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Abstract: Background: The Mediterranean diet, which is rich in olive oil, nuts, and fish, is considered
healthy and may reduce the risk of chronic diseases. Methods: Here, we compared the transcriptome
from the blood of subjects with diets supplemented with olives, nuts, or long-chain omega-3 fatty
acids and identified the genes differentially expressed. The dietary genes obtained were subjected to
network analysis to determine the main pathways, as well as the transcription factors and microRNA
interaction networks to elucidate their regulation. Finally, a gene-associated disease interaction
network was performed. Results: We identified several genes whose expression is altered after the
intake of components of the Mediterranean diets compared to controls. These genes were associated
with infection and inflammation. Transcription factors and miRNAs were identified as potential
regulators of the dietary genes. Interestingly, caspase 1 and sialophorin are differentially expressed
in the opposite direction after the intake of supplements compared to Alzheimer’s disease patients.
In addition, ten transcription factors were identified that regulated gene expression in supplemented
diets, mild cognitive impairment, and Alzheimer’s disease. Conclusions: We identified genes whose
expression is altered after the intake of the supplements as well as the transcription factors and
miRNAs involved in their regulation. These genes are associated with schizophrenia, neoplasms,
and rheumatic arthritis, suggesting that the Mediterranean diet may be beneficial in reducing these
diseases. In addition, the results suggest that the Mediterranean diet may also be beneficial in
reducing the risk of dementia.

Keywords: nutrigenomic; olive; nut; fish; Mediterranean diet; nuclear factor interleukin 3 regulated;
NFIL3; dementia; Alzheimer’s disease

1. Introduction

Dietary patterns are associated with different disease risks. Whereas the Western diet increases the
risk of cardiovascular disease and some types of cancers, other diets have some beneficial effects on health.
The Mediterranean diet is rich in the consumption of fruits, vegetables, olive oil, fish, and nuts. It is
characterized by the intake of food rich in polyphenols, monounsaturated fatty acids, and polyunsaturated
fatty acids. It has been proposed that some components of the Mediterranean diet are beneficial for the
individual’s health. Based on observation as well as randomized controlled studies, the Mediterranean
diet is proposed to reduce the risk of developing several diseases. A beneficial effect of the diet on
cardiovascular risks has been observed (reviewed in [1]), along with a decrease in blood pressure [2–4].
In addition, the Mediterranean diet is proposed to be beneficial for patients with diabetes mellitus by
improving glycogenic regulation in patients [1,5,6]. Furthermore, several observational studies found that
the Mediterranean diet reduced the risk of developing several cancers, such as colorectal, breast, stomach,
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liver, and head and neck cancer [1,7]. Moreover, Mediterranean diets may improve an individual’s
resilience to Parkinson’s disease, depression, and dementia [1].

The beneficial effects of some of the components of the Mediterranean diet have been investigated.
The main source of fat in the diet is olive oil. Olive oil contains high levels of monounsaturated
fatty acids, as well as other biologically active components such as polyphenol [8]. Many studies
have shown the benefits of olive oil on cardiovascular risk factors [9,10] and the benefits for patients
with type 2 diabetes [5,11]. Olive oil also helps control the levels of plasma lipids and glucose in
patients with metabolic syndrome [12]. Additionally, olive oil may be protective for some forms
of cancer [13–15]. It has been suggested that the health benefits of olive oil are related to its
anti-hypertensive, anti-inflammatory, and antioxidant effects [11,16–18].

Nuts, another component of the Mediterranean diet, are good sources of monosaturated fatty
acids, polyunsaturated fatty acids, and other nutrients such as fibers, vitamin E, and L-arginine.
Walnuts, for example, are rich in in long-chain omega-3 fatty acids (omega-3). Numerous epidemiologic
studies have illuminated the beneficial impact of nut consumption on health outcomes (reviewed in [19]).
Indeed, the consumption of nuts has been shown to have a positive effect on patients suffering from
obesity, hypertension, diabetes mellitus, and cardiovascular diseases [20–24]. Nuts can reduce oxidative
stress, inflammation, and blood pressure while helping with glycemic control [25–28].

