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Objective: The purpose of this study was to develop an active targeting strategy to improve 

the therapeutic antitumor efficacy of oridonin (ORI), the main active ingredient in the medicinal 

herb Rabdosia rubescens.

Methods: A modified spontaneous emulsification solvent diffusion method was used to prepare 

the ORI-loaded atactic poly(D,L-lactic acid) nanoparticles (ORI-PLA-NPs). Surface cross-

linking with the peptide Arg-Gly-Asp (RGD) further modified the ORI-PLA-NPs, generating 

ORI-PLA-RGD-NPs. The NPs were characterized and release experiments were performed 

in vitro. The pharmacokinetics, tissue distribution, and antitumor activity of the NPs were 

studied in mice bearing hepatocarcinoma 22 (H22)-derived tumors.

Results: The ORI-PLA-NPs and ORI-PLA-RGD-NPs were smooth, sphere-like, and relatively 

uniform in size. The RGD surface modification slightly increased the mean particle size (95.8 nm 

for ORI-PLA-NPs versus 105.2 nm for ORI-PLA-RGD-NPs) and considerably altered the surface 

electrical property (−10.19 mV for ORI-PLA-NPs versus −21.95 mV for ORI-PLA-RGD-NPs), 

but it had no obvious influence on ORI loading (8.23% ± 0.35% for ORI-PLA-NPs versus 

8.02% ± 0.38% for ORI-PLA-RGD-NPs), entrapment efficiency (28.86% ± 0.93% for ORI-

PLA-NPs versus 28.24% ± 0.81% for ORI-PLA-RGD-NPs), or the release of ORI. The 

pharmacokinetic properties of free ORI were improved by encapsulation in NPs, as shown by 

increased area under the concentration-time curve (11.89 ± 0.35 µg⋅mL−1 ⋅ h for ORI solution 

versus 22.03 ± 0.01 µg ⋅ mL−1 ⋅ h for ORI-PLA-RGD-NPs) and prolonged mean retention time 

(2.03 ± 0.09 hours for ORI solution versus 8.68 ± 0.66 hours for ORI-PLA-RGD-NPs). In the tissue 

distribution study, more ORI targeted tumor tissue in the mice treated with ORI-PLA-RGD-NPs 

than with ORI-PLA-NPs or ORI solution. Consistent with these observations, ORI-PLA-RGD-

NPs showed greater antitumor efficacy than ORI-PLA-RGD-NPs or ORI solution, as reflected 

by the decreased tumor growth and the prolonged survival time of mice bearing H22 tumors.

Conclusion: The tumor-targeting efficiency and subsequent antitumor efficacy of ORI is 

increased by incorporation into ORI-PLA-RGD-NPs.
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Introduction
The medicinal herb dong ling cao (Rabdosia rubescens) is native to the Yellow 

River valley in China and is used as a folk remedy for tonsillitis and a variety of 

cancers. The main active ingredient isolated from R. rubescens is oridonin (ORI), 

a monomeric ent-kaurane diterpenoid compound. Over the past 30 years, ORI has 

been successfully used for the treatment of liver cancer and esophageal carcinoma.1 

In addition, pharmacological experiments have shown ORI to have broad-spectrum 

antitumor activity, suggesting that ORI could play a more prominent role in cancer 
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therapy.  Investigations into the mechanisms underlying its 

