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Abstract

Metabolism plays an essential role in cell fate decisions. However, the methods used for

metabolic characterization and for finding potential metabolic regulators are still based on

characterizing cellular metabolic steady-state which is dependent on the extracellular envi-

ronment. In this work, we hypothesized that the response dynamics of intracellular meta-

bolic pools to extracellular stimuli is controlled in a cell type-specific manner. We applied

principles of process dynamics and control to human induced pluripotent stem cells (hiPSC)

and human neural stem cells (hNSC) subjected to a sudden extracellular glutamine step.

The fold-changes of steady-states and the transient profiles of metabolic pools revealed that

dynamic responses were reproducible and cell type-specific. Importantly, many amino acids

had conserved dynamics and readjusted their steady state concentration in response to the

increased glutamine influx. Overall, we propose a novel methodology for systematic meta-

bolic characterization and identification of potential metabolic regulators.

Author summary

Metabolism is no longer considered simply a consequence of cellular regulation, as it can

trigger regulatory signals that modulate key cell fate decisions such as proliferation, differ-

entiation and death. To be able to maintain homeostasis, cells regulate and control the

metabolic state within defined boundaries. Therefore, to prevent phenotypic changes, key

metabolites must be subjected to tight control. Identification of the most tightly regulated

metabolites in cellular systems has been hampered by limitations of current methodolo-

gies, which typically focus on steady-state data, overlooking transient dynamics and

potential regulators. We proposed an innovative approach to face this challenge, by

exploring the dynamic response of metabolic pools of human stem cells to a sudden meta-

bolic perturbation. Our data suggests that intracellular metabolic pools respond to extra-

cellular changes in a controlled and cell type-specific manner. This approach might also

contribute to systematically uncover potential key metabolic regulators involved in cell
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fate decisions, which can be translated not only into advances in stem cell manufacturing

and disease understanding but ultimately help unveil new therapeutic solutions.

Introduction

Over the last decade, the paradigm of metabolism being simply the engine for metabolic con-

stituents has been dramatically shifted. Metabolism generates regulatory responses [1] that

affect all other molecular levels, from epigenome to proteome, through diverse action mecha-

nisms (e.g. DNA methylation, histone acetylation) [2–4]. Those regulatory responses modulate

key cell decisions such as proliferation, differentiation and death [5]. From this relationship

between metabolism and cell fate, it follows that each cell type may have a unique metabolic

phenotype.

Inspecting the activity of metabolic pathways is an appealing approach for cell characteriza-

tion. This approach can pose significant limitations, as recent literature has shown that cells

not only fine-tune their intracellular fluxes according to momentaneous needs [6] but can also

change their sources of carbon and nitrogen [7]. For instance, it was found that asparagine

uptake in mammalian cells preferentially occurs in a glutamine-deficient environment and

does not occur when glutamine is present [7].

In an attempt to better characterize metabolic cell status, several studies have explored

intracellular metabolic pool quantification. However, dependency of intracellular metabolic

pools on extracellular environment was also observed [6,8]. Furthermore, metabolic pools

involved in epigenetic regulation are usually identified by looking into substrates of epigenetic

enzymes [9–11]. This has the shortcoming of leaving out metabolites that, although apparently

unrelated to those enzymes, could influence them due to the complex dynamics of metabolic

and regulatory networks. Another limitation of stationary quantitative approaches is that

potentially relevant metabolites might be masked if the response to a change in conditions is

transient and the metabolite concentration returns to the same levels of the previous cell state

[9]. Consequently, not only are the methods used for characterization of cell metabolism

dependent on extrinsic factors but can also lead to limited deductions as these are typically

based on steady-state data, meaning that transient dynamics and potential regulators are not

experimentally observed.

In this work, we hypothesized that cells must be able to maintain homeostasis and stable

conditions to prevent small environmental variations from causing substantial changes in cell

phenotype. Therefore, the metabolic phenotype of a cell is displayed by the dynamics of metab-

olite pools and consequently metabolites with a very efficient or robust control of their concen-

tration are potentially key for the cell homeostasis. Observing pool dynamics instead of flux

dynamics should be more relevant for accurate cell characterization as pools directly affect sev-

eral molecular levels such as proteins, DNA and histones which in turn influence cell fate

[3,4]. In order to test our hypothesis, two human induced pluripotent stem cell (hiPSC) lines

and two human neural stem cell (hNSC) lines were exposed to a step increase in extracellular

glutamine concentration. With this challenge, the intracellular dynamic profiles were deter-

mined for up to 201 metabolites, covering most of the central carbon metabolism and lipidic

pathways. The dynamic profiles were compared between hiPSC and hNSC using process

dynamics and control concepts. This approach allowed for the identification of metabolic

dynamics conserved and unique for each cell type. Overall, we propose an unbiased and sys-

tematic methodology to characterize cells metabolic signatures and to identify potential meta-

bolic pools involved in cell fate decision.
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Results

Glutamine perturbation experiments of stem cells in stirred-Tank

bioreactors

For time-series metabolomics, two cell lines of hiPSC and two cell lines of hiPSC-derived neu-

ral stem cells (hNSC) were used (see Materials and Methods). Considering the risk of finding

false differences due to cell origin and not due to cell phenotype, one of the hNSC lines used

was derived from one of the hiPSC lines (hiPSC 1 and hNSC 1). Cells were cultured as spher-

oids in stirred-tank bioreactors, displaying high cell viability (Fig 1A). This culture system

presents several advantages considering our experimental design, as it allows for a fast and

multiple sampling while providing controlled conditions (temperature, pH and pO2) that

maximize the biological reproducibility between replicates [12]. Cell spheroids of hiPSC and

hNSC maintained their phenotype features for the 3 days of the experiment. In hiPSC cultures,

over 95% of cells were positive for pluripotency surface markers Tra-1-60 and SSEA4 (Fig 1B).

The neural progenitor markers nestin, SOX2 and vimentin were detected in hNSC cultures,

with rare neuronal βIII-tubulin-positive cells (Fig 1C).

Glutamine, a metabolite critical for hPSC [13] and hNSC survival [14–16], was chosen for

the extracellular perturbations. Indeed, this amino acid, a versatile donor of nitrogen and car-

bon atoms for diverse biosynthetic reactions, is preferentially consumed by proliferating mam-

malian cells in comparison with other amino acids [7]. Nucleotides, non-essential amino acids

and the anaplerotic substrates of the TCA cycle are all major biosynthetic products of gluta-

mine in human cells [17]. The intensity of the glutamine step is also important. On one hand,

a low intensity could conceal metabolic differences as these would come close to error values

of technical sampling replicates. On the other hand, a too high intensity could eventually cause

an irreversible homeostatic disruption of intracellular metabolic pools to which cells could not

naturally respond and possibly cause phenotypic changes such that metabolic adaptation

would not be seen, only the outcome of an uncontrollable disruption. Studies on E.coli with

glucose steps used an increase of extracellular concentration from 10 to 35 fold [18–20]. How-

ever, with glucose being the initial metabolite of the highly active metabolic pathway of glycol-

ysis, cell dynamics might be more robust to glucose steps than to glutamine steps, despite

glutaminolysis being also an important and active metabolic pathway for hPSC [13] and hNSC

[14–16]. The glutamine concentration after the perturbation step was set to 15 mM, i.e., a step

increase of at least 6 times over the initial glutamine concentrations of 2.5 mM, which

decreased slightly over time due to consumption (S1 Table). The absence of ammonia accumu-

lation after the perturbation step (S1 Fig) corroborates that the final concentration of gluta-

mine is not cytotoxic, as previously reported in murine PSC [21]. Furthermore, the quantity of

glutamine added did not alter significantly the osmolarity or the ammonia concentration (S1

Fig). Sampling was done until 2 hours after the glutamine step, as by that time most metabolic

pools reached their new steady-state (S2 Fig). Moreover, cell phenotype does not seem to

change after glutamine perturbation: pluripotency markers and cell viability of 2D hiPSC cul-

tures have remained unchanged for 72 hours after glutamine perturbation in subsequent

experiments.

