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ery rearing, life history, and phenotypic variation, and behavioral and spawning in-
teractions. Additionally, we found that LRS is affected by competitive behavior on
the spawning grounds, genetic compatibility, local adaptation, and hybridization. Our
review of existing literature revealed limitations of LRS studies, and we emphasize
the following areas that warrant further attention in future research: (1) expanding
the range of studies assessing LRS across different life-history strategies, specifically
accounting for distinct reproductive and migratory phenotypes; (2) broadening the
variety of species represented in salmonid fitness studies; (3) constructing multigen-
erational pedigrees to track long-term fitness effects; (4) conducting LRS studies that
investigate the effects of aquatic stressors, such as anthropogenic effects, patho-
gens, environmental factors in both freshwater and marine environments, and as-
sessing overall body condition, and (5) utilizing appropriate statistical approaches to
determine the factors that explain the greatest variation in fitness and providing in-
formation regarding biological significance, power limitations, and potential sources
of error in salmonid parentage studies. Overall, this review emphasizes that studies of
LRS have profoundly advanced scientific understanding of salmonid fitness, but sub-
stantial challenges need to be overcome to assist with long-term recovery of these
keystone species in aquatic ecosystems.
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1 | INTRODUCTION

Lifetime reproductive success (LRS) is broadly defined as the num-
ber of offspring an individual produces over the span of a lifetime
(Clutton-Brock, 1988) and is generally considered a sufficient esti-
mate of fitness in natural populations (Arnold & Wade, 1984; Grafen,
1988). LRS is thought to consist of two main components which in-
trinsically connect both sexual and natural selection. The first com-
ponent is the number of offspring produced, with the caveat that
distinct evolutionary trade-offs exist between offspring number
and quality, and the second component is the number of available
reproductive seasons within an individual's lifetime (Barrowclough
& Rockwell, 1993; Olofsson et al., 2009; Philippi & Seger, 1989). In
order to have evolutionary consequences, individual phenotypic dif-
ferences in LRS need to be heritable across generations (Shuster &
Wade, 2003).

Although LRS is a commonly used estimation of fitness across
taxonomic groups, gathering LRS data has presented a challenge in
natural populations, particularly for species with external fertiliza-
tion and no postnatal parental care. A direct count of the number
of offspring requires both confidence in sampling and accuracy in
parentage assignment once sampled. Furthermore, following an
individual throughout their lifespan can be technically challenging,
costly, and in many cases, simply not possible. Therefore, constraints
on technical sampling of parents in natural environments have led
some studies to rely on a correlate or “proxy” measure of fitness,
such as morphology, phenology, performance measures, and various
life-history traits (some examples would include body mass, seasonal
timing, growth rate, and offspring size; Barrowclough & Rockwell,
1993; Franklin & Morrissey, 2017; Kingsolver et al., 2012).

Advances in genetic sequencing technology have provided a
cost-effective approach to determining the pedigree structure of
individuals within a population (DeWoody, 2005; Johnson et al.,
2019; Jones et al., 2010). As the financial burden of genetic sampling
and subsequent parentage assignment has decreased over the last
20 years, there have been a number of studies providing direct esti-
mates of LRS, ranging from insects (Ingram et al., 2013; Rodriguez-
Mufoz et al., 2010), birds (Costanzo et al., 2017; Eastwood et al.,
2019; Gienapp & Merild, 2011; Parn et al., 2009; Schroeder et al.,
2015; Webster et al., 2007), and reptiles (Le Galliard et al., 2008;
Warner & Shine, 2008), to mammals, both small (Dugdale et al.,
2010, 2011; Lardy et al., 2015; Marshall et al., 2017; Schradin &
Lindholm, 2011) and large (Lancaster et al., 2007; Markussen et al.,
2019; Setchell et al., 2005; Sparkman et al., 2010; Spiering et al.,
2011).

Salmonids represent an ideal study system to estimate pedigree
structure, reliably measure LRS, and address evolutionary questions
given their unique life-history strategies and population structure,
high fecundity, wide variability in life-history traits, and the wealth
of genetic information gained from commercial and conservation
aquaculture (Stearns & Hendry, 2004). Additionally, salmonids
demonstrate very high individual- and population-level variability

in LRS, intense intrasexual competition, and high mortality overall,

making them also ideal for addressing questions in sexual selection
(Fleming & Reynolds, 2004).

Variation in numerous life-history traits occurs both within and
across salmonid species, including both semelparous and iteroparous
reproductive strategies (Quinn, 2005; see Box 1 for glossary of terms
presented). Semelparity is characterized by a single reproductive
event, followed by death, and represents a life-history strategy that
can be found across the taxonomic spectrum (Braithwaite & Lee,
1979; Crespi & Teo, 2002; Fritz et al., 1982; Young & Augspurger,
1991). Multiple species of salmonid fishes exhibit a semelparous life
history, but it is particularly common in the genus Oncorhynchus, in-
cluding Chinook (Oncorhynchus tshawytscha), Coho (Oncorhynchus
kisutch), Sockeye (Oncorhynchus nerka), Pink (Oncorhynchus gorbus-
cha), and Chum (Oncorhynchus keta) Salmon (Crespi & Teo, 2002).
Since semelparous species of salmonids reproduce offspring during
a single reproductive bout prior to death, LRS can be estimated by
evaluating a single breeding season. Alternatively, salmonids ex-
hibiting the potential for iteroparity are characterized by repeat
breeding episodes, the number of which depends on numerous
factors including sex, size, and anthropogenic impacts (Fleming,
1998). Some examples of iteroparous salmonids include European
Grayling (Thymallus thymallus), Lake Whitefish (Coregonus clupeafor-
mis), Rainbow and Steelhead Trout (Oncorhynchus mykiss), Cutthroat
Trout (Oncorhynchus clarkii), Lake Charr (Salvelinus namaycush),
Arctic Charr (Salvelinus alpinus), Brook Charr (Salvelinus fontinalis),
Bull Trout (Salvelinus confluentus), and Dolly Varden Charr (Salvelinus
malma), Atlantic Salmon (Salmo salar), and Brown Trout (Salmo trutta)
(Crespi & Teo, 2002; Johnston et al., 2007; Lambert & Dodson, 1990;
Northcote, 1995) among others. Because it is more challenging to
estimate LRS for iteroparous species which require more than one
sampling effort over the lifetime of the fish, only a limited number
of studies have accounted for multiple spawning events (Christie
et al., 2018; Seamons & Quinn, 2010). Numerous hypotheses have
been proposed regarding the evolution of semelparity versus itero-
parity in salmonids (Crespi & Teo, 2002; Hutchings & Morris, 1985;
Schaffer, 2004) and with each strategy demonstrating distinct trade-
offs, such as those involved in energy expenditure (Fleming, 1998;
Fleming & Reynolds, 2004). Within iteroparous salmonids, trade-
offs exist between survival and reproduction later in life (Christie
et al., 2018; Seamons & Quinn, 2010).

Salmonids also display a vast array of other alternative life-history
strategies that can impact LRS, such as alternative reproductive phe-
notypes and alternative migratory tactics. For example, precocial
males generally mature (i.e., produce milt) at least a year earlier than
average adult males and, depending on the species, can either mi-
grate to the ocean and return early (commonly referred to as “jack”
males), partially migrate (“minijacks”), or mature entirely in freshwa-
ter (“residents”) (Johnson et al., 2012; Mullan et al., 1992; Pearsons
etal., 2009; Zimmerman et al., 2003). Precocial maturation has often
been used to describe resident males that produce milt as parr, but
in this review we use the term “precocial” more generally to refer to
males that mature at least a year earlier than average adult males of a

given species. This precocial maturation, or “jacking,” is in contrast to
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BOX 1 Glossary of fisheries terms listed in
alphabetical order

Anadromous

Fish born in freshwater, followed by growth and rearing in
saltwater, and a return to freshwater to reproduce.

Broodstock

Group of reproductively mature fish used for artificial
spawning in the hatchery setting; parents of hatchery-

origin fish.

Hatchery-origin

Fish that were born in the hatchery through artificial

spawning.

Integrated Broodstock

Hatchery population created by varying proportions of
hatchery-origin and natural-origin fish. Fully integrated
hatchery programs use only natural-origin fish in brood-
stock. Typically observed in supplementation programs.

Iteroparity

A life-history strategy characterized by multiple reproduc-

tive events across more than one spawning season.

Lifetime Reproductive Success (LRS)

As defined in this study, the total number of offspring pro-
duced over the adult lifetime.

Local Hatchery Stock

Broodstock created from naturally spawning fish inhabit-
ing streams that are the same as release location of artifi-

cially spawned juveniles.

Natural-Origin

As defined in this study, fish that were born in the natural
environment regardless of the origin of parents or grand-
parents. Note: some studies reviewed here refer to fish
as “wild” despite unknown origin of parents or grandpar-
ents, but we use “natural-origin” since “wild” implies lack
of any ancestry from hatchery-origin fish which is typically

unknown.

Nonlocal Hatchery Stock
Broodstock created from fish inhabiting streams that are
different from release location of artificially spawned

juveniles.

T\ || £y

Relative Reproductive Success (RRS)

The average number of offspring produced by hatchery-
origin fish compared to the average number of offspring
produced by natural-origin fish. Can be calculated as relative

LRS. Also referred to as “relative fitness”.