Finally, fish consumption, characteristically high in a Mediterranean diet, has been proposed to
have potential health benefits. Omega-3 are essential fatty acids that are found in fish oils. These n-3
fatty acids are composed of two crucial components: polyunsaturated fatty acids eicosapentaenoic
acid (EPA) and docosahexaenoic acid (DHA). Studies have highlighted the beneficial effect of fish
consumption and omega-3 on cardiovascular diseases, stroke, atherosclerosis as well as insulin
resistance [29,30]. One of the possible mechanisms proposed for the health benefits was a decrease in
plasma bioactive lipid components involved in insulin resistance and inflammation [31,32].

Microarray and high-throughput technologies for gene expression are essential tools for identifying
differential patterns of gene expression that are characteristic of environmental determinants of health.
The use of peripheral blood mononuclear cells (PBMC) to determine the effect of diet has shown
that food intake can modify the blood’s proteome, metabolome, and gene expression profile [33–35].
Because PBMC can be easily and repeatedly collected, compared to liver, muscles, and adipocyte tissue,
they are used frequently to study the impact of diet [35], including that of olive oil, olive leaves, nuts,
and omega-3 consumption [36–40].

In this study, we took an integrative network-based approach to identify the genes that may be
responsible for the beneficial effects of Mediterranean diets. Previously, we used a similar approach
to reveal some of the mechanistic pathways involved in the development of Parkinson’s diseases,
Alzheimer’s disease, and other dementias [41–44]. Among the dietary genes identified, we observed
that the Nuclear Factor Interleukin 3 Regulated (NFIL3) was downregulated after the intake of all three
supplements. In addition, Interleukin 8 (IL8), the Serine/Threonine Kinase 17b (STK17B), and Serpin
Family B Member 2 (SERPINB2), and the Regulator of G Protein Signaling 1 (RGS1) were downregulated
after two supplements were included in the diet. Pathway analysis determined that these genes were
associated with infection and inflammation, suggesting potential health benefits of the Mediterranean
diet in modulating the immune system. Gene-transcription factor and gene-miRNA network analyses
identified important factors involved in the expression of dietary genes. Interestingly, we observed
some shared transcription factors involved in the regulation of supplemented diets and dementia,
indicating that the supplements may also be beneficial in reducing the risk of Alzheimer’s disease.

2. Materials and Methods

2.1. Analysis of PBMC Transcriptomic Studies

We used the curated database BaseSpace Correlation Engine (BSCE, Illumina, Inc., San Diego,
CA, USA) to search for gene expression studies in different human diets [45]. Using the search
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terms “Mediterranean diet”, “olive diet”, “nut diet”, “fish oil”, “EPA”, “DHA”. “blood”, “human”,
“RNA”, and “microarray”, we identified several studies with PMBC from people under different diets.
Only human microarray studies with 5 samples or more for cases and controls and curated in BSCE
were considered for analysis. In addition, analysis from PBMC collected from obese patients was not
included in this analysis. Six microarrays met our inclusion criteria as of 1 October 2019. A description
of microarray datasets included in this study is provided in Section 3.1. The arrays from olive oil and
olive leaves diets were defined as “olive diet”, whereas the arrays with EPA/DHA were defined as
“omega-3 diet”.

The differentially expressed genes were curated by BSCE. Statistical analyses were performed on
log scale data. In the parametric test, variances were not assumed equal (Welch t-test). A p-value cutoff

of 0.05 and a fold-change of 1.2 was applied to generate the final list of genes. Genes whose mean
normalized test and control intensities are both less than the 20th percentile of the combined normalized
signal intensities were removed. Final gene expression data from microarray studies were downloaded
from BSCE (Table S1). A Venn diagram analysis was performed with the genes up or downregulated
in the three olive diet arrays and the four fish oil arrays independently. The transcription factors Venn
diagram was created using the website http://bioinformatics.psb.ugent.be/webtools/Venn/. Only genes
that were differentially expressed in at least two olive diet arrays and at least two fish oil studies were
included for further analysis. The list of genes can be found in Table S2.

2.2. Pathway Enrichment Analysis

Official gene symbols for the genes identified in the supplemented diets gene expression
comparison were imported into NetworkAnalyst for pathway analyses (https://www.networkanalyst.
ca/NetworkAnalyst/faces/home.xhtml) for pathway analyses using the Kyoto Encyclopedia of Genes
and Genome (KEGG) pathway database [46]. NetworkAnalyst uses an enrichment network
OverRepresentation Analyses (ORA). ORA is a statistical technique to identify gene sets or pathways
that have a significant overlap with the selected genes of interest. In NetworkAnalyst, hypergeometric
tests are used to compute the p-values [47,48].