antitumor activity have reported that ORI plays a role in the 

growth and survival of a variety of cancer cell lines, includ-

ing cell cycle arrest of K1735M2, DU-145, MCF-7, and 

MCF-10A cells;2–4 apoptosis of U937 and A375-S2 cells;5,6 

and autophagy of A431 cells.7 In addition, ORI has syner-

gistic effects on cell cycle arrest and apoptosis of HEP-2, 

L929, and SMMC-7721 cells;8–10 and on cell apoptosis 

and autophagy in the HeLa cells.11,12 However, the clinical 

application of ORI is considerably limited by its poor water 

solubility and unfavorable pharmacokinetic properties such 

as low oral bioavailability, which result in the need for high 

doses and thus increase the potential for side effects.13 

Although the oral bioavailability of ORI was shown to be 

increased 2.2-fold by a self- microemulsifying delivery sys-

tem compared with ORI in suspension,14,15 intravenous tar-

geted delivery systems show greater potential for improving 

antitumor therapeutic efficacy while simultaneously reduc-

ing side effects. The antitumor efficacy of ORI was reported 

to be improved greatly by ORI nanosuspensions and by the 

use of passive targeting nanoscale delivery systems such as 

solid lipid nanoparticles (NPs), poly(D,L-lactic acid) (PLA) 

NPs, and poly(epsilon-caprolactone)-poly(ethylene oxide)-

poly(epsilon-caprolactone) copolymer NPs.16–19 PLA, a 

biodegradable polymer approved by the US Food and 

Drug Administration for biomedical applications, has been 

studied as a particulate drug carrier since 1970. PLA-NPs 

copolymerized with polyethylene glycol and surface modi-

fied with ligands such as Arg-Gly-Asp (RGD) peptides show 

increased drug loading, reduced burst effect, prolonged in 

vivo residence time, decreased recognition and engulfment 

by macrophages, and improved targeting of tumor cells.20–23 

More recently, PLA polymer stars have been synthesized 

to improve hydrophilicity and control degradation of PLA. 

Using PLA polymer star micelles as carriers, the rate of 

release of the model drug chlorambucil could be effectively 

controlled by altering the pH of the environment.24,25 In 

the present study, the authors sought to further improve 

the therapeutic antitumor efficacy of ORI by constructing 

an active targeting nanoscale delivery system. For this, an 

RGD motif was incorporated onto the surface of PLA-NPs 

to improve the tissue targeting efficiency of ORI.

Materials and methods
Materials
ORI raw material (Figure 1) was obtained from Hangzhou 

Huadong Medicine Group Kangrun Pharmaceutical Co, Ltd 

(Anji, Zhejiang, China). Atactic PLA, with an average 

molecular weight of 15,000 Da and polydispersity index 

of 1.5, was purchased from Shandong Institute of  Medical 

Instruments (Jinan, Shandong, China). Poloxamer 188 

was provided by BASF (Pluronic® F68; Ludwigshafen, 

Germany).  Arg-Gly-Asp-l-Phe-Lys (RGDfk), N-(3-

dimethylaminopropyl)-N´-ethylcarbodiimide hydrochloride 

(EDC-HCl), and N-hydroxysulfosuccinimide (sulfo-NHS) 

were purchased from GL Biochem (Shanghai) Ltd (Shanghai, 

China). Other chemicals were of high-performance liquid 

chromatography (HPLC) or analytical grade.

The Experimental Animal Center of Shanghai University 

of Traditional Chinese Medicine, Shanghai, China, supplied 

the male Kunming mice (mean body weight 20 ± 2 g). All care 

and handling of the animals was performed with the approval 

of the Institutional Authority for Laboratory Animal Care 

of Shanghai University of Traditional Chinese Medicine. 

The Shanghai Laboratory Animal Center, Academia Sinica, 

Shanghai, China, provided the hepatocarcinoma 22 (H22) 

cell line (murine sarcoma).

Preparation and characterization  
of ORI-PLA-RgD-NPs
The ORI-PLA-NPs were prepared by a spontaneous emulsi-

fication solvent diffusion method, slightly modified from that 

previously described.26–29 In brief, 12 mg of ORI and 50 mg 

of PLA were dissolved in 20 mL of solvent (acetone:ethanol 

3:2, v/v) for 5 minutes with magnetic stirring at 50 rpm. 