Resident Fish

Fish that do not migrate to the ocean but remain in freshwa-

ter to live and spawn.

Segregated Broodstock

Hatchery population created solely by crosses of hatchery-
origin fish as opposed to natural-origin. Typically observed
in traditional hatchery programs.

Semelparity

A life-history strategy characterized by death following
spawning in a single reproductive season.

larger and older “hooknose” males observed in semelparous Pacific
Salmon Oncorhynchus spp. (Allen et al., 2007; Gross, 1985; Quinn
& Foote, 1994) and other anadromous salmonids, such as Atlantic
Salmon. For example, in Atlantic Salmon, both size and age at ma-
turity can vary widely, with some males maturing as precocial parr
in their natal streams and using a sneaker strategy to fertilize eggs
compared to a fighter strategy displayed in larger anadromous males
(Fleming, 1996; Fleming & Reynolds, 2004). Precocial maturation
also occurs in other iteroparous salmonid species, such as Steelhead
Trout (Viola & Schuck, 1995; Willson, 1997). Similar to males, there
are a few salmonid species that display precocial maturation of
females as well and are commonly referred to as “jills” (Willson,
1997). Previous work has suggested that alternative reproductive
phenotypes in salmonids are heritable and maintained through the
processes of both negative frequency-dependent selection and
condition-dependent sexual selection (Berejikian et al., 2010, 2011,
Christie et al., 2018; DeFilippo et al., 2019; Fleming, 1996; Gross,
1985, 1996; Heath et al., 2002; Reed et al., 2019; Taborsky, 2008;
Tentelier et al., 2016). One proposed evolutionary explanation for
the presence of mature male parr on the spawning grounds is that
they can increase overall genetic diversity and reduce inbreeding
since they are unlikely to mate with females from their own cohort
(i.e., full- or half-siblings; Perrier et al., 2014).

Alternative migratory tactics also include other forms of life-
history variation within salmonids that, similar to alternative repro-
ductive behavior, are determined by both environmental influences
and genetically based developmental thresholds (Dodson et al., 2013;
Kendall et al., 2015) and can occur along a continuum both within

and across populations (Jonsson & Jonsson, 1993). Anadromous
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salmonids spend part of their life in freshwater (postnatal devel-
opment and spawning) and the other part in the ocean where they
develop and grow, while resident fish spend the entirety of their life-
cycle in freshwater. While the majority of species within the genus
Oncorhynchus display anadromy (ex. Chinook, Chum, Coho, and Pink
Salmon), other species such as Coastal Cutthroat Trout, Steelhead
Trout, and Sockeye Salmon display both an anadromous and a res-
ident form (Dodson et al., 2013; Pavlov & Savvaitova, 2008; Quinn
& Myers, 2004; Trotter, 1989). Similarly, Salmo, Salvelinus, Thymallus,
and Coregonus species display a continuum of anadromy and resi-
dency (Brenkman & Corbett, 2005; Dodson et al., 2013; Jonsson
etal., 1988; Klemetsen et al., 2003; Larsson et al., 2013; Morin et al.,
1982; Northcote, 1995; Pavlov & Savvaitova, 2008).

Multiple species of salmonids, including Atlantic Salmon,
Steelhead Trout, Chinook Salmon, Chum Salmon, Coho Salmon,
and Sockeye Salmon, are considered of high concern for conser-
vation (International Union for Conservation of Nature, [IUCN; U.S.
Endangered Species Act, ESA; Canadian Species at Risk Act, SARA)
owing to numerous anthropogenic impacts such as dam construc-
tion, overfishing, climate change, and habitat degradation (Boisclair,
2004; Gustafson et al., 2007). Estimating productivity of conserva-
tion species provides a vital component of population viability (Garcia
de Leaniz et al., 2007; Waples & Hendry, 2008), with the success of
conservation management frequently measured by LRS. Therefore,
understanding the vast array of recent literature that has addressed
salmonid reproductive ecology can provide conservation managers
with a framework for constructing successful management plans
and assessing success of existing conservation strategies.

Here, we synthesize peer-reviewed studies from the published
literature over the last two decades (since the year 2000) that as-
sessed the factors affecting adult-to-adult LRS (i.e., fitness) across
salmonids that display a range of life-history strategies using par-
entage assignment from adult fish to their adult offspring with a few
important caveats. First, our primary focus is on species from the
genus Oncorhynchus, as the LRS literature is heavily biased toward
these species, particularly due to their conservation status. However,
we also provide studies that estimated LRS in the genus Salmo (see
Box 2 for a glossary of the primary salmonid species presented in
this review). Second, the majority of the studies examined in this re-
view estimated LRS during the span of one breeding season for both
semelparous and iteroparous species. However, while most LRS
studies in iteroparous species did not account for repeat spawning,
the occurrence of repeat spawning is quite low for anadromous sal-
monids (generally <10% in Steelhead Trout populations; Busby et al.,
1996; Christie et al., 2018; Seamons & Quinn, 2010). Therefore, we
provide the caveat that although an estimate of offspring number is
a true measure of LRS in semelparous species, it may not necessar-
ily accurately reflect LRS in iteroparous species which can spawn
in more than one breeding season. Third, while the ultimate goal in
salmonid fitness studies is to estimate adult-to-adult LRS for multi-
ple generations, sampling juvenile offspring offers a more tractable
alternative for studies that do not have capture locations to sample

returning adult anadromous fish. Additionally, adult-to-juvenile LRS

estimates can provide larger sample sizes in LRS studies because ju-
veniles are sampled prior to outmigration and therefore are largely
absolved from extraneous factors that could impact returning adult
sampling and survival, such as straying or prespawn mortality (Keefer
& Caudill, 2014). While there have been very few studies that have
directly compared the factors affecting both adult-to-juvenile and
adult-to-adult LRS within the same study system (Berntson et al.,
2011; Ford et al., 2006, 2012; Kostow et al., 2003), results suggest
that adult-to-juvenile estimates provide comparable results and can
be extremely informative for study systems that do not have access
to adult-to-adult data (Berntson et al., 2011). Therefore, in addition
to adult offspring produced from adult parents (i.e., adult-to-adult;
Table 1), we also include results of juvenile offspring produced from
adult parents (i.e., adult-to-juvenile; Table 2).

2 | THE IMPACT OF HATCHERY ORIGIN
AND CAPTIVE REARING ON LIFETIME
REPRODUCTIVE SUCCESS

Understanding the effects of captive breeding is critical to the
maintenance and perseverance of species that are of conservation
concern (Williams & Hoffman, 2009). An essential component of
numerous captive breeding programs is to minimize genetic adapta-
tion to captivity and to confidently estimate the success of reintro-
ducing captive-born animals back into their species range (Fischer
& Lindenmayer, 2000; Frankham, 2008). Due primarily to the con-
servation status of multiple species of salmonids, the differences
between fish born to parents that spawned in nature (i.e., natural-
origin) and those fish born in a hatchery setting from broodstock
parents (i.e., hatchery-origin) have been extensively studied and
reviewed in other papers (Araki et al., 2008; Christie et al., 2014;
Naish et al., 2007). As such, we provide a brief summary of findings
on the effects of origin on LRS and we defer to previously published
review papers for further details on this topic, but also account for
additional papers that have been published more recently than those
reviews.

Based on author interpretations across salmonid studies and our
examination of estimates of hatchery-origin compared to natural-
origin fish LRS (i.e., relative reproductive success; RRS; relative LRS,
or relative fitness), we found trends that hatchery-origin fish consis-
tently demonstrated lower LRS than natural-origin fish across spe-
cies (Figure 1; Anderson et al., 2013; Berntson et al., 2011; Evans
et al., 2015; Ford et al., 2016; Kostow et al., 2003; McGinnity et al.,
2003; McLean et al., 2003, 2004; Milot et al., 2013; Neff et al.,
2015; O'Sullivan et al., 2020; Sard et al., 2015; Thériault et al., 2011;
Williamson et al., 2010) as discussed in previous reviews (Araki et al.,
2008; Christie et al., 2014; Naish et al., 2007). However, previous
research suggests that relative LRS between hatchery- and natural-
origin fish is dependent on the type of hatchery or supplementation
program under examination. Results in Steelhead Trout (Araki et al.,
2007, 2009; Araki et al., 2007; Christie et al., 2012) and Atlantic
Salmon (McGinnity et al., 2003, 2004; Mobley et al., 2019) suggest
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BOX 2 Common and scientific names of the primary
salmonid species from the adult-to-adult lifetime
reproductive success studies presented in this
review, including a description of life-history forms.
Species are presented in alphabetical order

Atlantic Salmon (Salmo salar)—anadromous; iteroparous.
Chinook Salmon (Oncorhynchus tshawytscha)—anadromous;
semelparous.