Steady-state changes reveal different metabolic phenotypes between hiPSC

and hNSC

To study the effects of an extracellular glutamine perturbation step (Fig 1D) in the intracellular

metabolic network, a set of 201 metabolites from different metabolic classes were analysed

over time: amino acids, biogenic amines, acylcarnitines, phosphatidylcholines,

PLOS COMPUTATIONAL BIOLOGY Dynamic metabolic signatures in human stem cells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007780 April 16, 2020 3 / 20

https://doi.org/10.1371/journal.pcbi.1007780


lysophosphatidylcholines, sphingomyelins and TCA cycle intermediates. For each sample,

metabolic pools were quantified, normalized to protein content and then averaged per time-

point. Two types of pre-processing operations were performed: (i) at sample level, for remov-

ing samples that were considered as mistreated during sample preparation/processing (i.e.,
presenting metabolite concentrations systematically far from its equivalent replicates) and (ii)

at metabolite level, for removing metabolites that could not be quantified with accuracy or at

all (i.e., presenting null values or below the limit of detection). For the first operation, samples

that caused a relative standard deviation (RSD) over 10% on protein normalized concentration

for each metabolite and for each time-point, across all metabolites, were considered outliers

and removed from analysis (two outliers in hiPSC 1, hiPSC 2 and hNSC 2 and one outlier in

hNSC 1, in a total of 8 time-points x 3 replicates for each cell line). Metabolites that had 5 or

more time-points with values under the detection limit or with a RSD on averaged molar

quantity per protein above 15% were removed (from 201 measured metabolites for each cell

line, 145 metabolites were used in hiPSC 1, 165 in hiPSC 2, 159 in hNSC 1 and 114 in hNSC 2;

S3 Table). High variation in average values for different time-points was considered indicative

of inadequate extraction or analytical method.

A simple descriptor of steady-state change was determined for each metabolic profile. For

each metabolite, changes in steady-states were determined by calculating the ratio of final to

initial average molar quantities per protein (fold-change). In order to identify statistically sig-

nificant changes in steady-states, steady-state values, before the initial glutamine step increase

Fig 1. Perturbation experiments of spheroids of hiPSC and hNSC in controlled bioreactors with a sudden

glutamine perturbation step. (A) Viability analysis of hiPSC 1 and hNSC 2 spheroids in bioreactors by staining with

FDA (in green, live cells) and PI (in red, non-viable cells). Scale bars, 200 μm. (B) Phenotypic analysis of hiPSC 1 by

detection of the pluripotency markers TRA-1-60 and SSEA4 by flow cytometry. (C) Phenotypic analysis of hNSC 1 for

four neural stem cells markers: Nestin, βIII-tubulin, Sox2 and Vimentin by immunofluorescence microscopy. Scale

bars, 25 μm. (D) Glutamine concentration profile: the extracellular glutamine perturbation step was performed from

an initial extracellular concentration up to 2.5 mM until a final concentration of around 15 mM at 0 min. Data are

represented as mean of sampling replicates and error bars represent standard deviation.

https://doi.org/10.1371/journal.pcbi.1007780.g001
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and 2 hours after, were statistically compared by a two-sample t-test at 5% significance level. If

null hypothesis prevailed, the steady-states before and after glutamine step were considered to

be the same. Volcano plots of steady-state changes indicate a decrease in the metabolic pools

of aminoacids for both hiPSC and hNSC. These plots also suggest a trend towards an increase

in central energy metabolic pools for hiPSC, while in hNSC lipids, mainly phosphatidylcho-

lines, appear to be affected in their steady-state value (Fig 2A). These differences were repro-

ducible between the 2 cell lines of each cell type, with Pearson correlation coefficients above

0.7 (Fig 2B). Principal Component Analysis (PCA) showed that most metabolic classes were

not clustered in specific regions in the new components space and metabolic classes do not

cluster together (S3A Fig). Hierarchical clustering further demonstrates the heterogeneity of

metabolic profiles (S3B Fig). Thus, unsupervised analyses indicate that responses to glutamine

step were dependent on the metabolite and not on the metabolic class, suggesting that a gluta-

mine perturbation is an adequate experiment to inspect the characteristic metabolic dynamics

of each metabolic pool. Overall, these results substantiated our initial hypothesis that steady-

state analysis is a relevant method for phenotypic identification.

Mapping the steady-state changes onto a metabolic network exposed the global changes in

hiPSC and hNSC metabolism after the glutamine step (Fig 3). Preferred metabolic pathways

used to tackle the glutamine influx were indirectly inferred for each cell type. In hiPSC, the glu-

tamine step was absorbed by the lower part of the TCA cycle (from alpha-ketoglutarate to

malate). The fueling of this section of the TCA cycle in hiPSC was clearly demonstrated by car-

bon-labelling in the pivotal work of TeSlaa et al. [9]. On the contrary, in hNSC, the glutamine

shock had no effect on increasing the metabolites in the downstream section of the TCA cycle.

Instead, the number of lipidic pools for which the steady-state increased was much higher in

hNSC than in hiPSC, suggesting an increase in metabolic flux through the upstream section of

the TCA cycle. These observations corroborated our previous findings in metabolic flux stud-

ies which predicted reductive carboxylation of α-ketoglutarate to fuel fatty acids biosynthesis

in NSC [22]. In contrast to the overall response of TCA cycle intermediates and lipids, most

amino acid pools decreased their absolute levels (Fig 3). Alanine, arginine and lysine reached

far lower steady-states in hNSC. On the other hand, for other amino acids differences were not

observed (e.g. threonine) or were observed with fold-changes which were not consistent (e.g.

tryptophan).