The resulting oil phase was mixed thoroughly with 30 mL 

of aqueous Pluronic F68 (1% v/v) by magnetic stirring at 

50 rpm for 5 minutes. The organic solvents were removed and 

the volume further reduced to 5 mL at 40°C under reduced 

pressure. The sample was filtered through a 0.2 µm pore size 

Millipore® filter (Millipore, Billerica, MA) to yield the final 

suspension of ORI-PLA-NPs.

Surface peptide cross-linking was used to modify ORI-

PLA-NPs. To 10 mL of the ORI-PLA-NP solution was sepa-

rately added 15 mg of EDC-HCl and 15 mg of sulfo-NHS. 

The pH was adjusted to 6.0 with 0.1 M 2-(N-morpholino)

OH

OH

H

OH

OH

O
O

H

Figure 1 Chemical structure of oridonin.
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ethanesulfonic acid ([MES] J&K Chemical (China) Ltd, 

Shanghai, China) and the system was kept at room tempera-

ture for 12 hours with gentle stirring. The active intermediate 

was isolated with a Sephadex® G-50  minicolumn (Pharmacia 

Biotech, Uppsala, Sweden). Two milligrams of RGDfk was 

added to the solution of active intermediate and the solution 

was kept on ice for 24 hours with gentle stirring. The sample 

was purified with a Sephadex G-50 minicolumn to yield the 

final suspension of ORI-PLA-RGD-NPs.

A transmission electron microscope, a scanning 

 electron microscope, and a Zetasizer (Nano ZS90; 

Malvern  Instruments Ltd, Worcestershire, UK) were 

used to analyze the morphology, particle size, and zeta 

potential, respectively, of the prepared ORI-PLA-NPs and  

ORI-PLA-RGD-NPs.

The efficiency of ORI loading and entrapment in ORI-

PLA-NPs and ORI-PLA-RGD-NPs was calculated using the 

following equations:

ORI loading
weight of ORI in NPs

weight of NPs
= × 100%

ORI entrapment efficiency
weight of ORI in NPs

weight of ORI added
= ×

 
1100%

Quantities of free or entrapped ORI were determined by 

HPLC. For the NP suspensions, dimethyl sulfoxide was added 

to dissolve the NPs, and the suspensions were ultracentri-

fuged for 2 hours at 4°C. The supernatants were taken for  

HPLC.

ORI release experiments
Experiments were conducted to determine the release of ORI 

from ORI-PLA-NPs and ORI-PLA-RGD-NPs over time. 

The NP suspension (10 mL) was placed in a dialysis bag 

(molecular weight cutoff 10,000 Da) and dialyzed against 

190 mL of normal saline at 37°C with gentle shaking. At 

predetermined time points, a 5 mL sample was removed 

and replaced with 5 mL of normal saline equilibrated to 

37°C ± 0.5°C. The ORI content of the withdrawn samples 

was determined by HPLC.

Pharmacokinetic and biodistribution 
studies
The H22 tumor model in male Kunming mice was established 

as reported previously.10 In brief, the mice were inoculated 

with H22 cells subcutaneously in the axillary region. The 

mice were maintained under standard laboratory conditions 

until the diameters of the tumors reached 0.6–0.8 cm. For 

pharmacokinetic and tissue distribution studies, 144 H22 

tumor-bearing mice were divided randomly into three 

groups of 48 mice and were designated to receive ORI in 

solution, ORI-PLA-NPs, or ORI-PLA-RGD-NPs as a single 

intravenous injection (final ORI content 20 mg kg−1). Blood 

was withdrawn at 0.167, 0.5, 1, 2, 3, 4, 6, 8, 12, 18, 24, and 

36 hours after injection, and four mice per group were sac-

rificed at each sampling time point. The heart, liver, spleen, 

lungs, kidneys, and tumor were removed and homogenized. 

The ORI content in plasma samples and tissue homogenates 

was determined by HPLC.

