy as a scoring function.

As a consequence of modelling the relatedness of the predicted to the actual values
using the three ML approaches, we can refer to the coefficient of determination result-
ing from the training scores both for the KB energy and likelihood. The coefficient of
determination shows the accuracy of the applied models.

All values given in Figs. 4, 5 and 6 are based on the average values for a particular
splitting strategy with different k-fold numbers: 3, 5, and 7.

In Figs. 4, 5 and 6, the greater accuracy of the likelihood prediction MLmodels over
the KB energy prediction ML models is obvious.

In Fig. 4, the NNR (Nearest Neighbor Regression) model with k = 3 produces
higher mean values and smaller errors than the other two regression models. Lasso is
less accuratemodel, whileDTR (DecisionTreeRegression) has an intermediate position.

The accuracy of the applied ML models changed when the splitting training set
strategy amounts to five (Fig. 5.) In this case, the NNR and DTRmodels have very close
average mean values and distributions of error values. The lasso regression model is
obviously inferior to both NNR and DTR.

The increased accuracy of the DTR model for both KB energy and likelihood pre-
dictions is seen in Fig. 6. We can thus infer that, with a higher number of training data
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Fig. 4. Mean training scores for the three models with k-fold number cv = 3

Fig. 5. Mean training scores for the three models with k-fold number cv = 5

sets, we can improve the accuracy of the DTR model. The most important finding is the
overall superior accuracy of the likelihood prediction approach.
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Fig. 6. Mean training scores for the three models with k-fold number cv = 7

7 Conclusions

In bioinformatics, statistical properties can be estimated using likelihood or likelihood
function. Recently, ML has been applied as a tool to enhance this classical approach. We
showed that ML is more efficient in predicting likelihood parameters than KB energy.

In our study, we developed a ML-driven approach for accuracy assessment of KB
energy and frequency base likelihood for protein structure prediction. Both approaches
are based on statistics of the buried or exposed properties of residues.

We proposed an approach for model comparison based on cross-validation of the
estimated performance.

The MLmodels were applied to confirm the superiority of the frequency base likeli-
hood approach over the KB based energy approach for assessing sequence-structure fit
in proteins.

This study demonstrates the potential of protein structure prediction methods based
onML and indicates that combiningMLwith frequency base likelihood is more efficient
than using KB energy functions.
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