Fitting metabolic profiles with a classical process control model exposes

conserved transient dynamics

Our data suggests that steady-state changes are cell type-specific, indicative of preferred or

active metabolic pathways. We then analysed the transient dynamic profiles of metabolic pools

by employing the two liquid surge tanks in series model, typical in the field of process dynam-

ics and control [23]. This model was chosen based on the analogy of metabolic pools as liquid

tanks and enzymatic reactions connecting the metabolic pools as tubes connecting liquid

tanks. Due to the intricacy and redundancy of the metabolic network that naturally leads to

the phenomena of inertia in metabolic pools, a numerator factor was added to the model (see

Materials and Methods). The obtained second-order model is still able to fit dynamic models

of unknown processes [23], in spite of biological systems incorporating both feedforward and

feedback control, along with multiloop and multivariable properties [23,24]. After modelling,

mathematical fits with high residual norm were filtered out (see Materials and Methods and S3

Table). A total of 99, 134, 116 and 71 metabolites for hPSC 1, hPSC 2, NSC 1 and NSC 2

respectively, were fitted to a mean fitting error below 5% (S3 Table). The model successfully

fitted at least 60% of the metabolites for each cell line. Moreover, it was flexible enough to
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represent metabolites that reached different steady-states and that presented distinct dynamics

such as initial overshoots and oscillations over time (Fig 4). More complex or different types of

modelling approaches could be considered. However, to accurately fit the additional parame-

ters of such models, one would need additional sampling points, which in this system would

Fig 2. Steady-state changes of hiPSC and hNSC reveal different and conserved responses to the glutamine step.

(A) Volcano plots of steady-state changes of metabolites. The threshold for Type I error (α) is 0.05, with p-value

corrected for multiple testing hypothesis (see Materials and Methods), and for a relevant fold-change is 30% difference

from initial steady-state. Positive fold-change means increase of intracellular metabolic pool level after glutamine step.

(B) Pearson correlation matrix of fold-changes of steady-states of metabolites. Pearson correlation coefficient spans

from -1 to 1 where -1 is perfect negative linear correlation, 1 is perfect positive linear correlation and 0 no linear

correlation. Typically, Pearson correlation coefficients between 0.7 and 1 denote a strong positive association.

https://doi.org/10.1371/journal.pcbi.1007780.g002
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be difficult to achieve as we were near the maximum experimentally possible number of

samples.

Fig 3. Steady-state fold-changes mapped onto a metabolic network indicate that global responses of intracelular

metabolites to glutamine step are cell-dependent. In each graph, fold-changes bars are depicted in the order hiPSC 1,

hiPSC 2, hNSC 1 and hNSC 2. Green bars denote positive fold-changes, red bars denote negative fold-changes, dark

colored bars denote fold-changes statistically significant at 5% significance level, light colored bars for fold-changes

which are not statistically significant at 5% significance level. In the lipids box, grey bars denote the percentage of lipids

that maintained their steady-state, green bars denote the percentage of lipids that reached higher steady-states and red

bars the percentage of lipids that reached lower steady-states, at 5% significance level. AcylC: Acylcarnitines, PC:

Phosphatidylcholines, LysoPC: Lysophosphatidylcholines, SM: Sphongomyelins.

https://doi.org/10.1371/journal.pcbi.1007780.g003
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The modelling of transient dynamic metabolic profiles captures a layer of information that

is not present in analysis of dynamics by fold-changes of steady-states. Indeed, using the fold-

change of steady-states for discriminating between hiPSC and hNSC increases the quality of

the classification model with an area under the curve of 0.79, better than using initial or final

steady-states alone (Fig 5A). A classification model is considered good when its area under the

curve is above 0.8, where the accuracy of identification is no longer penalized by a high num-

ber of false positives. Alternatively, inspecting transient dynamics may contribute to reveal

more precisely distinct conserved metabolic features in hiPSC and hNSC (Fig 5B). As depicted

for alanine and histidine, transient dynamics reveal metabolic characteristics such as the over-

all robustness and speed of the response which fold-change of steady-states cannot (Fig 5B).

Even when considering the more sophisticated tool of fold-changes of steady-states, it is

entirely possible that the same metabolite, in both cell types, can have the same fold-change

but in one cell type show oscillations or overshoots while in the other cell type that behaviour

is not observed. Therefore, the ability of distinction between cell types is increased when profil-

ing transient dynamics.

Amino acids show conserved dynamics and readjust their intracellular

pools without resorting to oscillations

Following the evidence that metabolic dynamics were generally reproducible between cell

lines of the same cell type but not between cell types, metabolites from the same cell type were

fit using the same model parameters, except for the parameter process gain, in order to identify

which metabolites had conserved dynamics in hiPSC and hNSC (additional details in the

Materials and Methods). However, the definition of an acceptable fitting error threshold,

Fig 4. Mathematical model can simulate different types of dynamic responses. In green, examples of intracellular

metabolites that reach a new and higher steady-state after the glutamine step, in red examples of metabolites that reach

a new and lower steady-state and in grey examples of metabolites that keep the same steady-state. Data are represented

as mean of sampling replicates and error bars represent standard deviation. Solid lines represent the mathematical

fitting to the experimental data.

https://doi.org/10.1371/journal.pcbi.1007780.g004
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Fig 5. Identification of metabolites with cell type-specific-dynamics reveals the amino acid class as highly

conserved in hiPSC and hNSC and that most of the cell type-specific amino acids decreased their steady-state

upon glutamine step increase. (A) Receiver operating characteristic (ROC) curves show the fraction of metabolic

pairs correctly/incorrectly identified as deriving from different cells by the application of three models: one based on

comparison of initial intracellular concentration, another based on comparison of final intracellular concentration,

and the last one based on the fold-change of steady-state after the glutamine step. (B) Metabolic profiles of all

metabolites with cell type-specific dynamics in hNSC and their respective cell type-specific dynamics in hiPSC.

Experimental points: hiPSC 1 –blue round circles, hiPSC 2 –blue diamonds, hNSC 1 –orange round circles and hNSC

2 –orange diamonds. Adjusted models for cell type-specific dynamics: hiPSC in blue lines and hNSC in orange lines.

Data are represented as mean of sampling replicates and error bars represent standard deviation. (C) Venn diagram of

metabolites with common dynamics. In each intersection, only metabolites with a mean fitting error below 4% are

accepted. Black numbers indicate the number of simulated metabolic profiles which fit, specifically to that region and

not to any other region with the same or higher number of intersections. Orange numbers indicate the number of all

simulated metabolic profiles that fit to that region, regardless of fitting to other regions with the same or higher

number of intersections. (D) Distribution of simulated metabolic profiles according to the steady-state outcome for

metabolites with cell type-specific dynamics and with non-specific dynamics (acceptable fits between at least two cell

lines of different cell types). (E) Heatmap of metabolites with unique dynamics for hiPSC and for hNSC and of

metabolites with dynamics shared by all cells lines, divided in steady-state outcome. Lipids were lumped in classes and

the numbers inside its boxes are the number of lipids from that class with dynamics which are cell type-specific or are

common to hiPSC and hNSC. BA’s: Biogenic Amines; C’s: Acylcarnitines; PC’s: Phosphatidylcholines; SM’s:

Sphingomyelins. (See S5 Table for the total list of metabolites with conserved dynamics).

https://doi.org/10.1371/journal.pcbi.1007780.g005
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adequate for claiming a different dynamic metabolic response between cells, has to be ratio-

nally evaluated.