In vivo antitumor studies
To evaluate the in vivo antitumor effect of ORI in solution 

or loaded in the NPs, four groups of six H22 tumor-bearing 

mice received intravenous injections of normal saline, ORI 

solution, ORI-PLA-NPs, or ORI-PLA-RGD-NPs (final ORI 

content 20 mg kg−1) once daily for 10 days. Mice were sac-

rificed 24 hours after the last injection and the tumors were 

removed and weighed. The tumor volumes were calculated 

using the following equation:

 Tumor volume
ab2

=
2

where a and b represent the long and short axes of the tumor, 

respectively.

To evaluate the effect of the NPs on organ pathology, 

organs from both the treated and the control mice were pre-

pared, stained with hematoxylin and eosin, and subjected to 

histopathological analysis.

A survival study was conducted with four groups of 

twelve H22 tumor-bearing mice randomized to receive 

the test articles exactly as described for the antitumor 

 experiments. Normal saline, ORI solution, ORI-PLA-NPs, 

or ORI-PLA-RGD-NPs were administered once daily 

 intravenously. Survival was monitored daily.

Data analysis
Noncompartmental pharmacokinetic analysis of plasma 

ORI concentrations versus time was performed with 

 Bioavailability Program Package software (BAPP v 2.0; 

Center for Metabolism and Pharmacokinetics, China 

 Pharmaceutical University, Nanjing, China). One-way 

analysis of variance and Fisher’s least significant difference 

t-tests were used for the statistical analysis of data obtained 

in the in vivo antitumor experiments, and the log-rank test 

was used for multiple comparisons of the median survival  

times.
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Results and discussion
Characterization of ORI-PLA-RgD-NPs
As shown by the transmission electron microscopy and 

scanning electron microscopy images in Figures 2 and 

3, the prepared NPs were smooth, sphere-like, and rela-

tively uniform in size. The mean particle sizes, polydis-

persity indices, and zeta potentials were 95.8 ± 1.2 nm, 

0.075 ± 0.008, and −10.19 ± 0.62 mV, respectively, for 

ORI-PLA-NPs and 105.2 ± 0.7 nm, 0.142 ± 0.011, and 

−21.95 ± 1.04 mV, respectively, for ORI-PLA-RGD-NPs. 

The surface modification of ORI-PLA-NPs with RGD is 

likely responsible for the slight increase in the particle size 

and polydispersity index and for the considerable change 

in zeta potential. In contrast, the RGD modification had 

no obvious influence on ORI loading (8.23% ± 0.35% 

for ORI-PLA-NPs  versus 8.02% ± 0.38% for ORI-PLA-

RGD-NPs) or entrapment efficiency (28.86% ± 0.93% 

for ORI-PLA-NPs versus 28.24% ± 0.81% for ORI-PLA-

RGD-NPs).

ORI release experiments
The ORI release profiles of ORI-PLA-NPs and ORI-PLA-

RGD-NPs are shown in Figure 4. The profiles are virtually 

superimposable, and the release data of both ORI-PLA-NPs 

and ORI-PLA-RGD-NPs fit the Weibull distribution well 

(r = 0.9971 for ORI-PLA-NPs versus r = 0.9952 for ORI-

PLA-RGD-NPs). Two-stage release behavior was observed in 

both profiles, with the burst release of ORI (25%) occurring 

in the first 4 hours, followed by the sustained release from 

5 to 72 hours (50%). This behavior might be attributed to the 

initial rapid release of ORI from the surface and external layer 

of the NPs, followed by sustained release from the internal 

layer through diffusion combined with erosion of the NPs.30 

In a previous study, the release profile of ORI-PLA-NPs was 

ORI-PLA-NPs ORI-PLA-RGD-NPs

Figure 2 Transmission electron microscopy images of oridonin-loaded atactic poly(D,L-lactic acid) nanoparticles (ORI-PLA-NPs) and ORI-PLA-NPs further modified by 
surface cross-linking with the peptide Arg-Gly-Asp (ORI-PLA-RGD-NPs) (magnification 43,000×).