Coho Salmon (Oncorhynchus kisutch)—anadromous; semelparous.
Pink Salmon (Oncorhynchus gorbuscha)—anadromous; semelparous.
Sockeye Salmon (anadromous Oncorhynchus nerka)—
anadromous form of Kokanee Salmon; semelparous.
Steelhead Trout

anadromous form of Rainbow Trout (resident); capable of

(anadromous Oncorhynchus mykiss)—

iteroparity.

that differences between hatchery- and natural-origin fish in certain
systems could, in part, be attributed to hatchery-origin fish origi-
nating from nonlocal origin broodstock and maintained as part of
a segregated hatchery system. While reduction of fitness has been
documented after a single generation of captive rearing (Araki et al.,
2008; Milot et al., 2013), genetic divergence of hatchery strains is
expected to be much more rapid in segregated programs with mul-
tiple generations of spawning hatchery-origin fish compared to in-
tegrated programs that incorporate natural-origin fish (Ford et al.,
2016; Paquet et al., 2011; Waters et al., 2015). Further, adaptation
to captivity can occur in very few generations (Christie et al., 2012),
so repeated generations of hatchery rearing would be expected to
strengthen domestication selection without input from natural-
origin stocks as predicted by previous models (Baskett & Waples,
2013; Ford, 2002). Similarly, the length of time that hatchery-origin
fish are reared in a hatchery setting may negatively affect LRS
(Berejikian et al., 2020). Studies in integrated programs have found
little to no significant differences in LRS of crosses containing a
hatchery-origin parent compared to those containing two natural-
origin parents (Ford et al., 2012; Hess et al., 2012), even after two
generations (Janowitz-Koch et al., 2019), providing evidence that
there was no reduction in LRS for natural-origin fish that spawn
with hatchery-origin fish. However, it also worth noting that in in-
tegrated programs that aim to incorporate hatchery-origin fish into
the naturally spawning population, RRS estimates may become up-
wardly biased due to overall reductions in long-term fitness of the
whole population as the proportion of hatchery ancestry increases
over time (Willoughby & Christie, 2017). Thus, hatchery programs
must carefully weigh goals for conservation versus production when
considering spawning and rearing protocols that can lead to varying
degrees of hatchery ancestry and domestication.

A second pattern that was detected in our review indicated that
differences in LRS for hatchery-origin fish are influenced by preco-

cial males (e.g., jacks) that tend to have low LRS. Across salmonid

T\ || £y

studies that analyzed precocial males separately, the difference be-
tween hatchery- versus natural-origin male and hatchery- versus
natural-origin female LRS appeared smaller (e.g., Hess et al., 2012;
Janowitz-Koch et al., 2019; Thériault et al., 2011; Williamson et al.,
2010), and in some cases, female relative LRS was lower than male
relative LRS overall (Figure 1; Hess et al., 2012; Janowitz-Koch et al.,
2019). These trends could be the result of different selective pres-
sures on males that adopt a sneaker strategy compared to males that
compete for access to females (Thériault et al., 2011). These trends
also suggest that inclusion of precocial males across salmonid species
can affect estimates of relative LRS, and when possible, the addition
of a separate analysis for precocial males could help to determine the
effect on LRS patterns in a population. Overall, given the wide range
of life-history variation across salmonids (e.g., resident/anadromous
migration, semelparity/iteroparity, premature/mature migration, age
at maturity, age at juvenile emigration), disentangling domestication
selection due to captive rearing rather than unintentional artificial
selection due to inability to account for complex life-history varia-
tion and lack of mate choice (Auld et al., 2019) will provide a clearer
picture on the effects of captive breeding.

3 | EFFECTS OF LIFE HISTORY AND
PHENOTYPIC VARIATION ON LIFETIME
REPRODUCTIVE SUCCESS

3.1 | Adult migration timing

While animal migration is a well-documented phenomenon across
the taxonomic spectrum, an inherent complexity exists in under-
standing how best to manage species of conservation concern with
a geographic range that encompasses multiple habitats (Milner-
Gulland et al., 2011). Anadromous salmonids can migrate extensive
distances, upward of thousands of kilometers, to oceanic feeding
areas and back to freshwater breeding sites. Adult migratory phe-
notypes are generally classified as those fish that migrate early, such
as summer-run Steelhead Trout and spring-run Chinook Salmon, and
those that migrate later, such as winter-run Steelhead Trout and fall-
run Chinook Salmon (Quinn et al., 2016). The timing of adult migra-
tion in salmonids is a complex and critical life-history component
that is influenced by genetic background, developmental thresh-
olds, ecological conditions such as flow regimes and temperature,
olfactory cues, and hormonal changes (Dodson et al., 2013; Quinn,
2005; Quinn et al., 2016; Ueda, 2011). Recently, there has been a
surge of studies demonstrating a strong association between adult
migration timing and the genes GREB1L and ROCK1 across lineages
of Chinook Salmon and Steelhead Trout (Hess et al., 2016; Micheletti
& Narum, 2018; Narum et al., 2018; Prince et al., 2017; Thompson
et al., 2019, 2020) with genotypic differences that could have dif-
ferential effects on LRS (Koch & Narum, 2020). Previous research
has also suggested that adult migration timing is heritable and can
quickly respond to selection (Carlson & Seamons, 2008; Evans et al.,
2019; Morita, 2019; Quinn et al., 2000, 2002). Thus, understanding
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FIGURE 1 Plot of the relative lifetime reproductive success (LRS) between hatchery- and natural-origin fish for (a) Atlantic Salmon,

(b) Chinook Salmon, (c) Chum Salmon, (d) Coho Salmon, and (e) Steelhead Trout across both adult-to-juvenile and adult-to-adult studies.
Studies include those that separately analyzed relative reproductive success (RRS) for males, females, jacks, or jacks and males combined.
Each bar represents one estimated value of RRS of each species and sex for each study. Multiple bars can be represented for each study as
they reflect a different estimate for each year and are presented in order of year. Dotted line represents equal LRS between hatchery- and
natural-origin fish. Due to an outlier in O'Sullivan et al. (2020) (see asterisk), the Atlantic Salmon figure (a) includes an inset representing
the correct scale on the y-axis. Araki, Ardren, et al. (2007) results from the traditional hatchery programs with F1 fish originating from two
hatchery-origin parents and not adjusted for angling harvest. Araki, Cooper, et al. (2007) results from the supplementation program with F1
fish originating from two natural-origin parents and not adjusted for angling. Berntson et al. (2011) and Ford et al. (2006) results represent
adult-to-adult RRS. Ford et al. (2016) results from hatchery-origin fish originating from two hatchery-origin parents. Hess et al. (2011) and
Janowitz-Koch et al. (2019) results represent RRS estimates that include potential parents producing zero adult offspring. McLean et al.
(2003) RRS estimates generated from LRS estimates of Table 3 from Mclean et al. (2003). Williamson et al. (2010) RRS results from offspring
collected at the yearling stage from 4- and 5-year-old (adult) females combined, 4-year-old (adult) males, and 3-year-old (jack) males

separately

the relationship between adult migratory timing and fitness may this manuscript to refer to sampling date at a common migration

have profound conservation implications particularly for salmonids location but provide clarification on specific migratory phenotypes

that have experienced differential selection on migration timing where appropriate.

(Thompson et al., 2019). General trends in the literature suggest fish that migrate earlier
The term “migration timing” is frequently used interchangeably to the spawning grounds demonstrate higher LRS compared to those

with the terms “run timing,” “arrival timing,” and “return timing”; that arrive later (Table 3; Anderson et al., 2013; Berntson et al., 2011;
however, these terms may describe distinct phenotypes that refer Dickerson et al., 2005; Ford et al., 2016; Janowitz-Koch et al., 2019;
to different time points in the migratory trajectory, including entry Kodama et al., 2012; Seamons et al., 2007; Williamson et al., 2010).
into freshwater, a common passage point along the migratory corri- Previous work in salmonids has demonstrated the adaptive signifi-
dor, and/or arrival onto the spawning grounds (Quinn et al., 2016). cance and trade-offs for early, compared to late, migration time for

Therefore, we use the general term “migration timing” throughout both males and females (Hendry et al., 1999; Morbey, 2000, 2002;
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TABLE 3 Summary of studies that examined the overall relationship between adult migration timing and lifetime reproductive success