Therefore, the number of metabolites fitted in all cell lines with acceptable fitting error and

included after the pre-filtering step (S3 Table), was graphed over the threshold fitting error

(S4A Fig). Each metabolite was fit to all possible combinations for four, three and two cell

lines. At a large threshold, all fits of common metabolites belonged to the case of simultaneous

fitting to the four cell lines. As the threshold reached to 4% of fitting error, the number of

metabolites with fit to the four cells scenario decreases while the fit to hiPSC cell lines and to

hNSC cell lines scenario reached their maximum (S4A and S4B Fig). With this threshold for

fitting error, the Venn diagram of all metabolic fits showed a relevant amount of metabolites

with conserved dynamics, especially for hiPSC (Fig 5C).

When comparing these cell type-specific metabolic profiles with the metabolic profiles that

were shared, at least, between two cell lines of hiPSC and hNSC, control characteristics such as

settling time and damping coefficient could not discriminate those groups (S5 Fig). Settling

time is the time a perturbed process takes to stabilize to a 5% margin of its final steady-state.

The damping coefficient relates to the oscillatory behavior. Lower than but close to one means

the process is slightly oscillatory in order to reach the region of the new steady-state faster.

Above one means that the process is more sluggish and therefore robustness of response is pre-

ferred over fastness. This means that damped processes tend to be more stable to unmeasured

and unexpected disturbances. Then, for metabolites with unique and shared dynamics, robust-

ness and stable responses seem to be preferred over response speed (S5 Fig).

In terms of steady-state outcome, a substantial fraction of the metabolites with cell type-spe-

cific dynamics adjusted their set-point to a lower value after the glutamine step (Fig 5D). This

fraction was significantly lower in metabolites with shared dynamics across hiPSC and hNSC.

Interestingly, all of these metabolites were amino acids, many with characteristic and distinct

dynamics in hiPSC and hNSC (Fig 5B, Fig 5E and S5 Table).

Discussion

Control of metabolic pools is paramount for cell homeostasis as metabolism has a strong effect

on the epigenome, transcriptome, proteome, metabolome and fluxome through varied mecha-

nisms of action. Mathematical modelling of all the interactions of metabolism with other cellu-

lar components is still very challenging and appropriate mathematical tools are not yet

available. Thus, an understanding of what is the identity of metabolic phenotype when metab-

olism can adjust itself to environmental changes is slim. Our hypothesis changes the focus

from modelling the general to modelling the particular, considering each metabolic pool indi-

vidually. We resorted to a perturbation experiment where an extracellular glutamine step was

applied and dynamic intracellular metabolomics was assessed. The observation of metabolic

changes allowed an analysis of the essential and constant metabolic features of the cells, and of

the key metabolites that seemed to govern the metabolic response. To our knowledge, this is

the first time an experiment of this type is performed in human stem cells to uncover intrinsic

dynamics of metabolic pools, while other works have mainly been focused on transition to

new metabolic programs. Dynamic metabolomics on adipocytes upon insulin stimulation

reported on metabolic rearrangements in central carbon metabolism [25] and a sudden reac-

tive oxygen species stress to E. coli unravelled novel allosteric regulations in glycolysis and in

pentose phosphate pathway (PPP) [26].

In our study, most metabolites in hiPSC and in hNSC had their most relevant dynamics for

30 min after the glutamine step, similar to what was obtained for metabolites upon insulin

stimulation in adipocytes [25]. In E. coli, metabolites responded quickly to extracellular
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changes and achieved the new steady-state in less than 40 seconds [20,26]. Mammalian cells

are larger in size, more compartmentalized and with much slower dynamics. Studies of this

type on human cells should be designed to perform intensive sampling during the first 30 min-

utes after the challenge with time intervals as short as possible. Nevertheless, perturbation

steps with metabolites are easier to implement than perturbation of fluxes by overexpressing

enzymes [27]. Given the limited time frame, the dynamic response observed in this work

should not be regulated at the gene expression level, as protein synthesis rate in mammalian

cells is usually in the time frame of hours [28], but rather by regulation of enzyme activity.

Future studies focused on the proteome and post-translational modifications could contribute

to clarify what are the main responsible molecular regulators Also, correlation with gene

expression data (at wider time frames) would be valuable in attempting to understand the

downstream impact of the metabolic perturbations and its effect on cell phenotype.

The exploratory approach of this study required broad metabolomics coverage. Different

classes of metabolites were quantified, especially from pathways close to the glutamine path-

way where the external perturbation was performed: TCA intermediates, amino acids, bio-

genic amines and lipids. Previous works, in E.coli and human skin cells, sharing related

concepts or objectives usually focused on glycolysis and PPP [26,29]. Herein, the focus was on

TCA cycle, amino acid metabolism and lipidic pathways, as these pathways have higher proba-

bility of being cell type-specific than foundational pathways such as glycolysis and PPP.

Indeed, it has been previously reported that TCA intermediates influence hPSC differentiation

[9], amino acids and biogenic amines influence the cell fate of hiPSC [30], of T-cells [31] and

of oligodendrocyte precursor cells [32]. Lipid levels have been found to be changed between

hiPSC and ESC [33] and to promote important signalling for insulin-glucose homeostasis

[34]. The Pearson correlation for fold-change of steady-state demonstrated these features were

very well conserved in hiPSC and hNSC, independently of the metabolic class. Importantly,

this successful correlation demonstrates the potential of simple steady-state fold-change analy-

sis as a method for phenotypic characterization, in contrast with using intracellular metabolic

levels for discriminating different cell types, as used recently in cancer cell lines [35]. More-

over, steady-state changes from dynamic analysis allowed for a systemic perspective on the

metabolic response of hiPSC and hNSC to the glutamine perturbation. We identified a sys-

temic response towards specific metabolic pathways instead of a uniform flux distribution.

This type of behavior has been also observed for adipocytes [25]. Interestingly, our results

closely match the data obtained by carbon-labelling experiments, usually more expensive and

labor-intensive [9,22]. Thus, the use of perturbation experiments could be developed in the

future to benefit metabolic flux studies.

The correlation of metabolic steady-state fold-changes between hiPSC and hNSC was still

high and statistically significant. In order to prove with greater confidence that metabolic

dynamics are cell type-specific, analysis of transient dynamics was used. The chosen model for

fitting was the simplest one that could incorporate inertia in response. In order to get 100% of

successful fittings, more complex models (and different types) would have to be used. That

would allow us to detect different groups of dynamic response but would require more sam-

pling points, as the number of parameters to be fitted would increase. Nevertheless, the rela-

tively simple model permitted the identification of metabolites with cell type-specific

dynamics. Half of them decreased their intracellular metabolic steady-state against one quarter

of the metabolites with shared dynamics across cell types. Interestingly, all of those metabolites

with cell type-specific dynamics and with decreased steady-state were amino acids. Some of

the identified amino acids are known to have important cell regulatory functions. A controlled

level of intracellular methionine and of the enzymes involved in its metabolism has been

shown to be crucial for maintenance of pluripotency in hiPSC [30]. In a specific subtype of
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breast cancer with stem-cell like properties, asparagine has been pointed out as a key factor for

governing metastasis [36]. Asparagine has also been shown as regulator of protein synthesis in

mammalian cells [7]. Serine supports proliferation of the breast cancer cells [37]. In addition,

serine as well as glycine, are involved in one-carbon metabolism that influence epigenetics in

human cells [38]. Besides the biological importance of the identification of amino acids as hav-

ing dynamics which are cell-type specific, this result suggests that targeted approaches for

identification of amino acid dynamics may be sufficient for cell identity characterization,

instead of the more complex and expensive untargeted metabolomics studies. Moreover, the

prevalence of amino acids in metabolic response is advantageous as respective analytical meth-

ods are easier, amino acid pool levels tend to be large allowing a simulation fit of dynamic

data, and many experimental means are available to the researcher such as label tracers or

enzymatic activation/inhibition chemicals.