ORI-PLA-NPs ORI-PLA-RGD-NPs 

Figure 3 Scanning electron microscopy images of oridonin-loaded atactic poly(D,L-lactic acid) nanoparticles (ORI-PLA-NPs) and ORI-PLA-NPs further modified by surface 
cross-linking with the peptide Arg-Gly-Asp (ORI-PLA-RGD-NPs) (magnification 40,000×).

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

214

Xu et al

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2012:7

0

20

40

60

80

100

0 12 24 36 48 60 72 84

T (h)

C
u

m
u

la
ti

ve
  r

el
ea

se
 p

er
ce

n
ta

g
e 

o
f 

O
R

I (
%

)
ORI-PLA-RGD-NPs

ORI-PLA-NPs

Figure 4 Release of oridonin (ORI) over time from ORI-loaded atactic poly(D,L-
lactic acid) nanoparticles (ORI-PLA-NPs) and from ORI-PLA-NPs further modified 
by surface cross-linking with the peptide Arg-Gly-Asp (ORI-PLA-RGD-NPs).
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Figure 5 Mean oridonin (ORI) concentrations in mouse plasma versus time after a 
single intravenous injection of ORI solution, ORI-loaded atactic poly(D,L-lactic acid) 
nanoparticles (ORI-PLA-NPs), or ORI-PLA-NPs further modified by surface cross-
linking with the peptide Arg-Gly-Asp (ORI-PLA-RGD-NPs).
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Figure 6 Mean concentrations of oridonin (ORI) in tissues of tumor-bearing mice after a single injection of ORI solution, ORI-loaded atactic poly(D,L-lactic acid) nanoparticles 
(ORI-PLA-NPs), or ORI-PLA-NPs further modified by surface cross-linking with the peptide Arg-Gly-Asp (ORI-PLA-RGD-NPs). 
Abbreviation: h, hours.
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Normal saline

ORI solution 

ORI-PLA-NPs 

ORI-PLA-RGD-NPs 

Figure 7 Tumors taken from mice treated for 10 days with normal saline, oridonin 
(ORI) solution, ORI-loaded atactic poly(D,L-lactic acid) nanoparticles (ORI-PLA-
NPs), or ORI-PLA-NPs further modified by surface cross-linking with the peptide 
Arg-Gly-Asp (ORI-PLA-RGD-NPs).

Table 2 In vivo antitumor effects of oridonin (ORI) solution, 
ORI-loaded atactic poly(d,l-lactic acid) nanoparticles (ORI-PLA-
NPs), and ORI-PLA-NPs further modified by surface cross-linking 
with the peptide Arg-Gly-Asp (ORI-PLA-RGD-NPs)

Group Tumor volume (cm3) Tumor weight (g)

Normal saline 1.05 ± 0.32 4.50 ± 0.84
ORI solution 0.71 ± 0.27*,c 3.27 ± 0.44**,b,c

ORI-PLA-NP 0.50 ± 0.11** 1.95 ± 0.40**,a,c

ORI-PLA-RgD-NP 0.24 ± 0.04**,a 1.01 ± 0.23**,a,b

Notes: Mean tumor volumes and weights are from groups of six mice injected 
once daily for 10 days. Mice were sacrificed 24 hours after the final dose. *P , 0.05 

and **P , 0.01 compared with normal saline group; aP , 0.01 compared with ORI 

solution group; bP , 0.01 compared with ORI-PLA-NP group; cP , 0.01 compared 
with ORI-PLA-RgD-NP group.