Species Citation Sex Data type Years examined Type of metric Value
Chinook Salmon Williamson et al. Female Adult-to- 2004 GLM estimated model -0.15*
(Oncorhynchus (2010) juvenile coefficients
tshawytscha) Williamson et al. Female Adultto- 2005 GLM estimated model -0.15*
(2010) juvenile coefficients
Williamson et al. Male Adult-to- 2004 GLM estimated model -0.09*
(2010) juvenile coefficients
Anderson et al. Male Adult-to- 2003 Linear selection gradients -0.672*
(2013) adult
Anderson et al. Male Adult-to- 2003 Linear selection -0.674*
(2013) adult differentials
Anderson et al. Male Adult-to- 2003 Quadratic selection 1.27*
(2013) adult gradients
Anderson et al. Male Adult-to- 2003 Quadratic selection 1.00*
(2013) adult differentials
Janowitz-Koch et al. Male Adult-to- Year accounted GLM estimated model -0.008**
(2019) adult for in model coefficients
Coho Salmon Ford et al. (2006) Sex accounted for in Adult-to- Year accounted Linear selection 0.092***
(Oncorhynchus model juvenile for in model differentials
kisutch) (fry)
Ford et al. (2006) Sex accounted for in Adult-to- Year accounted Linear selection 0.060*
model juvenile for in model differentials
(smolt)
Ford et al. (2006) Sex accounted for in Adult-to- Year accounted Linear selection 0.076**
model adult for in model differentials
Ford et al. (2006) Sex accounted for in Adult-to- Year accounted Quadratic selection -0.081***
model juvenile for in model differentials
(smolt)
Ford et al. (2006) Sex accounted for in Adult-to- Year accounted Quadratic selection -0.061**
model adult for in model differentials
Kodama et al. (2012) Female Adult-to- 2007 Quadratic selection -0.53*
adult gradients
Kodama et al. (2012) Male Adult-to- 2006 Linear selection gradients  (Age 3)
adult -0.50**
Kodama et al. (2012) Male Adult-to- 2006 Quadratic selection (Age 2) 0.77***
adult gradients
Pink Salmon Dickerson et al. Male Adult-to- Year accounted Multiple linear regression 0.034*
(Oncorhynchus (2005) adult for in model estimated model
gorbuscha) coefficients
Steelhead Trout Seamons et al. Male Adult-to- Combined across Linear selection -0.088*
(Oncorhynchus (2007) juvenile years differentials
mykiss) Seamons et al. Male Adult-to- Combined across Linear selection gradients -0.091**
(2007) juvenile years
Berntson et al. Sex accounted for in Adult-to- Combined across GLM estimated model -0.13*
(2011) model adult years coefficients (linear)
Berntson et al. Sex accounted for in Adult-to- Combined across GLM estimated model -0.09*
(2011) model adult years coefficients (quadratic)
Berntson et al. Sex accounted for in Adult-to- Combined across GLM estimated model 0.17***
(2011) model juvenile years coefficients (linear)
Berntson et al. Sex accounted for in Adult-to- Combined across GLM estimated model -0.000821***
(2011) model juvenile years coefficients (quadratic)
Ford et al. (2016) Male Adult-to- 2008 (spring GLM estimated model -0.033***
juvenile returns) coefficients

Note: Only statistically significant results are included (*p < 0.05; **p < 0.01; *** p < 0.001). Within each species, studies are presented first by order
of publication date and second by alphabetical order. Any additional information pertaining to variation in results reported within a study is provide in
parentheses.



KOCH ano NARUM

1940
2 Lwiey- e —

Morbey & Ydenberg, 2003; Quinn et al., 2009, 2016). Our review of
the literature continues to support this finding across species, where
males and females that returned earlier to the spawning grounds gen-
erally had positive LRS effects compared to those that arrived later.

While there were strong trends for an advantage of early mi-
gration, variation still existed in the overall direction and strength
of selection on migration timing. For example, Kodama et al. (2012)
used selection gradients to estimate the strength and direction of
selection across multiple age classes, sexes, and years. Selection
differentials measure the mean phenotype both before and after
selection, which can be used as a metric of both strength of di-
rect and indirect selection, while selection gradients measure the
strength of direct selection on a trait while removing indirect se-
lection of other traits (Arnold & Wade, 1984; Brodie et al., 1995;
Falconer & Mackay, 1996; Lande & Arnold, 1983). Kodama et al.
(2012) showed that 2-year-old Coho Salmon males (jacks) from one
broodyear demonstrated significant evidence for disruptive selec-
tion on migration timing (Table 3). However, for 3-year-old males,
there was evidence for selection favoring early migration timing,
and in females, there was evidence for stabilizing selection in one
broodyear (Table 3). Similarly, Ford et al. (2006) estimated selec-
tion differentials on migration timing in Coho Salmon and found
evidence of stabilizing selection on migration timing for both sexes
(Table 3). Another study did not find a significant effect of migra-
tion timing in jack Coho Salmon males, which may possibly reflect a
lack of selection on migration timing in jacks which tend to employ
sneak fertilization attempts, rather than direct competition for ac-
cess to females (O'Malley et al., 2015).

Multiple studies also demonstrated trends for disruptive or sta-
bilizing selection, although the results were nonsignificant in some
studies or selection was not directly measured (Anderson et al.,
2013; Dickerson et al., 2005; Janowitz-Koch et al., 2019; Seamons
et al., 2007). The observed trends indicate that while early migration
is generally favorable, differences in selection pressures on migra-
tion timing can vary across years, sexes, and even within different
life-history strategies within the same sex. It is not clear what causes
these differences, but some likely mechanisms are yearly changes in
spawner density, sex ratio, and environmental factors such as pre-
cipitation rates that result in highly dynamic and variable environ-
ments that may shift selection pressure.

Finally, another factor that could affect differences in results
across studies is time of sampling. As mentioned previously, migra-
tion timing is defined in different ways across studies in the salmonid
literature, with some measuring date of entry into freshwater and
others measuring arrival onto the spawning grounds. These differ-
ences could be strongly affected by shifts in energy investment and
time-dependent mortality (Hearsey & Kinziger, 2015; Quinn et al.,,
2016), which could have equally strong effects on estimates of LRS.
While most of the studies addressed in this section recorded mi-
gration timing as the date of passage at a weir downstream of the
primary spawning grounds, variation in actual spawning date likely
varies and remains unaccounted for in these studies which could be

shaping differences in LRS values across studies.

3.2 | Effects of age and size

Body size is a ubiquitous trait across the animal kingdom that cor-
relates with numerous physiological, ecological, and life-history pro-
cesses and is driven by both sexual and natural selection (Andersson,
1994; Berns, 2013; Blackburn & Gaston, 1994). Variation in body size
in salmonids can have important ecological implications throughout
various life-history stages, particularly for females which have a
demonstrated strong positive relationship between body size and
fecundity, competitive advantages on the spawning grounds, and
an overall increase in nest quality (Berghe & Gross, 1984; Fleming
& Gross, 1994; Fleming & Reynolds, 2004; Hixon et al., 2014). For
males, large body size is generally correlated with an increase in
sperm output and a subsequent increase in the likelihood of suc-
cessful fertilization, increased intrasexual competitive advantages
on the spawning grounds, and increased intersexual behaviors, such
as courtship, on the spawning grounds (Bolgan et al., 2017; Thomaz
et al,, 1997; Watanabe et al., 2008). In addition, results from behav-
ioral studies suggest that both male and female salmonids demon-
strate consistent trends for preferring mates with larger body size,
even in the absence of direct benefits (Auld et al., 2019).

Mating preferences and reproductive benefits for large size
(Auld et al., 2019; Fleming & Reynolds, 2004) were clearly reflected
in our review of LRS in salmonids, where body size generally demon-
strated a positive relationship with LRS (Table 4; Anderson et al.,
2013; Berejikian et al., 2009; Berntson et al., 2011; Ford et al., 2016;
Fukui et al., 2018; Haddeland et al., 2015; Janowitz-Koch et al.,
2019; Muhlfeld et al., 2009; Sard et al., 2015; Schroder et al., 2010;
Seamons et al., 2007; Serbezov et al., 2010; Tentelier et al., 2016;
Thériault et al., 2007; Williamson et al., 2010). However, the strength
and direction of selection on size was sometimes dependent on sex
and year (Table 4; Kodama et al., 2012). Age, which is generally cor-
related with size, also demonstrated a positive relationship with LRS
in some studies (Mobley et al., 2019, 2020), but the results were sex-
specific in another study which demonstrated a positive relationship
in males, but a more complex relationship in females (Christie et al.,
2018).

There are a number of potential mechanisms that could shift
selection on age and body size across years, particularly for Coho
Salmon and Steelhead Trout females (Christie et al., 2018; Kodama
et al,, 2012). It is possible that the operational sex ratio (the ratio of
sexually receptive males to females; Emlen & Oring, 1977), overall
breeding density, and competition on the spawning grounds, or pre-
dation rates could affect the strength of sexual and natural selection
in any given year, resulting in evolutionary stability of multiple sizes
(Berejikian et al., 2010; Fleming & Gross, 1994; Holtby & Healey,
1986; Tentelier et al., 2016). Christie et al. (2018) provided evidence
that negative frequency-dependent selection acting on age could be
shaping variation in female Steelhead Trout. As such, while it is rea-
sonable to assume that larger body size necessarily translates into a
higher reproductive output (i.e., LRS), yearly environmental and/or
demographic shifts could potentially affect the strength and direc-

tion of selection on body size.
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TABLE 4 Summary of studies that examined the overall relationship between body size and lifetime reproductive success