In the near future, the analysis of dynamics by control parameters such as damping coeffi-

cient and settling time might be decisive for ranking the metabolites as potential targets for cell

homeostasis regulation. This would tackle another problem concerning classical comparative

metabolomics where it is unclear how to accurately identify which molecule among the

numerous changed metabolic pools is likely to be the most effective phenotype modulator

[39]. The manipulation of effective phenotype modulators to induce cell fate decisions would

bring enormous advances in cell therapy and regenerative medicine. After all, reprogramming

somatic cells into pluripotent stem cells, expanding stem cells, differentiating stem cells and

transdifferentiating cells constitute bioprocesses that are often time-consuming, inefficient

and expensive.

Overall, we propose a methodology with considerable specificity for metabolic characteriza-

tion and for the identification of metabolites characteristic of a cell phenotype by modelling

dynamic metabolomics. In this work, we identified metabolic signatures of stemness of hiPSC

and of NSC that can potentially be used to solve lingering doubts about differences in pheno-

type related to cell origins, in the pluripotent and neural stem cell fields. The unbiased nature

of the proposed method allows it to be expanded to many other metabolic pathways by per-

forming perturbation steps with different metabolites and by performing more comprehensive

untargeted metabolomics, which is increasingly improving its sensitivity and throughput [39].

Coupling these dynamic studies with mathematical modelling in future investigations will lead

to a better metabolic understanding on cell regulation and opens an avenue for cell fate

manipulation.

Materials and methods

Cell culture

Primed hiPSC IMR90-4 (RRID: CVCL_C437) were purchased from WiCell and WTC-11

(RRID: CVCL_Y803) were obtained from The J. David Gladstone Institutes, designated

throughout the text by hiPSC 1 and hiPSC 2 respectively. Primed hiPSC were maintained

under feeder-free conditions with Matrigel (Corning Matrigel hESC-Qualified Matrix and

Corning Matrigel Growth Factor Reduced (GFR) Basement Membrane Matrix, BD Biosci-

ences) and fed daily with mTeSR1 medium (STEMCELL Technologies). Versene (Gibco Life

Technologies) and Accutase (STEMCELL Technologies) were used to enzymatically dissociate

hiPSCs into single cells for hiPSC 1 and hiPSC 2, respectively. At cell passage, mTeSR1 was

also supplemented with 5 μM of ROCK inhibitor Y-27632 (Calbiochem). Complete medium

exchange was performed every day. Cells were maintained under humidified atmosphere with

5% CO2, at 37˚C.
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hNSC 1 was derived from hiPSC 1 IMR90-4 using a dual SMAD inhibition protocol [40].

Briefly, hiPSC differentiation was induced by supplementing the culture media with 10 μM

SB431542 and 1 μM LDN193189 (both from STEMCELL Technologies) for 10 days. hNSC 2

was originally derived from hiPSC line RIi001-A (RRID: CVCL_C888), as previously

described [41] and designated throughout the text as hNSC 2. hNSC were expanded in

DMEM/F12 (Invitrogen) with Glutamax, N2 and B27 supplements (Invitrogen), 20 μg/mL

insulin and 20 ng/mL of bFGF (Peprotech) and of EGF (Sigma). Half of culture media volume

was exchanged every other day [41]. hNSC were maintained under humidified atmosphere

with 5% CO2 and 3% O2, at 37˚C.

Stirred-tank bioreactor cultures

hiPSC and hNSC were inoculated in 200 mL of media as single cell suspensions of 0.25x106

cell/mL and 0.4x106 cells/mL, respectively, into software-controlled stirred-tank DASGIP Bio-

block bioreactor system (Eppendorf). hiPSC 1, hiPSC 2, hNSC 1 and hNSC 2 were used for

these experiments at cell passage number P40, P36, P12 and P34, respectively (four bioreactor

runs in total). Bioreactor temperature was set to 37˚C, dissolved oxygen to 15%, pH to 7.4, aer-

ation rate to 0.1 vvm and the agitation rate to a range from 70 to 100 rpm [12,42]. Perfusion

was initiated after inoculation and interrupted just before the perturbation experiment. Perfu-

sion rates of hiPSC and hNSC were 1.3 day-1 and 0.33 day-1, respectively. Cells were allowed to

aggregate for 2 to 3 days before performing the perturbation experiment.

Perturbation experiments and sampling for metabolomics

Before initiating the perturbation experiment, perfusion was interrupted. Glutamine concen-

tration in the culture medium was determined using an YSI 7100 MBS analyser (YSI Life Sci-

ences, Yellow Springs, Ohio USA) offline. The glutamine pulse was induced by adding the

required volume of glutamine concentrated solution (L-Glutamine, 200 mM, Gibco) to attain

a concentration of 15 mM in the culture media. Changes in osmolarity of the culture medium

of bioreactor cultures were later determined using a K-7400S Semi-Micro Osmometer

(KNAUER Wissenschaftliche Geräte GmbH, Germany). Sampling was performed before the

glutamine step and at several time-points after the step: immediately (0 min), 5 min, 10 min,

15 min, 30 min, 1 h and 2 h after. A sample of 15 mL of culture was collected per time-point

sample and distributed equitably in three 50 mL tubes, containing ice-cold PBS to quench cell

metabolism, generating three technical replicates that were processed independently. After

centrifugation at 300xg for 3 min at 4˚C, a sample of supernatant was stored for later quantifi-

cation of extracellular glutamine, glucose, lactate and ammonia. The remaining supernatant

was discarded and the cell pellet was washed with ice-cold PBS and centrifuged again. The

supernatant was removed and a solution of 40:40:20 acetonitrile:methanol:water was added to

extract intracellular metabolites from the cell pellet. Sonication was performed to guarantee a

complete cell lysis. The extracts were transferred to microcentrifuge tubes and centrifuged at

20000 x g at 0˚C for 15 minutes. Supernatant was collected, snap-frozen in liquid nitrogen and

stored at -80˚C until metabolomic analysis. The pellet was also snap-frozen in liquid nitrogen

and stored at -80˚C until protein quantification. Protein was dissolved in lysis buffer contain-

ing 2% SDS (v/v) and quantified using a Microplate BCA Protein Assay Kit (Thermo Scien-

tific). Ammonia was quantified using the Ammonia Assay Kit (Megazyme).