Table 1 Pharmacokinetic parameters of oridonin (ORI) after a single 
injection of ORI solution, ORI-loaded atactic poly(D,L-lactic acid) 
nanoparticles (ORI-PLA-NPs), or ORI-PLA-NPs further modified 
by surface cross-linking with the peptide Arg-Gly-Asp (ORI-PLA-
RGD-NPs) to mice bearing hepatocarcinoma 22 tumors

Parameters ORI solution  
group

ORI-PLA-NP  
group

ORI-PLA-RGD- 
NP group

AUC (µg ⋅ mL−1 ⋅ h) 11.89 ± 0.35 25.92 ± 0.56 22.03 ± 0.01
MRT (h) 2.03 ± 0.09 9.80 ± 0.40 8.68 ± 0.66
Vss (L ⋅ kg−1) 3.48 ± 0.16 16.84 ± 0.68 14.91 ± 1.14
CL (mL ⋅ h−1 ⋅ kg−1) 1.68 ± 0.05 0.77 ± 0.02 0.91 ± 0.00

Abbreviations: AUC, area under the concentration-time curve; CL, clearance; 
h, hours; Vss, apparent volume of distribution at steady state; MRT, mean 
residence time.

reported to fit the Higuchi model well, but the burst effect 

was also observed and the release mechanism was the same 

as that suggested earlier.18

Pharmacokinetics and tissue distribution
To assess the in vivo characteristics of the NPs, ORI 

solution, ORI-PLA-NPs, and ORI-PLA-RGD-NPs were 

administered to mice as single intravenous injections of a 

dose equivalent to 20 mg kg−1 of ORI. The corresponding 

mean plasma concentrations versus time curves and the 

tissue distribution profiles are shown in Figures 5 and 6, 

respectively. The individual pharmacokinetic parameters 

are given in Table 1.

As indicated by the plasma concentration versus time 

profiles, the NPs prolonged the retention time and increased 

the area under the concentration-time curve (AUC) com-

pared with ORI solution. This result was confirmed by 

comparing the pharmacokinetic parameters. Increases 

were observed in the AUC (22.03 ± 0.01 µg ⋅ mL−1 ⋅ h for 

ORI-PLA-RGD-NPs and 25.92 ± 0.56 µg ⋅ mL−1 ⋅ h for ORI-

PLA-NPs versus 11.89 ± 0.35 µg ⋅ mL−1h for ORI solution), 

mean retention time (MRT) (8.68 ± 0.66 hours for ORI-

PLA-RGD-NPs and 9.80 ± 0.40 hours for ORI-PLA-NPs 

versus 2.03 ± 0.09 hours for ORI solution), and apparent 

volume of distribution at steady state (Vss) (14.91 ± 1.14 ⋅ L 

kg−1 for ORI-PLA-RGD-NPs and 16.84 ± 0.68 L ⋅ kg−1 for 

ORI-PLA-NPs versus 3.48 ± 0.16 ⋅ L kg−1 for ORI solution), 

and a decrease of clearance (CL) (0.91 ± 0.00 mL ⋅ h−1 ⋅ kg−1 

for ORI-PLA-RGD-NPs and 0.77 ± 0.02 mL ⋅ h−1 ⋅ kg−1 for 

ORI-PLA-NPs versus 1.68 ± 0.05 mL ⋅ h−1 ⋅ kg−1 for ORI 

solution). The differences in MRT, Vss, and CL between 

the ORI-PLA-RGD-NPs and the ORI-PLA-NPs were likely 

due to their distinct  tissue distribution patterns, as shown 

in Figure 6. First, there was an apparent accumulation of 

ORI in tumor, liver, and spleen following the administration 

of the NPs, which could be ascribed to the passive target-

ing effect.31 Second, the ORI-PLA-RGD-NPs showed a 

higher tumor-targeting efficiency than ORI-PLA-NPs, as 

reflected in the increased distribution of ORI in the tumor 

and corresponding decreased accumulation in the liver 

and tumor. This might be attributed to the improved active 

tissue targeting effect after RGD surface modification of 

the NPs.32

Tumor inhibition effects in vivo
To test the antitumor activity of the NPs, mice bearing H22 

tumors were administered ORI in solution or as NPs for 

10 days. The tumors removed from these animals are shown 

in Figure 7, and their mean weights and volumes are provided 

in Table 2. As seen in Figure 7, there is a manifest reduction 

of tumor volume in the groups treated with ORI-loaded NPs 

and a slight decrease in tumor volume in animals treated 

with ORI solution, compared with the normal saline group. 