Species Citation Sex Data type Years examined Type of metric Value
Atlantic Salmon Tentelier et al. (2016) Female Adult-to- Combined across Linear regression 3.98**
(Salmo salar) juvenile years (coefficient t-value)
Tentelier et al. (2016) Male Adult-to- Combined across GLM estimated model 0.55*
juvenile years coefficients (negative
binomial; anadromous
males)
Brook Charr Thériault et al. (2007) Female Adult-to- Combined across Coefficient of 0.46***
(Salvelinus fontinalis) juvenile years determination
Brook Trout Fukui et al. (2018) Female Adult-to- Combined across GLM estimated model 5.4987***
(Salvelinus juvenile years coefficients
fontinalis), Fukui et al. (2018) Male Adult-to- Combinedacross  GLM estimated model ~ 0.0147***
White-spotted juvenile years coefficients
Charr (Salvelinus
leucomaenis), and
their hybrids
Brown Trout (Salmo Serbezov et al. (2010) Sex accounted Adult-to- Combined across GLM estimated model 0.02***
trutta) forin full juvenile years coefficients
model
Chinook Salmon Schroder et al. (2010) Male Adult-to- Combined across Coefficient of 0.26***
(Oncorhynchus juvenile years determination
tshawytscha) Williamson et al. (2010)  Female Adult-to- 2004 GLM estimated model 0.20*
juvenile coefficients
Williamson et al. (2010) Female Adult-to- 2005 GLM estimated model 0.09*
juvenile coefficients
Williamson et al. (2010) Male Adult-to- 2004 GLM estimated model 0.79*
juvenile coefficients
Williamson et al. (2010) Male Adult-to- 2005 GLM estimated model 0.27*
juvenile coefficients
Anderson et al. (2013) Female Adult-to-adult 2003 Linear selection 0.749*
gradients
Anderson et al. (2013) Female Adult-to-adult 2004 Linear selection 0.422**
gradients
Anderson et al. (2013) Female Adult-to-adult 2005 Linear selection 0.810*
gradients
Anderson et al. (2013) Female Adult-to-adult 2003 Linear selection 0.638*
differentials
Anderson et al. (2013) Female Adult-to-adult 2004 Linear selection 0.422**
differentials
Anderson et al. (2013) Female Adult-to-adult 2005 Linear selection 0.670*
differentials
Anderson et al. (2013) )Female Adult-to-adult 2005 Quadratic selection 2.55%*
gradients
Anderson et al. (2013) Female Adult-to-adult 2005 Quadratic selection 1.23***
differentials
Anderson et al. (2013) Male Adult-to-adult 2003 Quadratic selection -1.02*
gradients
Sard et al. (2015) Sex accounted Adult-to- 2011 GLM estimated model 0.055***
for in full juvenile coefficients
model
Janowitz-Koch et al. Female Adult-to-adult Year accounted GLM estimated model 0.030**
(2019) for in model coefficients
Janowitz-Koch et al. Male Adult-to-adult Year accounted GLM estimated model 0.034**

(2019)

for in model

coefficients

(Continues)
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(Continued)

TABLE 4

Species

Coho Salmon
(Oncorhynchus
kisutch)

European Grayling
(Thymallus
thymallus)

Steelhead Trout
(Oncorhynchus
mykiss)

Summer Chum
Salmon
(Oncorhynchus keta)

Westslope
Cutthroat Trout
(Oncorhynchus
clarkii lewisi)

Citation

Kodama et al. (2012)

Kodama et al. (2012)

Kodama et al. (2012)

Haddeland et al. (2015)

Haddeland et al. (2015)

Seamons et al. (2007)

Seamons et al. (2007)

Seamons et al. (2007)

Seamons et al. (2007)

Berntson et al. (2011)

Berntson et al. (2011)

Ford et al. (2016)

Ford et al. (2016)

Ford et al. (2016)

Ford et al. (2016)

Ford et al. (2016)

Ford et al. (2016)

Ford et al. (2016)

Berejikian et al. (2009)

Berejikian et al. (2009)

Berejikian et al. (2009)

Mubhlfeld et al. (2009)
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Sex

Female

Female

Male

Female

Male

Female

Female

Male

Male

Sex accounted

for in model

Sex accounted

for in model

Female

Female

Female

Male

Male

Male

Male

Male

Male

Male

Male

Data type

Adult-to-adult

Adult-to-adult

Adult-to-adult

Adult-to-
juvenile

Adult-to-
juvenile

Adult-to-
juvenile
Adult-to-
juvenile
Adult-to-
juvenile
Adult-to-
juvenile

Adult-to-adult

Adult-to-
juvenile

Adult-to-
juvenile

Adult-to-
juvenile

Adult-to-
juvenile

Adult-to-
juvenile

Adult-to-
juvenile

Adult-to-
juvenile

Adult-to-
juvenile

Adult-to-
juvenile

Adult-to-
juvenile

Adult-to-
juvenile

Adult-to-
juvenile

Years examined

2006

2007

2007

2008

2008

Combined across
years

Combined across
years

Combined across
years

Combined across
years

Date accounted
forin model

Date accounted
for in model

2009

2010

2011

2008

2009

2010

2011

2004 (East

channel)

2004 (West
channel)

2005 (East
channel)

Year accounted
for in model

Type of metric
Linear selection
gradients

Quadratic selection
gradients

Quadratic selection
gradients

GLM estimated model
coefficients

GLM estimated model
coefficients

Linear selection
differentials

Linear selection
gradients

Linear selection
differentials

Linear selection
gradients

GLM estimated model
coefficients

GLM estimated model
coefficients

GLM estimated model
coefficients

GLM estimated model
coefficients

GLM estimated model
coefficients

GLM estimated model
coefficients

GLM estimated model
coefficients

GLM estimated model
coefficients

GLM estimated model
coefficients

Coefficient of
determination

Coefficient of
determination

Coefficient of
determination

GLM estimated model
coefficients

Value

0.30*
-0.63**
(Age 3)
0.83***
=56
4P =368
0.074*
0.076*
0.096**
0.09**
0.09*
0.0018*
0.058***
0.033*
0.044**
0.133***
0.122***
0.094***
0.075***
0.13*
0.19*
0.19*

0.0065*

Note: Only statistically significant results are included (*p < 0.05; **p < 0.01; *** p < 0.001). Within each species, studies are presented first by order
of publication date and second by alphabetical order. Any additional information pertaining to variation in results reported within a study is provide in

parentheses.

Multiple studies did not find a positive relationship between
LRS and body size (Berejikian et al., 2005; Dickerson et al., 2005;
Evans et al., 2012; Garant et al., 2001; Garner et al., 2009; McLean
et al.,, 2007; O'Malley et al., 2015; Prévost et al., 2020). However,

the results from some of these studies may not be generalizable to
natural populations because they tested the effects of body size in
only jack males (O'Malley et al., 2015) and used hatchery-origin fish

produced from nonlocal origin and highly domesticated broodstock
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(McLean et al., 2007), or the experiment was conducted under artifi-
cial conditions (Berejikian et al., 2005), for example.

3.3 | Resident versus anadromous

There have been a limited number of studies comparing LRS differ-
ences between resident and anadromous life-history forms within a
population, which are inherently correlated with body size. However,
studies noted sex-specific effects of residency versus anadromy on
LRS that provide insight to the maintenance of both life-history
types. One of the most intriguing studies comparing LRS between
anadromous versus resident life-history types in Brook Charr found
that anadromous females had higher LRS than resident females, with
results driven by the larger size of anadromous compared to resident
females (Thériault et al., 2007). The authors posited that the tactic
of residency may be beneficial and therefore persist, where small
tributary streams are easily accessible to smaller residents but could
exclude larger anadromous females (Thériault et al., 2007). In the
same study, there were no observed differences in LRS between
resident and anadromous males, a potential reflection of opportun-
istic behavior, such as sneaking by smaller resident males rather than
fighting (Thériault et al., 2007). Other studies in Steelhead Trout
revealed only a very small number of offspring were assigned to
resident parents overall (Berntson et al., 2011), which reflected both
logistical constraints regarding sampling resident fish (resulting in a
large fraction of missing resident parents) and the overall low assign-

ment success of hatchery-origin resident fish (Berntson et al., 2011).

3.4 | Local adaptation

Numerous salmonid species demonstrate high fidelity to natal
spawning sites (Hendry et al., 2004; Quinn, 1993). Higher fitness in
the local habitat (i.e., natal spawning sites compared to foreign sites
in salmonids) can affect spatial distribution and genetic diversity and
can promote reproductive isolation and is, therefore, a central theme
in animal conservation (Fraser et al., 2011; Kawecki & Ebert, 2004;
Savolainen et al., 2013; Taylor, 1991). However, although numerous
studies have measured survival differences between salmonids that
stray from their natal spawning sites and those that return, very few
studies have actually estimated differences in LRS, a key component
of adaptive variation and evolution (Fraser et al., 2011; Garcia de
Leaniz et al.,, 2007). Strays among distinct lineages or geographi-
cally distant populations are expected to be relatively rare and have
low LRS (Hess et al., 2014; Keefer & Caudill, 2014; Quinn, 1993).
However, straying among streams within the same drainage is com-
mon (Ford et al., 2015; Keefer & Caudill, 2014) and colonization of
newly available habitat (Anderson et al., 2013) may be beneficial for
preventing extirpation of local populations (Hill et al., 2002).
Further, different ecotypes that occur within the same system
may be under selective pressure at temporal or fine geographic

scales resulting in outbreeding depression (Gharrett et al., 1999) and
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introgression (Hess et al., 2011) when ecotypes are interbred arti-
ficially, but little is known about LRS among salmonid ecotypes. A
study of Sockeye Salmon ecotypes in southwest Alaska found that
dispersers from beach habitat to stream habitat (i.e., immigrants)
had significantly lower LRS than fish spawning in their natal stream
or fish spawning in another stream (Peterson et al., 2014). The au-
thors provided potential mechanisms shaping differences in LRS in
this study, including morphological maladaptation and reduced sur-
vival of hybrid offspring. Similarly, Atlantic Salmon that were native
to spawning grounds demonstrated higher LRS compared to those
dispersing from neighboring areas (Mobley et al., 2019). On a broad
scale, these results suggest that differences in LRS between immi-
grant and philopatric fish can serve as a barrier to reduce gene flow
between populations and thus further reinforce local adaptation.
However, the maintenance of gene flow, even at low levels observed
in the Peterson et al. (2014) study, can still promote adaptive genetic
diversity within populations, a key component of salmonid evolu-

tion, persistence, and conservation policy decisions (Waples, 1991).