Cell viability

Cell viability in spheroids was analysed before the glutamine perturbation experiment by stain-

ing the spheroids with fluorescein diacetate (FDA) in PBS (0.02 mg/mL) and propidium iodide
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(PI) in PBS (0.002 mg/mL), followed by visualization by fluorescence microscopy using an

inverted phase contrast microscope (Leica Microsystems GmbH).

Flow cytometry

Single-cell suspensions of hiPSC were prepared by Versene/Accutase treatment of cell spher-

oids. Cell density was determined and 0.5x106 cells were transferred to a microcentrifuge tube,

centrifuged at 300xg for 5 min and washed with 2% FBS in PBS. The cells were resuspended in

50 μl of a solution containing the primary antibody: TRA-1-60 (Santa Cruz Biotechnology, sc-

21705, dilution 6:100) or SSEA4 (Santa Cruz Biotechnology, sc-21704, dilution 1:10). Cells

were incubated with the primary antibody solution for 1 hour at 4˚C, washed with 2% FBS in

PBS and centrifuged twice, followed by 30 minutes at 4˚C incubation with AlexaFluor 488 sec-

ondary antibodies (Invitrogen, A21042 for TRA-1-60 and A11001 for SSEA4, dilution 1:1000).

Cells were washed and centrifuged twice with 2% FBS in PBS, and finally resuspended in 500

uL of 2% FBS in PBS for flow cytometry analysis. Data was collected on a CyFlow Space flow

cytometer from Partec. Cells were gated on forward and side scatter dot plots. 10,000 events

per sample were acquired and the data were analyzed with FloMax software (version 3.0).

Immunofluorescence microscopy

hNSC spheroids were plated on sterile glass coverslips inserted on 24-well plates and left for

adherence at 37˚C and 5% CO2. Each coverslip containing spheroids were washed once with

cold PBS +/+ and then fixed in 500 μL of 4% paraformaldehyde + 4% sucrose in phosphate-

buffered saline (PBS) for 20 min at room temperature. Before storage, fixed cells were washed

twice with 500 μL PBS. Cells were blocked and permeabilized with 0.2% FSG (Gelatin from

cold water fish skin, Sigma, G7765) + 0.1% TritonX-100 in PBS for 20 minutes at room tem-

perature. Primary antibodies were diluted in 0.125% FSG in PBS + 0.1% TritonX-100 and

added to fixed spheroids for an incubation of 2 hours at room temperature. Afterwards, cells

were washed twice with PBS and incubated with secondary antibodies diluted in 0.125% FSG

in PBS for 1 hour and protected from light. Primary and secondary antibodies were used as fol-

lows: anti-nestin (Merck Millipore, AB5922), anti-Sox2 (Merck Millipore, AB5603), anti-βIII-

tubulin (Merck Millipore, 1:200, MAB1637), AlexaFluor 488 goat anti-rabbit IgG (Invitrogen,

A11008), AlexaFluor 594 goat anti-mouse IgG (Invitrogen, A11005). Coverslips were mounted

in ProLong Gold antifade reagent with DAPI (Invitrogen, P36935) for staining of cell nuclei.

Preparations were visualized on an inverted microscope Leica DMI6000 B (Leica Microsys-

tems). The obtained images were processed using FIJI software [43] and relying solely on lin-

ear adjustments.

Metabolomic analysis of intracellular extracts

Targeted and quantitative metabolomic analysis was performed using the AbsoluteIDQ p180

kit and the Energy Metabolism Assay (Biocrates Life Sciences AG, Innsbruck, Austria). The

two assays quantify a total of 201 metabolites from different biological classes, including

amino acids, biogenic amines, acylcarnitines, lysophosphatidylcholines, phosphatidylcholines,

sphingomyelins and several metabolites of the energy metabolism. For the first assay, analyses

were carried out after phenylisothiocyanate (PITC)-derivatization in the presence of internal

standards by flow-injection tandem mass spectrometry (FIA-MS/MS, for quantification of

acylcarnitines, (lyso-) phosphatidylcholines, sphingomyelins, hexoses) and liquid chromatog-

raphy-tandem mass spectrometry (LC-MS/MS, for amino acids, biogenic amines) using a

SCIEX 4000 QTRAP (SCIEX, Darmstadt, Germany) and a Xevo TQ-S Micro (Waters, Vienna,

Austria) instrument with an electrospray ionization (ESI) source. The experimental
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metabolomics measurement technique is described in detail by patent US 2007/0004044

(accessible online at http://www.freepatentsonline.com/20070004044.html). For the second

assay, after derivatization to their corresponding methoxime-trimethylsilyl (MeOx-TMS)

derivatives, energy metabolites were determined by gas chromatography-mass spectrometry

(GC-MS) using an Agilent 7890 GC/5975 MSD (Agilent, Santa Clara, USA) system. Pretreated

samples were evaporated to complete dryness and subjected to a two-step methoximation-sily-

lation derivatization. N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) was used as

silylation reagent. Split injection was performed and chromatograms were recorded in selected

ion monitoring (SIM) mode. External standard calibration curves and ten internal standards

were used to calculate concentrations of individual energy metabolites. Data were quantified

using the appropriate MS software (Agilent, Masshunter) and imported into Biocrates

MetIDQ software for further analysis.

Data pre-processing and statistical analyses

Absolute metabolic values were normalized by the protein content of the cell pellet for each

replicated sample (S2 Table). Metabolites with more than 62.5% of missing values or with coef-

ficients of variation greater than 15% were excluded.

For unsupervised analyses, normalized and averaged metabolic values per time-point were

z-scored by subtracting to each value the mean for each metabolite-cell and then dividing by

the respective standard-deviation. Principal component analysis and hierarchical clustering

was performed in Matlab R2015b (MathWorks, Natick MA) and in Perseus software [44],

respectively.

Steady-state fold changes were statistically tested by performing a two-sample t-test, two-

sided, assuming the two samples comes from independent random samples from normal dis-

tributions with equal means and equal but unknown variances. The Benjamini-Hochberg

method was used to correct for multiple testing errors using a false discovery rate of 5% [45].

These fold-changes were log2-transformed for depiction in volcano plots and in the Pearson

Correlation matrices. These statistical tests and correlations were performed in Matlab R2015b

(MathWorks, Natick MA).

Dynamic modelling and characterization of parameters

A classical model from process dynamics and control based on two liquid surge tanks placed

in series [23] was used for modelling the dynamical metabolic profiles. The specific model,

named second order with numerator dynamics, has different equations for two scenarios: one

for an underdamped process and another for an overdamped process, displayed below with a

complex variable s.

Overdamped : y0 sð Þ ¼
KMðtasþ 1Þ

ðt2sþ 1Þðt1sþ 1Þ
ð1Þ

Underdamped : y0 sð Þ ¼
KMðtasþ 1Þ

t2s2 þ 2ztsþ 1
ð2Þ

Metabolic profiles were fit to these two equations by minimization of the sum of squared

residuals. The scenario that presented the lowest residual was chosen. The parameter M was

calculated based on the concentration of extracellular concentration of glutamine (S1 Table).