The  appearance of the tumors was in agreement with the 

statistical analysis of the tumor volume data, which showed 

that, when compared with the control group, all treatments 

significantly (P , 0.05) inhibited the tumor volume, with the 

biggest effect seen in the ORI-PLA-RGD-NP treatment group. 
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Figure 9 Survival curves of tumor-bearing mice treated once daily with normal 
saline, oridonin (ORI) solution, ORI-loaded atactic poly(D,L-lactic acid) nanoparticles 
(ORI-PLA-NPs), or ORI-PLA-NPs further modified by surface cross-linking with the 
peptide Arg-Gly-Asp (ORI-PLA-RGD-NPs).
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Figure 8 Representative images of hematoxylin and eosin-stained tissue sections from tumor-bearing mice treated with normal saline, oridonin (ORI) solution, ORI-loaded 
atactic poly(D,L-lactic acid) nanoparticles (ORI-PLA-NPs), or ORI-PLA-NPs further modified by surface cross-linking with the peptide Arg-Gly-Asp (ORI-PLA-RGD-NPs) 
(magnification 40×).

Similarly, the tumor weights were significantly (P , 0.01) 

inhibited by all three ORI treatments and, again, the effect 

was most pronounced in the ORI-PLA-RGD-NP treatment 

group.  Interestingly, the data suggest the tumor weight was 

more sensitive to the treatment than the tumor volume. 

Representative pathological sections of liver, spleen, lung, and 

kidney after administration of normal saline, ORI solution, or 

ORI-loaded NPs are shown in Figure 8. There were no obvious 

pathological changes in the tissues of the treatment groups.

The survival curves and median survival times obtained 

in the survival study are shown in Figure 9 and Table 3, 

respectively. As illustrated in Figure 9, the life spans of the 

H22 tumor-bearing mice were clearly prolonged by all three 

treatments, particularly by the ORI-PLA-RGD-NPs. This 

result was supported by the statistical analysis of the median 

survival times, which showed highly significant differences 

(P , 0.01) in the median survival times between the treat-

ment groups and the normal saline group, as well as within 

the treatment groups.

Table 3 Survival times of tumor-bearing mice treated with 
oridonin (ORI) solution, ORI-loaded atactic poly(d,l-lactic acid) 
nanoparticles (ORI-PLA-NPs), or ORI-PLA-NPs further modified 
by surface cross-linking with the peptide Arg-Gly-Asp (ORI-PLA-
RGD-NPs)

Group Median survival time (days)

Normal saline 14.0 ± 2.0
ORI solution 21.0 ± 2.0**,b,c

ORI-PLA-NP 27.0 ± 0.6**,a,c

ORI-PLA-RgD-NP 41.0 ± 2.4**,a,b

Notes: Median survival times were determined for groups of twelve mice injected 
once daily with the indicated treatments. **P , 0.01 compared with normal saline 

group; aP , 0.01 compared with ORI solution group; bP , 0.01 compared with ORI-

PLA-NP group; cP , 0.01 compared with ORI-PLA-RgD-NP group.
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Conclusion
In this study, ORI-loaded PLA-NPs were prepared with 

and without surface modification by RGD. The NPs were 

 characterized physically and evaluated for ORI release 

in vitro. In vivo, the pharmacokinetics, tissue distribu-

tion, and antitumor activity of NPs were examined in H22 

tumor-bearing mice. The results suggest that, compared 

with ORI-PLA-NPs and ORI solution, the tumor-targeting 

efficiency and subsequent antitumor efficacy of ORI may 

be improved by administration in the form of ORI-PLA-

RGD-NPs.
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