2.3. Gene-Transcription Factors Interaction Analysis

Gene-transcription factors interactome was performed in NetworkAnalyst. Transcription factor
and gene target data were derived from the Encyclopedia of DNA Elements (ENCODE) ChIP-seq
data, ChIP Enrichment Analysis (ChEA), or JASPAR database [49–51]. ENCODE uses the BETA Minus
Algorithm in which only a peak intensity signal <500 and the predicted regulatory potential score <1 is
used. ChEA transcription factor targets the database inferred from integrating literature curated Chip-X
data. JASPAR is an open-access database of curated, non-redundant transcription factor (TF)-binding
profiles. A Venn diagram analysis was performed with the transcription factors identified with each
database. Transcription factors were ranked according to network topology measurements including
degree and betweenness centrality.

2.4. Gene-miRNA Interaction Analysis

The gene-miRNA interactome was performed in NetworkAnalyst. The Gene-miRNA Interactome
was carried out from comprehensive experimentally validated miRNA-gene interaction data collected
from TarBase and miRTarBase [52–54].

2.5. Gene-Disease Association Analysis

Gene-disease association analysis was performed in NetworkAnalyst. The literature curated
gene-disease association information was collected from the DisGeNET database, a publicly available
collection of genes and variants associated with human diseases [55].

http://bioinformatics.psb.ugent.be/webtools/Venn/
https://www.networkanalyst.ca/NetworkAnalyst/faces/home.xhtml
https://www.networkanalyst.ca/NetworkAnalyst/faces/home.xhtml
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2.6. Diet and Dementia Analysis

Our previous gene expression analysis identified 91 mild cognitive impairment (MCI) genes
dysregulated in in the 2 arrays analyzed and 387 Alzheimer’s disease (AD) genes dysregulated in
at least 2 out of the 4 arrays analyzed [42]. A Venn diagram analysis was carried out between the
dementia genes previously identified and the genes identified in the present diet study using the
InteractiVenn website (http://www.interactivenn.net/).

3. Results

3.1. Gene Expression Comparison of the Diet Supplements

We first identified common genes differentially expressed in several diet studies. The datasets,
platforms, and test samples for each study are listed in Table 1. The overall strategy of the study is
presented in Figure 1.

Three PBMC microarray datasets from olive-supplemented diets (olive oil or olive leaves)
were identified in the BaseSpace Correlation Engine (BSCE) (GSE28358, GSE75025, and GSE87300).
We used Venn diagram analysis to identify genes shared among the datasets from olive-based
diets (Figure 2a,b, Table S1). A total of 38 genes were differentially expressed in at least two out
of the three olive-supplemented diet arrays (Table S2). Similarly, four PBMC microarrays from
omega-3-supplemented diet datasets (fish oil or DHA + EPA supplements) were obtained from BSCE
and analyzed by (GSE48368, GSE48368, GSE12375, and E-MTAB-48) (Figure 2c,d, Table S1). A total of
36 differentially expressed genes were shared in at least two out of the four datasets analyzed (Table S2).
Only one microarray dataset from a diet rich in nuts was available (GSE28358) and 365 genes were
identified as differentially regulated (Table S2).

Table 1. Gene expression datasets used in this study. The peripheral blood mononuclear cells (PBMC)
transcriptomic studies that were selected for analysis are presented in the table. Age is indicated in
years as mean ±SD, or mean alone, or mean (range) depending of the information available. EPA+DHA:
eicosapentaenoic acid and docosahexaenoic acid.

Diets Datasets Platform Sample
# Age Sex

(%F) Health Reference

Mediterranean
diet + Olive oil GSE28358

GPL571 [HG-U133A_2]
Affymetrix Human

Genome U133A 2.0 Array
12 62 ± 8 45

High risk of
coronary artery

disease
[36]

Olive oil GSE75025
GPL10558 Illumina
HumanHT-12 V4.0

expression beadchip
12 29 ± 2 50 Healthy [37]

Olive leaf
extract GSE87300

GPL13667 [HG-U219]
Affymetrix Human

Genome U219 Array
15 32 0 Healthy [38]

Mediterranean
diet + Nuts GSE28358

GPL571 [HG-U133A_2]
Affymetrix Human

Genome U133A 2.0 Array
10 63 ± 6 45

High risk of
coronary artery

disease
[36]