Fitting of the four other parameters, the steady-state gain K, the numerator coefficient τA, the

response time τ and the damping coefficient z, was performed in MATLAB using lsqnonlin

and nlinfit functions. The former function was used to get a first estimation of model
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parameters which would serve as initial parameters to the latter, as the latter function accepts

standard-deviations as weights for fitting. Fits with residual norm above 4% were not consid-

ered. The fitting of intracellular glutamine for the four cell lines, instantly subjected to the sud-

den extracellular glutamine step, using the same model parameters except one, display

considerable resemblance and very low average fitting error (S6 Fig). So, to tackle randomness

variable affecting the quantification of moles of metabolites per protein quantity between

time-points, experimental values of hNSC (especially affected by the mentioned random vari-

able) were normalized to the shared glutamine profile by multiplying the ratio of simulated

value per experimental value of glutamine at that time-point and for that cell line (for all i, g

and y, Met normalized i,cell line g, time-point y = Met i,cell line g, time-point y x (Gln simulated cell line g,

time-point y / Gln experimental cell line g, time-point y).

The settling time of each fitting curve was determined by finding the time-point after which

the metabolic pool value would remain inside a band whose width is equal to ±5% of the final

metabolic pool concentration.

The damping coefficient in the overdamped case was calculated directly from the model

parameters obtained for each metabolite:

In Overdamped : z ¼
t1 þ t2

2
ffiffiffiffiffiffiffiffi
t1t2

p

Supporting information

S1 Fig. Effect of glutamine steps in hiPSC and hNSC bioreactions on extracellular environ-

ment. (A) Osmolarity of the solution of glutamine used for the perturbation step, of the cell

culture media used for hiPSC and hNSC and of the culture media of the four bioreactor cul-

tures immediately after the glutamine perturbation step. Changes in osmolarity after the per-

turbation step are indicated in percentage on top of each bar. (B) Ammonia concentration in

bioreactors culture media.

(TIF)

S2 Fig. Intracellular metabolites reach their steady-state after approximately 2 hours. Met-

abolic profiles of alanine and threonine in an experiment covering up to 24 hours after the glu-

tamine step increase demonstrate that 2 hours is usually sufficient for reaching a new

metabolic steady-state.

(TIF)

S3 Fig. Unsupervised analysis of dynamic profiles of intracellular metabolites after gluta-

mine step perturbation. The dynamic profiles of molar quantities per protein were normal-

ized by a z-score procedure (see Materials and Methods). (A) Principal component analysis of

metabolic profiles. (B) Hierarchical clustering of metabolic profiles. Rows represent the differ-

ent metabolites, while each column represents one time point (BP–before pulse, 0, 5, 10, 15, 30

min, 1, 2 hours).

(TIF)

S4 Fig. Selecting the ideal fitting error threshold to allow a confident identification of

metabolites with cell-conserved dynamics. (A) Frequency of fitted metabolites along the

threshold of the fitting error, to several combinatorial groups of cells. (B) Venn diagram of

metabolites, present in all four cell lines, with fits below a 4% error to all cell types. Orange

numbers indicate the number of all simulated metabolic profiles that fit to that region, regard-

less of fitting to other regions with the same or higher number of intersections.

(TIF)

PLOS COMPUTATIONAL BIOLOGY Dynamic metabolic signatures in human stem cells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007780 April 16, 2020 16 / 20

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007780.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007780.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007780.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007780.s004
https://doi.org/10.1371/journal.pcbi.1007780


S5 Fig. Comparison of control-related parameters of simulated metabolic responses

between metabolites with cell type-specific dynamics and with shared dynamics across cell

types. (A) Boxplot of settling time of simulated metabolic profiles between cell type-specific

and shared dynamics (non-specific). (B) Boxplot of damping coefficient of simulated meta-

bolic profiles between cell type-specific and shared dynamics (non-specific).

(TIF)

S6 Fig. Modelling glutamine dynamic profile for all cell lines using the same model param-

eters, except of steady-state gain. (A) Metabolic profile over two hours for each cell line.

Experimental points: hiPSC 1—blue round circles, hiPSC 2—blue diamonds, hNSC 1—orange

round circles and hNSC 2—orange diamonds. Simulated profiles: hiPSC in blue lines and

hNSC in orange lines. Experimental data are represente as mean of sampling replicates and

error bars represent standard deviation. (B) Parameters used for modeling glutamine profiles.

(C) Step-response descriptors from glutamine profile modeling for each cell line.

(TIF)

S1 Table. Step inputs of extracellular glutamine concentration for the different bioreac-

tors.

(XLSX)

S2 Table. Complete metabolic quantification dataset for each cell line.

(XLSX)

S3 Table. Number of metabolites after each data processing for each cell line. The “Pre-fil-

tered” step refers to the step where metabolites that had 5 or more time-points with values

under the detection limit or with a relative standard deviation on averaged molar quantity per

protein above 15%, were discarded. Metabolic profiles were then fitted to an equation model

and those with a mean fitting error above 5% were discarded.

(XLSX)

S4 Table. Model parameters for simulated metabolite profiles of each cell line.

(XLSX)

S5 Table. Metabolites with unique dynamics for hiPSC, hNSC and metabolites with

dynamics shared by all cells lines, divided in steady-state outcome. Metabolites which have

characteristic dynamics for hiPSC and also have characteristic dynamics for hNSC are under-

lined.

(XLSX)
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22. Sá J V., Kleiderman S, Brito C, Sonnewald U, Leist M, Teixeira AP, et al. Quantification of Metabolic

Rearrangements During Neural Stem Cells Differentiation into Astrocytes by Metabolic Flux Analysis.

Neurochem Res. 2017; 42: 244–253. https://doi.org/10.1007/s11064-016-1907-z PMID: 27068034

23. Seborg DE, Edgar TF, Mellichamp DA, Doyle III FJ. Process Dynamics and Control. Third. New Dehli:

Wiley; 2011.

24. Bhartiya S, Chaudhary N, Venkatesh K V, Doyle FJ. Multiple feedback loop design in the tryptophan

regulatory network of Escherichia coli suggests a paradigm for robust regulation of processes in series.

J R Soc Interface. 2006; 3: 383–91. https://doi.org/10.1098/rsif.2005.0103 PMID: 16849267

25. Krycer JR, Yugi K, Hirayama A, Fazakerley DJ, Quek L-E, Scalzo R, et al. Dynamic Metabolomics

Reveals that Insulin Primes the Adipocyte for Glucose Metabolism. Cell Rep. ElsevierCompany.; 2017;

21: 3536–3547. https://doi.org/10.1016/j.celrep.2017.11.085 PMID: 29262332

26. Christodoulou D, Link H, Fuhrer T, Kochanowski K, Gerosa L, Sauer U. Reserve Flux Capacity in the

Pentose Phosphate Pathway Enables Escherichia coli’s Rapid Response to Oxidative Stress. Cell

Syst. Elsevier Inc.; 2018; 6: 1–10. https://doi.org/10.1016/j.cels.2018.01.007

27. Tanner LB, Goglia AG, Wei MH, Sehgal T, Parsons LR, Park JO, et al. Four Key Steps Control Glyco-

lytic Flux in Mammalian Cells. Cell Syst. Elsevier Inc.; 2018; 7: 49–62.e8. https://doi.org/10.1016/j.cels.