4 | EFFECT OF BEHAVIOR AND
SPAWNING INTERACTIONS ON LIFETIME
REPRODUCTIVE SUCCESS

4.1 | Spawning behavior

Animal behavior is a central theme in ecology and evolution that
spans across species, involving both intrasexual and intersexual
interactions (Alcock, 2001; Dugatkin, 2020). Numerous behavioral
factors, such as dominance, courtship, and density, can affect LRS in
salmonids. For example, Berntson et al. (2011) used the number of
same-sex competitors on the spawning grounds of Steelhead Trout
as a proxy for competition. Berntson et al. (2011) found that the
number of same-sex competitors negatively affected LRS and that
females, in particular, were negatively affected by a greater female
density on the spawning grounds. Previous research has suggested
that breeding density on the spawning grounds is the primary driver
of female competition in salmonids with females competing for nest
sites, displacing other females, and disturbing nests (i.e., “redds”;
Fleming & Gross, 1989; van den Berghe & Gross, 1989). However,
while some studies have demonstrated a relationship between
spawner density and redd superimposition (Beard Jr & Carline, 1991;
Fukushima et al., 1998), others have not (Essington et al., 1998;
Gortazar et al., 2012; Peterson et al., 2020).

Aggressive or dominant mating behavior among males on the
spawning grounds has also been examined across a limited number
of studies, with a general positive relationship of LRS with increasing
aggressiveness. Aggressive behaviors in males that have been tied
to higher LRS include dominance in courting behaviors (Dickerson
et al., 2005; Evans et al., 2012), attack frequency to competitors on
spawning grounds (Schroder et al., 2010), and frequency of court-
ing attempts with females (Evans et al., 2012; Schroder et al., 2010).

However, effects of aggressive male behavior may diminish later into
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the spawning season, potentially as a result of a shift in the opera-
tional sex ratio that could cause a reduction in the ability of larger
males to maintain access to spawning females through a decrease in
physical condition over time, the overall completion of female egg
deposition, and an increase in the arrival of new spawners (Dickerson
et al., 2005; Quinn et al., 1996). A positive relationship between the
number of mates and LRS (Dannewitz et al., 2004; Garant et al,,
2001; Haddeland et al., 2015; Prévost et al., 2020; Richard et al.,
2013) and a negative relationship between the number of days spent
on the spawning grounds and LRS (Schroder et al., 2010) have also
been documented.

4.2 | Mate choice

Mate choice is another component of salmonid behavior that can
affect LRS (Auld et al., 2019; Fleming & Reynolds, 2004; Petersson &
Jarvi, 2015). However, parentage-based studies in salmonids gener-
ally have not distinguished between preferred mates and successful
mates. Additionally, mating preferences cannot usually be exercised
in captive breeding programs of salmonids. Thus, literature on the
relationship between LRS and salmonid mate choice is largely under-
developed. One area of mate choice that has received some atten-
tion in salmonid LRS studies is MHC-dependent mate choice. Across
taxonomic groups, MHC-dependent mate choice through disassor-
tive mating has been shown to optimize genetic compatibility and
increase overall pathogen resistance in offspring (Bernatchez &
Landry, 2003; Milinski, 2006; Tregenza & Wedell, 2000). In salmo-
nids, general trends in the literature suggest that there are higher
levels of population differentiation at MHC genes compared to neu-
tral genes (reviewed in Bernatchez & Landry, 2003). However, there
have been very few studies to date that have estimated the effect of
MHC-dependent mate choice on salmonid LRS, with variable results
across species. While some studies provided evidence for MHC-
dependent mate choice through disassortative mating in Chinook
Salmon (Garner et al., 2009) and Atlantic Salmon (Evans et al., 2011,
Landry et al., 2001), another study in Coho Salmon (O'Malley et al.,
2015) found that LRS increased with a greater number of shared
alleles at two MHC genes and one immune-related gene. While
disassortive mating can provide genetic benefits to offspring, the
expression of MHC-dependent mate choice may be limited by inter-
sexual aggression, presenting a scenario of sexual conflict (Garner
et al., 2009). In contrast, O'Malley et al. (2015) hypothesized that the
positive effect of increasing shared alleles between females and jack
males, which use a sneaker-male mating strategy, could have evolved
as a mechanism to reduce the likelihood of hybridization and out-
breeding depression, or as a mechanism to increase the likelihood
of specific combinations of MHC alleles that could confer a survival
advantage in offspring. Additionally, the strength of the relationship
between LRS and MHC genes in this study differed across years, a
finding which could be related to changes in the overall density and
composition of larger males and jack males on the spawning grounds

on a yearly basis (O'Malley et al., 2015). Therefore, the effect

of MHC-dependent mate choice on LRS may be temporally and
species-dependent and affected by the composition of life-history
strategies in the population. Future studies are needed to further
explore the relationship between MHC-dependent mate choice and

LRS in salmonids.

4.3 | Hybridization with non-native species

Hybridization and introgression with non-native species of fish with
distinct life histories can also affect LRS. In general, hybridization
plays an important role in evolution either constraining the evolu-
tion of new species or in propelling diversification (Arnold, 1997;
Mayr, 1963) and can have important implications for setting con-
servation policies (Allendorf et al., 2001). For example, in one study,
the LRS of native Westslope Cutthroat Trout significantly declined
for both males and females with increasing admixture from non-
native Rainbow Trout (Muhlfeld et al., 2009). Likewise, hybrid off-
spring from introduced Brook Trout and native White-spotted Charr
showed significantly lower LRS compared to their parental species
(Fukui et al., 2018).

While there are few studies directly evaluating LRS related to
local adaptation in salmonids, results support expectations that
native fish that are adapted to local environments have higher fit-
ness than strays or non-native species. However, this is a rich area
in need of further study to better estimate fitness related to local

adaptation.

5 | CAVEATS, FUTURE DIRECTIONS, AND
CONSERVATION IMPLICATIONS

5.1 | Accounting for various life-history strategies

While the review presented here demonstrated general trends in
the factors affecting salmonid fitness, there are numerous areas
of research that require further exploration yet are largely ab-
sent from the literature (Figure 2). One such example is inclusion
of the vast array of salmonid life-history strategies in LRS studies.
Accounting for distinct salmonid life-history variation may not only
help to reduce variability in results across studies but also remains
an extremely important component of successful conservation
management. For example, we observed here that when comparing
hatchery-origin versus natural-origin LRS (i.e., RRS), differences in
LRS between alternative reproductive phenotypes (precocial males
and larger hooknose males) can drive overall results. Therefore, fu-
ture LRS studies should determine the effect of both including and
excluding precocial males in the dataset whenever possible. Other
life-history strategies such as iteroparity, freshwater residency, du-
ration spent in the ocean, and adult migration timing also remain
largely unaccounted for in salmonid fitness studies.

Only a limited number of studies in salmonids have examined the

differences in LRS between resident and anadromous fish (Berntson
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FIGURE 2 Circular concept map
exploring the potential areas of future
research in salmonid lifetime reproductive
success (LRS) studies. Each color
represents a general topic area for

future research. Inner ring represents

five general topic areas and outer ring
represents specific examples of directions
for future studies

et al., 2011; Christie et al., 2011; Ford et al., 2015; Thériault et al.,
2007) due to sampling challenges in experimental design. In spe-
cies with both anadromous and resident forms, sampling efforts
have been directed almost exclusively on returning anadromous fish
due to low densities and practical challenges of sampling residents,
resulting in a large fraction of “missing” resident parents (Araki,
Ardren, et al., 2007; Christie et al., 2011; Seamons et al., 2004b). One
potential method to circumvent incomplete sampling of resident fish
that has recently received attention is to trace anadromous offspring
back to their grandparents, essentially filling in the blanks of a ped-
igree that has complete sampling of anadromous, but not resident,
fish (Christie et al., 2011; Ford et al., 2015; Sard et al., 2016).

There have also been very few studies that have examined fit-
ness differences between semelparous and iteroparous life-history
types that occur within the same species (Christie et al., 2018;
Seamons & Quinn, 2010). In particular, salmonids that display iter-
oparity (i.e., repeat spawners) are greatly under-represented in LRS
studies. Since very few studies have been able to account for re-
peat spawners, it is possible that iteroparous individuals that either
minimized energy investment and subsequent reproductive output
in the first breeding season and/or failed to reproduce during the
second breeding season display disproportionally low LRS compared
to the semelparous individuals in the same population, potentially
lowering overall population-level trends of LRS (Seamons & Quinn,
2010). Two studies in Steelhead Trout showed that LRS of iter-

oparous fish averaged more than twice the LRS of those spawning
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one time, suggesting that iteroparous fish can increase population
abundance overall (Christie et al., 2018; Seamons & Quinn, 2010).
Despite logistical challenges of assessing LRS in iteroparous species,
increasing the incidence of iteroparous fish within a population has
become a tool to increase overall genetic variability and popula-
tion abundance, particularly for declining populations of Steelhead
Trout (Copeland et al., 2019; Hatch et al., 2013; Narum et al., 2008).
Therefore, it isimportant and necessary for the breadth of LRS stud-
ies to continue to expand across a wide range of life-history types,
especially as these studies help to inform broad-scale management
and conservation decisions for iteroparous species.