Fish oil
3 weeks GSE48368

GPL10558 Illumina
HumanHT-12 V4.0

expression beadchip
17 27.2 ±

6.9 71 Healthy [39]

Fish oil
7 weeks GSE48368

GPL10558 Illumina
HumanHT-12 V4.0

expression beadchip
17 27.2 ±

6.9 71 Healthy [39]

EPA + DHA GSE12375 GPL7144 NuGO array
(human) NuGO_Hs1a520180 23 69.9

(67-76) 35 Healthy [40]

EPA + DHA E-MTAB-48 A-AFFY-111—Affymetrix
Custom Array 23 69.9

(67-76) 35 Healthy [40]

Next, we compared the genes differentially expressed in the diets. Interestingly, we found that
the Nuclear Factor Interleukin 3 Regulated (NFIL3) was downregulated in the three types of diets.
In addition, we observed that Interleukin 8 (IL8), the Serine/Threonine Kinase 17b (STK17B), and Serpin

http://www.interactivenn.net/
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Family B Member 2 (SERPINB2) were downregulated in diets rich in olive and nuts. Additionally,
the Regulator of G Protein Signaling 1 (RGS1) was downregulated in diets rich in nuts and omega-3.
We did not find any upregulated genes shared between the diets.Nutrients 2020, 12, x FOR PEER REVIEW 5 of 21 
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Figure 1. Flowchart of the study. The BaseSpace Correlation Engine (BSCE) was searched to
identify microarray data from appropriate diet studies. Venn diagram analysis was used to identify
shared differentially regulated genes. The genes shared by olive-, nuts- or omega-3-supplemented
diets were analyzed for shared functional pathways, transcription factors, miRNAs regulation, and
disease associations.

3.2. Pathway Enrichment Analysis

A pathway analysis using NetworkAnalyst was performed to elucidate the functional and biological
role of genes differentially expressed in the different diets. The pathway enrichment network analysis was
performed using the Kyoto Encyclopedia of Genes and Genome (KEGG) database (Figure 3, Table S3).
The 38 olive supplemented diet genes identified 31 pathways. The top 10 pathways were bladder cancer,
Hepatitis B, ErbB signaling, NOD-like receptor signaling, MAPK signaling, Kaposi’s sarcoma-associated
herpesvirus infection, ubiquitin-mediated proteolysis, epithelial cell signaling in Helicobacter pylori infection,
pertussis, and salmonella infection. 48 pathways were identified from the genes differentiated regulated
during a diet rich in nuts. The top 10 pathways were notch signaling, thyroid hormone signaling, hepatitis
B, pathways in cancer, oxytocin signaling, Kaposi’s sarcoma-associated herpesvirus infection, endocrine
resistance, phosphatidylinositol signaling, and melanogenesis. Finally, nine pathways were identified
from the 36 differentially expressed genes in omega-3 rich diets. These pathways are longevity regulating,
insulin resistance, 5′ AMP-activated protein kinase (AMPK) signaling, forkhead transcription factor
family (FoxO) signaling, cyclic guanosine monophosphate-protein kinase G (cGMP-PKG) signaling,
herpes simplex infection, primary immunodeficiency, vasopressin-regulated water reabsorption, type II
diabetes mellitus, and intestinal immune network for IgA production.
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Figure 2. Venn diagram analysis of the genes up and downregulated in olive- and omega-3-supplemented
diets. (a) and (b) . Genes in olive-supplemented diets: The genes downregulated (a) and upregulated
(b) in the olive oil or leaf extracts arrays were downloaded from BSCE and used to create a Venn diagram
using the following website http://www.interactivenn.net/. (c) and (d). Genes in Omega-3-supplemented
diets: The genes downregulated (c) and upregulated (d) in the fish oil or eicosapentaenoic acid (EPA)/
docosahexaenoic acid (DHA) studies were downloaded from BSCE and used to create the Venn diagrams.
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Figure 3. Pathway analysis. (a–c) The genes differentially expressed in 2 out of 3 olive supplement
arrays, in the nuts supplement array, in at least 2 out of the 4 arrays from fish or EPA + DHA diets
were obtained using Venn analysis. The gene lists were uploaded to https://www.networkanalyst.ca/