2018.06.003 PMID: 29960885

28. Kristensen AR, Gsponer J, Foster LJ. Protein synthesis rate is the predominant regulator of protein

expression during differentiation. Mol Syst Biol. Nature Publishing Group; 2013; 9: 1–12. https://doi.org/

10.1038/msb.2013.47 PMID: 24045637

29. Kuehne A, Emmert H, Soehle J, Winnefeld M, Fischer F, Wenck H, et al. Acute Activation of Oxidative

Pentose Phosphate Pathway as First-Line Response to Oxidative Stress in Human Skin Cells. Mol Cell.

Elsevier Inc.; 2015; 59: 359–371. https://doi.org/10.1016/j.molcel.2015.06.017 PMID: 26190262

30. Shiraki N, Shiraki Y, Tsuyama T, Obata F, Miura M, Nagae G, et al. Methionine Metabolism Regulates

Maintenance and Differentiation of Human Pluripotent Stem Cells. Cell Metab. Elsevier Inc.; 2014; 19:

780–94. https://doi.org/10.1016/j.cmet.2014.03.017 PMID: 24746804

31. Geiger R, Rieckmann JC, Wolf T, Zamboni N, Sallusto F, Lanzavecchia A, et al. L-Arginine Modulates T

Cell Metabolism and Enhances Survival and Anti-tumor Activity. Cell. Elsevier Inc.; 2016; 167: 829–

842. https://doi.org/10.1016/j.cell.2016.09.031 PMID: 27745970

32. Beyer BA, Fang M, Sadrian B, Montenegro-Burke JR, Plaisted WC, Kok BPC, et al. Metabolomics-

based discovery of a metabolite that enhances oligodendrocyte maturation. Nat Chem Biol. 2018; 14:

22–28. https://doi.org/10.1038/nchembio.2517 PMID: 29131145

PLOS COMPUTATIONAL BIOLOGY Dynamic metabolic signatures in human stem cells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007780 April 16, 2020 19 / 20

https://doi.org/10.1016/j.cmet.2016.03.001
https://doi.org/10.1016/j.cmet.2016.03.001
http://www.ncbi.nlm.nih.gov/pubmed/27050306
https://doi.org/10.1038/emboj.2013.186
http://www.ncbi.nlm.nih.gov/pubmed/24013118
https://doi.org/10.1038/srep16321
http://www.ncbi.nlm.nih.gov/pubmed/26541394
http://hdl.handle.net/10993/22515
https://doi.org/10.1016/j.cell.2016.12.039
http://www.ncbi.nlm.nih.gov/pubmed/28187287
https://doi.org/10.1016/j.ymben.2010.04.003
http://www.ncbi.nlm.nih.gov/pubmed/20447466
https://doi.org/10.1016/j.ymben.2011.03.003
http://www.ncbi.nlm.nih.gov/pubmed/21439400
https://doi.org/10.1016/j.ymben.2013.01.004
http://www.ncbi.nlm.nih.gov/pubmed/23370343
https://doi.org/10.1002/bit.24717
http://www.ncbi.nlm.nih.gov/pubmed/22949074
https://doi.org/10.1007/s11064-016-1907-z
http://www.ncbi.nlm.nih.gov/pubmed/27068034
https://doi.org/10.1098/rsif.2005.0103
http://www.ncbi.nlm.nih.gov/pubmed/16849267
https://doi.org/10.1016/j.celrep.2017.11.085
http://www.ncbi.nlm.nih.gov/pubmed/29262332
https://doi.org/10.1016/j.cels.2018.01.007
https://doi.org/10.1016/j.cels.2018.06.003
https://doi.org/10.1016/j.cels.2018.06.003
http://www.ncbi.nlm.nih.gov/pubmed/29960885
https://doi.org/10.1038/msb.2013.47
https://doi.org/10.1038/msb.2013.47
http://www.ncbi.nlm.nih.gov/pubmed/24045637
https://doi.org/10.1016/j.molcel.2015.06.017
http://www.ncbi.nlm.nih.gov/pubmed/26190262
https://doi.org/10.1016/j.cmet.2014.03.017
http://www.ncbi.nlm.nih.gov/pubmed/24746804
https://doi.org/10.1016/j.cell.2016.09.031
http://www.ncbi.nlm.nih.gov/pubmed/27745970
https://doi.org/10.1038/nchembio.2517
http://www.ncbi.nlm.nih.gov/pubmed/29131145
https://doi.org/10.1371/journal.pcbi.1007780


33. Panopoulos AD, Yanes O, Ruiz S, Kida YS, Diep D, Tautenhahn R, et al. The metabolome of induced

pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res.

Nature Publishing Group; 2012; 22: 168–77. https://doi.org/10.1038/cr.2011.177 PMID: 22064701

34. Yore MM, Syed I, Moraes-Vieira PM, Zhang T, Herman MA, Homan EA, et al. Discovery of a Class of

Endogenous Mammalian Lipids with Anti-Diabetic and Anti-inflammatory Effects. Cell. Elsevier; 2014;

159: 318–332. https://doi.org/10.1016/j.cell.2014.09.035 PMID: 25303528

35. Li H, Ning S, Ghandi M, Kryukov G V., Gopal S, Deik A, et al. The landscape of cancer cell line metabo-

lism. Nature Medicine. 2019. https://doi.org/10.1038/s41591-019-0404-8 PMID: 31068703

36. Knott SRV, Wagenblast E, Khan S, Kim SY, Soto M, Wagner M, et al. Asparagine bioavailability gov-

erns metastasis in a model of breast cancer. Nature. 2018; https://doi.org/10.1038/nature25465 PMID:

29414946

37. Labuschagne CF, van den Broek NJF, Mackay GM, Vousden KH, Maddocks ODK. Serine, but Not Gly-

cine, Supports One-Carbon Metabolism and Proliferation of Cancer Cells. Cell Rep. The Authors; 2014;

7: 1248–1258. https://doi.org/10.1016/j.celrep.2014.04.045 PMID: 24813884

38. Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer.

Nature Publishing Group; 2013; 13: 572–583. https://doi.org/10.1038/nrc3557 PMID: 23822983

39. Guijas C, Montenegro-Burke JR, Warth B, Spilker ME, Siuzdak G. Metabolomics activity screening for

identifying metabolites that modulate phenotype. Nat Biotechnol. 2018; 36: 316–320. https://doi.org/10.

1038/nbt.4101 PMID: 29621222

40. Chambers SM, Fasano C a, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural

conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009; 27:

275–280. https://doi.org/10.1038/nbt.1529 PMID: 19252484

41. Simão D, Silva MM, Terrasso AP, Arez F, Sousa MFQ, Mehrjardi NZ, et al. Recapitulation of Human

Neural Microenvironment Signatures in iPSC-Derived NPC 3D Differentiation. Stem Cell Reports.

2018; 11: 1–13. https://doi.org/10.1016/j.stemcr.2018.06.017 PMID: 29996086
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