Life-history traits such as adult migration timing and duration
spent in freshwater versus ocean are often variable within salmo-
nid populations (Quinn et al., 2016) but have also largely been un-
accounted for in studies of LRS with only a few recent exceptions
(Ford et al., 2016; Janowitz-Koch et al., 2019; Mobley et al., 2020).
Given that genes of major effect have been shown to drive pheno-
typic variation for these traits across species of salmonids (Barson
et al., 2015; Prince et al., 2017; Waters et al., 2021), accounting for
trait variation can substantially influence estimates of LRS within
populations. For example, if hatchery-origin fish are returning to the
spawning grounds later in the season and experiencing reduced LRS
due to increasing stream temperatures compared to natural-origin
fish that are returning earlier on average, this could have important
conservation management implications that would need to be ad-

dressed. There is also increasing interest to investigate LRS of fish
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that are heterozygous for genes of major effect relative to alterna-
tive homozygous fish for phenotypic traits such as adult migration
timing where one of the life-history types is under high conservation
concern (i.e., spring-run Chinook Salmon; Thompson et al., 2019). In
general, we expect that future studies of LRS will need thorough

study designs that account for life-history types and traits.

5.2 | Expanding studies across salmonid species

Itis also important to point out that the majority of LRS studies have
examined four primary species of Salmoninae—Chinook Salmon,
Steelhead Trout, and Atlantic Salmon, followed by Coho Salmon—
and substantially fewer studies in other species of Salmoninae, such
as Chum Salmon, Sockeye Salmon, Pink Salmon, Charr, and Lenok.
Similarly, Thymallinae (Graylings) and Coregoninae (Whitefishes) are
also lacking in the literature. Under-representation of certain spe-
cies is not necessarily from a lack of interest. Technical constraints,
particularly those that are inherent in threatened or endangered
species, such as limited sample size, inaccessible habitat, or fish-
ing regulations can limit the ability of sample collection in certain
species and populations. Extrapolating results from studies across
salmonid species may not sufficiently encompass general reproduc-
tive patterns in all salmonid species or even across populations of
the same species. In addition, factors that impact LRS, such as origin
(hatchery versus natural) may differentially impact certain species
compared to others (Araki et al., 2008).

5.3 | Estimating reproductive success across
multiple generations

An important area of research that is beginning to receive more at-
tention in salmonid LRS studies is estimating fitness across multiple
generations. However, only a small number of studies have utilized
grandparentage in estimating salmonid LRS using either genetic ex-
clusion methods (Christie et al., 2011; Ford et al., 2015; Sard et al.,
2016), maximum likelihood approaches (Letcher & King, 2001), or
in instances where long-term pedigree data are available, directly
tracing pedigrees over consecutive generations (Janowitz-Koch
et al., 2019). Grandparentage has the potential to provide esti-
mates of long-term fitness effects, particularly in hatchery- versus
natural-origin RRS studies, and further could help to determine lev-
els of introgression between hatchery and native fish. For example,
Janowitz-Koch et al. (2019) provided evidence that LRS did not sig-
nificantly decline for natural-origin fish that spawned with hatchery-
origin fish, even after the offspring of these crosses were tracked
for two generations. Although very useful and informative, con-
structing multigenerational pedigrees presents logistical challenges,
with some programs not able to sample fish for multiple genera-
tions, particularly for longer lived salmonids. In addition to practical
challenges, grandparentage assignment requires large and diverse

genetic marker panels (Letcher & King, 2001), which have not yet

been developed for many salmonid species. With the further devel-
opment of grandparentage software programs (e.g., Huisman, 2017),
the long-term fitness effects of factors such as captive breeding and
anthropogenic impacts for salmonids will be further explored and

potentially integrated into management practices.

5.4 | Exploring the effects of environmental
factors and anthropogenic impacts

Numerous studies reviewed here reported large differences in LRS
across years (e.g., Anderson et al., 2013; Dickerson et al., 2005;
Janowitz-Koch et al., 2019; Kodama et al., 2012; Sard et al., 2015;
Seamons et al., 2004a, 2007; Thériault et al., 2011). There are nu-
merous factors that could explain these interannual differences
including ocean conditions (e.g., upwelling, sea surface tempera-
ture), freshwater environment at natal sites and through migratory
corridors (e.g., water temperature, precipitation rates, changes in
water velocity), and dam passage effects (both downstream and
upstream) that are likely shaping these differences in fitness and
survival (National Research Council, 2004). Water temperature and
water flow, in particular, can strongly affect salmonid development,
growth, and survival across all stages of the life cycle (Jonsson &
Jonsson, 2009; Pankhurst & Munday, 2011). For example, ele-
vated levels of stress and mortality in early-entry late-run Sockeye
Salmon are directly linked to warm river temperatures that are at,
or near, thermal maxima of the species (Hinch et al., 2012). During
ocean phases of the life cycle, environmental conditions such as
upwelling of cold water can directly affect food chain structure and
subsequent growth and survival in salmonids (Bi et al., 2011; Black
etal, 2011; Emmett et al., 2006; Fisher & Pearcy, 1988; Peterson &
Schwing, 2003; Scheuerell & Williams, 2005). Other ocean-related
factors such as Pacific Decadal Oscillation can affect salmonid
ocean abundance and subsequent returns to freshwater (Hare
et al., 1999; Mantua & Hare, 2002; Mantua et al., 1997; Peterson
etal., 2010).

Environmental variables can also interact with both demographic
variables and phenotypic traits, such as density, size, or origin, to
predict survival in salmonids (Bowerman et al., 2021; Crozier et al.,
2008; Zabel et al., 2006). While we recognize the need for these
types of environmental data in studies predicting fitness, we also
understand the potential difficulty in obtaining these metrics during
field sampling. One potential source for obtaining environmental
data is through pre-existing databases, such as those maintained by
federal agencies (e.g., Huang et al., 2017; Isaak et al., 2017) or spatial
interpolated climate data across the earth collected from satellites
(e.g., Fick & Hijmans, 2017).

Direct anthropogenic impacts are another type of aquatic
stressor that can shape patterns in LRS. For example, trace heavy
metals, pesticides, and herbicides could all affect survival and fit-
ness in salmonids (Milner et al., 2003; Wedemeyer et al., 1980). The
impact of recreational fishing techniques should also be expected to

affect LRS, yet studies in the literature are lacking. One example of a
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recreational fishing technique is “catch and release” (CR), a technique
that involves releasing live fish back into the water after catching
them. The use of CR, and the subsequent likelihood of mortality, re-
mains controversial from a cultural, ethical, and biological perspec-
tive (Arlinghaus et al., 2007). Air exposure during CR has been shown
to negatively affect LRS; however, the relationship between LRS and
air exposure may be dependent on other factors such as water tem-
perature and size of the fish (Richard et al., 2013). Other studies have
shown no effect of air temperature on LRS (Roth et al., 2019); the
differences in results potentially attributed to differences in sample
sizes. Therefore, the impacts of human activities, such as fishing, on

LRS remains an area of research that is largely untested.

5.5 | The effect of general body condition and
pathogens on reproductive success

Numerous infectious diseases and parasites have been extensively
documented in salmonids (Bakke & Harris, 1998). However, there
have been very few studies measuring the impact of disease on re-
productive success, particularly in natural salmonid populations, de-
spite the fact that heritable variation has been documented in these
factors and they can directly impact fitness-related traits, such as
growth, feeding behavior, swimming, and osmoregulation (Garcia de
Leanizetal., 2007; Mendel et al., 2018; Miller et al., 2014; Yafez et al.,
2014). While lethal sampling has been employed in numerous stud-
ies assessing pathogens in salmonids, other studies have employed
nonlethal methods (e.g., Elliott et al., 2015; Ferndndez-Alacid et al.,
2018; Kittilsen et al., 2009; Rees et al., 2015). The use of noninvasive
and nonlethal sampling across salmonid studies remains a priority
for state, federal, and tribal fisheries agencies, and much progress
has been made on developing these sampling techniques (Coble
et al., 2019; Lawrence et al., 2020; Teffer & Miller, 2019). Therefore,
an assessment of the effect of pathogens on reproductive success
in salmonids is a tractable area of research and remains an area of
high need. Similarly, the effect of general physiological condition on
reproductive success, particularly an overall assessment of energy
reserves, is another area of research that is lacking and recent ad-
vances in technology have allowed for noninvasive sampling of body
condition in salmonids (Hanson et al., 2010). By including factors
such as pathogen load and general body condition, a clearer under-
standing of the aquatic stressors affecting fitness in salmonids will
more fully develop. Of particular importance would be determining
whether these factors interact with other factors to predict LRS,
such as origin or environmental conditions, which could help within

the broader context of successful conservation management.
5.6 | Explaining variation in results across
studies and within studies

While the review presented here demonstrates general patterns

and trends of factors affecting LRS, there is a substantial amount of
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variability in results across studies. One obvious potential source of
variability is the vast array of factors, or lack thereof, used to pre-
dict LRS across studies. For example, as discussed previously, while
many studies estimating differential LRS of hatchery- and natural-
origin fish accounted for body size and/or age (Anderson et al.,
2013; Berntson et al., 2011; Ford et al., 2012, 2016; Janowitz-Koch
etal, 2019; Sard et al., 2015; Thériault et al., 2011; Williamson et al.,
2010), several others did not, which could greatly impact the overall
results of these types of studies. Several studies provided evidence
that hatchery-origin fish in some years were smaller than natural-
origin, which may, in part, help to explain the differences in LRS
that have been observed between hatchery- and natural-origin fish.
For male salmonids, while some studies have found that hatchery-
origin precocial males may not experience the same fitness declines
as hatchery-origin males of older age classes (Garant et al., 2003;
Thériault et al., 2011), other studies show opposite effects, with
hatchery-origin precocial males exhibiting significantly lower LRS
than natural-origin precocial males (Hess et al., 2012; Janowitz-Koch
et al., 2019). These results provide a clear example that age and/or
size can interact with origin to predict fitness, and both should be
accounted for in these types of studies whenever possible. However,
itis also worth noting that including additional factors in models may
not necessarily explain additional variability in salmonid LRS studies.