NetworkAnalyst/faces/home.xhtml, where a list enrichment network analysis was performed using the
KEGG database. The 10 tops pathways identified from the olive-, nuts-, or omega-3-supplemented
diets are listed in (a), (b), and (c) respectively. (d) The pathways shared between the three types of
Mediterranean diets were analyzed in a Venn diagram analysis.
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Venn analysis showed that no pathway was shared by all three supplements. Moreover, we did not
observe any pathways shared between the olive-based and omega-3-based diets. However, eight pathways
were shared between the olive-based and nut-rich diets. These pathways were bladder cancer, Hepatitis B,
Kaposi’s sarcoma-associated herpesvirus infection, Influenza A, proteoglycans in cancer, HTLV-I infection,
endocrine resistance, and Chagas disease. In addition, we observed that cGMP-PKG signaling and
FoxO signaling pathways were shared between the nuts and omega-3 diets. Interestingly several of the
pathways associated with the different diets are associated with infection and inflammation.

3.3. Gene-Transcription Factors Interaction Analysis

To identify key regulators of the genes differentially expressed in the different types of diets, gene
transcription factor interactomes were performed on NetworkAnalyst using three different databases
(ENCODE, ChEA, and JASPAR) (Table S4). The transcription factors that were shared by all the databases
were identified by Venn analysis (Figure 4a–c). The analysis identified 14, 24, and 15 transcription factors
in the olive-, nuts-, and omega-3-supplemented diets, respectively. The list of these transcription factors is
presented in Figure 4d. A total of 10 transcription factors shared among the three types of diets included
CREB1, EGR1, ELK1, GATA2, GATA3, PPARG, RELA, STAT1, STAT3, and YY1. Eight transcription factors
were identified in at least two analyses. HNF4A was shared between olive- and omega-3-supplemented
diets. CTCF, IRF1, REST, and SREBF2 were shared between the nuts- and omega-3-supplemented diets.
Finally, ARNT, CEBPB, and SREBF1 were shared between the olive- and nuts-supplemented diets.
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Figure 4. Transcription factor analysis. (a–c) Transcription factor analysis for each diet. The gene lists were
uploaded to https://www.networkanalyst.ca/NetworkAnalyst/faces/home.xhtml. The gene–transcription
factor interaction network was performed with ENCODE, ChEA, and JASPAR, and (a), (b), and (c) represent
the results of the Venn analysis performed with olive-, nuts- and omega-3-genes, respectively.
The transcription factors interacting with the supplement-regulated genes are listed in (d). Transcription
factors in red are shared between the three supplements, the transcription factors in green are shared
between two supplements, and the transcription factors in black are unique to a supplement.
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3.4. Gene-miRNA Interaction Analysis

To further understand the regulation of the expression of genes differentially expressed during
diet supplementation, a gene-miRNA interaction network analysis was performed in NetworkAnalyst.
Comprehensive experimentally validated miRNA-gene interaction data were collected from TarBase
and miRTarBase. 304, 819, and 166 miRNAs were identified from an olive-rich diet, a nuts-supplemented
diet, and an omega-3-supplemented diet, respectively (Figure 5 and Table S5). Interestingly, 100 miRNAs
were shared in the three types of supplemented diets (Figure 5). In order to determine the most
important miRNA, we performed the Venn analysis after selecting the top miRNAs using a degree
cut off of five for the olive-rich and omega-3-supplemented diets and a degree cut off of 25 for the
nuts-supplemented diet. This allowed us to identify 17, 19, and 4 miRNAs from an olive-rich diet,
a nuts-supplemented diet, and an omega-3-supplemented diet, respectively (Table S5). Interestingly,
three miRNAs were shared between the three diets (mir-93-5p, mir-17-5p, and mir-335-5p).
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listed in (e). MiRNAs in red are shared between the 3 supplements, the miRNAs in green are shared
between 2 supplements, and the miRNAs in black are unique to a supplement.