One method to determine assessment of model fit in a study is
estimating the proportion of variation in the response variable that
can be explained by the model. However, out of the numerous stud-
ies that we reviewed here, only a small number of studies provided
estimates on proportion of variability in LRS explained by models.
For example, the total variance in LRS models (as reported by the
coefficient of determination estimates, R?) explained by body size
was the only trait that was consistently reported for a few studies,
yet exhibited marked variation ranging from R? < 2% (Seamons et al.,
2007) to 46% (Thériault et al., 2007) for female Steelhead Trout and
female Brook Charr, respectively. For males, variation explained by
body size was also variable, ranging from <3% in Steelhead Trout
(Seamons et al., 2007) to 26% in Chinook Salmon (Schroder et al.,
2010) with results for Chum Salmon males somewhere in between
(approximately 13%-19%,; Berejikian et al., 2009). Similarly, the pro-
portion of variation on LRS explained by migration timing was only
provided in a single study (Seamons et al., 2007). Although major
conclusions cannot be drawn across the limited number of stud-
ies provided here, the percent of variation in traits explaining LRS
models can provide important statistical and biological information
within studies that could perhaps be generalizable to similar study
systems.

It is also possible that general differences in model results both
within studies (across years) and between studies could be the result
of populations experiencing different types and varying strength of
selection, sometimes experiencing weak selection and residing in a
stable optimum, other times facing strong directional selection and
shifting optima, for example. Selection fluctuations can be caused by
numerous factors in salmonids, including environmental variables,

changing frequencies of life-history forms, sex ratio, competition,
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and overall spawner density, to name a few (Anderson et al., 2010;
Christie et al., 2018; Dickerson et al., 2005; Ford et al., 2008; Kodama
et al., 2012; Seamons et al., 2007). These factors are likely to shift
within populations across years, which could explain the variability
in results seen across years within the same study. Similarly, these
factors would be expected to be different across populations with
varying geographical landscapes and different genetic and historical
backgrounds. Therefore, differences across studies in traits predic-
tive of fitness or a lack of significance in certain traits that should
be expected to predict fitness, such as body size, could also be the

result of differences in temporal or spatial selective pressures.

5.7 | Biological significance and effect sizes

Although we provide compelling evidence that numerous demo-
graphic, phenotypic, phenological, environmental, and behavioral
factors predict fitness, we rarely uncovered a discussion of biologi-
cal significance in literature reviews. While statistical significance
is an important part of drawing experimental conclusions, it is only
one component of biological significance. Biological significance
is broadly defined as a biological effect, or the size of a biological
effect, that is biologically meaningful based on expert opinion and
can have important implications in real-world applications, poten-
tially impacting decisions regarding conservation and management
policies (EFSA Scientific Committee, 2011). The size of a biologi-
cal effect (i.e., effect size) that would be considered relevant or
meaningful should be defined a priori through methods such as
power analyses (Martinez-Abrain, 2008; Steidl et al., 1997; Taylor &
Gerrodette, 1993). The issue of power has been addressed in other
review papers in salmonids, particularly in regard to limitations in
power in hatchery- versus natural-origin LRS studies (Araki et al.,
2008; Christie et al., 2014). However, across the studies reviewed
here, only a limited number provided either a priori or retrospective
power analyses to determine the minimum effect size that would
be detectable under varying degrees of power (Araki, Ardren, et al.,
2007; Araki, Cooper, et al., 2007; Berejikian et al., 2009; Hess et al.,
2012; Mobley et al., 2020; Thériault et al., 2011).

Confidence intervals are often favored over power analyses to
convey information on the range of effect sizes that are supported
by the data (Colegrave & Ruxton, 2003; Lovell, 2013); yet again,
these were not consistently presented across the studies reviewed
here (e.g., Anderson et al., 2013; Christie et al., 2018; Janowitz-Koch
et al.,, 2019; Roth et al., 2019). Ideally, studies assessing fitness in
salmonids would demonstrate both statistical and biological signifi-
cance. However, other scenarios typically unfold, such as statistical
significance without biological significance or biological significance
without statistical significance. Both scenarios provide valuable in-
formation to researchers, each lending information regarding study
limitations and directions for future research, such as sample sizes
that are too small to detect effects or variability in traits that is too
wide to be explained by a single variable of interest (Lovell, 2013;

Martinez-Abrain, 2008). Therefore, demonstrating power to detect

effects is an extremely useful tool, particularly in conservation man-
agement scenarios where sample sizes tend to be small and accept-
ing a false null hypothesis based on a single « cutoff value could have

substantial consequences (Taylor & Gerrodette, 1993).

5.8 | Limitations in pedigree reconstruction

The ability to sample all potential parents in any given year re-
mains a challenge in multiple salmonid populations namely due
to logistical and technical constraints, sometimes in conjunction
with conservation limitations. The decreased ability to reconstruct
pedigrees due to incomplete sampling may be particularly prob-
lematic for datasets with an insufficient number of genetic mark-
ers as investigated previously (Aykanat et al., 2014; Harrison et al.,
2013). Additionally, Araki and Blouin (2005) demonstrated that an
increase in incomplete sampling can increase the overall propor-
tion of incorrectly assigned parents. Numerous parentage pro-
grams account for the proportion of candidate parents sampled in
a study, with some parental reconstruction methods more sensitive
to this variable compared to others (Jones et al., 2010). Similarly,
relatedness between potential parents can affect parental assign-
ment success, with a reduction in the overall assignment success
of offspring whose parents are more related and less heterozygous
overall (Ford & Williamson, 2010; Olsen et al., 2001). Therefore, to
increase the validity of results in salmonid LRS studies, it remains
particularly important to choose appropriate parental reconstruc-
tion methods, provide estimates of power limitations and poten-
tial sources of error, such as genotyping or measurement error,
determine the appropriate thresholds for accepting assignments,
and maximize genomic marker panels whenever possible (see e.g.,
Flanagan & Jones, 2019 which reviews next-generation genotyping

approaches in parentage analysis).

5.9 | Applications for conservation management

Overall, estimating productivity through LRS-based studies remains
a vital component of protecting and maintaining declining salmonid
populations. General declines in salmonids are namely thought to
be the result of anthropogenic impacts, including but not limited
to habitat loss, overharvest, unintended effects of hatcheries, and
hydropower dams, each with potential to propel rapid evolution-
ary shifts (McClure et al., 2003; Stockwell et al., 2003; Waples &
Hendry, 2008). In this review, we uncovered extensive variation in
salmonid LRS and in the factors affecting LRS, with a heavy empha-
sis on factors related to hatchery rearing. We see, however, that sal-
monid life history adds further complexity to patterns in LRS and can
interact with other variables to predict LRS. Density and environ-
mental factors, for example, are innately related to anthropogenic
impacts, and numerous studies presented in this review suggest that
these factors may directly affect LRS or can interact with life his-

tory to shape patterns in LRS. Therefore, while the complexity in
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life-history forms and variation in LRS make salmonids ideal study
species to address evolutionary questions, this can further compli-
cate conservation questions. As such, the inclusion of the vast array
of life-history strategies, environmental drivers, and both pheno-
logical and phenotypic traits in studies estimating salmonid LRS re-
mains extremely important in synthesizing both species-specific and
population-specific conservation decisions.

6 | CONCLUSIONS

In summary, studies of LRS have provided critical insights toward
understanding fitness advantages within salmonid populations and
have expanded our general knowledge of salmonid mating behavior
and reproductive strategies. Further, these studies have provided a
basis for ongoing conservation and management decisions for sal-
monid species that have vital ecological, economic, and cultural roles
throughout their geographic ranges. Future studies should aim to
(1) continue to expand the breadth of studies assessing LRS across
different life-history strategies, specifically accounting for differ-
ent reproductive and migratory phenotypes, (2) broaden the array
of species represented in salmonid fitness studies, (3) construct
multigenerational pedigrees to measure long-term fitness effects,
(4) expand on LRS studies that investigate the effects of largely un-
tested traits, such as aquatic stressors including, but not limited to,
environmental factors, pathogens, and general body condition, and
(5) utilize appropriate statistical approaches to determine the fac-
tors that explain the greatest variation in fitness models and provide
details on biological significance, power limitations, and potential
sources of error whenever possible. These challenging studies have
profoundly advanced scientific understanding that will continue to
assist with long-term perseverance of these keystone species in

aquatic ecosystems.
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