3.5. Gene-Disease Association Analysis

A gene-disease association network analysis was performed in NetworkAnalyst. The differentially
expressed genes in the olive-, nuts- or omega-3-rich diets allowed for the identification of 231, 1099,
and 9 associated diseases, respectively. These diseases were ranked by decreasing degree followed
by decreasing betweenness (Figure 6 and Table S6). Interestingly, six associated diseases were
shared between the three Mediterranean diet components: schizophrenia, mammary neoplasms,
prostatic neoplasms, neoplasm metastasis, endometrial neoplasms, and rheumatoid arthritis.

https://www.networkanalyst.ca/NetworkAnalyst/faces/home.xhtml
https://www.networkanalyst.ca/NetworkAnalyst/faces/home.xhtml
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networkanalyst.ca/NetworkAnalyst/faces/home.xhtml to perform the disease association analysis.
The diseases were ranked by decreasing degree followed by decreasing betweenness, and the top 10
diseases obtained from the olive-, nuts, and omega-2-supplemented diets are presented in (a), (b),
and (c), respectively. (d) A Venn analysis was performed to determine the diseases shared between
the different types of Mediterranean diets. The associated diseases in red are shared between the
three supplements.

3.6. Diets and Dementia Analysis

In our previous study, we performed a gene expression comparison of publicly available arrays
from blood samples obtained from mild cognitive impairment (MCI) and Alzheimer’s disease (AD)
patients [42]. We obtained 91 MCI genes dysregulated in the two arrays analyzed and 387 AD genes
dysregulated in at least two out of the four arrays analyzed. Interestingly, unhealthy eating habits might
increase the risk to develop dementia [56] and numerous studies have highlighted the potential beneficial
impact of the Mediterranean diet on cognition (reviewed in [57,58]). For example, nuts consumption
has been shown to delay cognitive decline in aging populations and improves AD pathology [59,60].
Recently, the impact of a Mediterranean diet and the microbiota on neurodegeneration has been
reviewed [61].

We compared the genes dysregulated in MCI and AD patients to the genes identified in this
study that are differentially expressed after diet supplementation [42]. Caspase 1 (CASP1) was shared
between a diet supplemented with olives and AD patients (Figure 7a). In addition, four genes were
shared between the diet supplemented with nuts and AD patients, including Actin-Related Protein 2/3
Complex Subunit 3 (ARPC3), Sialophorin (SPN), Neurobeachin Like 2 (NBEAL2), and Mixed-Lineage
Leukemia (MLL) (Figure 7b). No genes were shared between a diet rich in omega-3 and MCI and AD

https://www.networkanalyst.ca/NetworkAnalyst/faces/home.xhtml
https://www.networkanalyst.ca/NetworkAnalyst/faces/home.xhtml
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patients (Figure 7c). Interestingly, CASP1 and SPN are regulated in dementia and the supplemented
diets in the opposite direction, indicating that the supplements may be beneficial in reducing the
risk of dementia. We observed that CASP1 expression was upregulated in the olive-supplemented
diet, whereas it was downregulated in the blood of AD patients. On the other hand, the expression
of Sialophorin (SLN), also known as Leukosialin and CD43, was downregulated in a nut-rich diet,
whereas it is upregulated in AD. In the blood, SLN is expressed at the surface of T cells and regulates
multiple T cell functions. In the brain, SLN is expressed on the surface of microglia. Whereas our study
indicated an upregulation in blood from AD patients, SLN protein expression was downregulated at
the surface of microglial cells [62]. We also performed a pathways enrichment analysis between the
genes identified in the supplemented diets and the genes identified in our previous dementia analysis.
We did not find any shared pathways.
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Figure 7. Comparison of gene expression data from supplemented diets to mild cognitive impairment
(MCI) and Alzheimer’s disease (AD). (a–c) The shared genes between a specific supplemented diet,
MCI, and AD were analyzed by Venn (a): olive-supplemented diet, (b): nuts-supplemented diet,
(c): omega-3-supplemented diet. (d–f) The shared transcription factors between a specific diet,
MCI, and AD were analyzed by Venn (d): Olive-supplemented diet, (e): Nuts-supplemented diet,
(f): omega-3-supplemented diet.

Next, we compared the transcription factors obtained in the different diets to the previously
identified transcription factors involved in MCI and AD regulation [42]. We observed a significant
overlap between the diet and dementia analysis (Figure 7). A total of 12 transcription factors identified
in the olive-supplemented diet were also identified in the dementia analysis (PPARG, EGR1, CREB1,
ELK1, YY1, GATA2, GATA3, STAT1, CEBPB, RELA, STAT3, and SREBF1) (Figure 7d). A total of 15
transcription factors were shared between a nuts-supplemented diet and dementia (ELK1, EGR1,
PPARG, YY1, STAT1, CREB1, GATA2, GATA3, CEBPB, RELA, STAT3, SREBF1, E2F4, JUN, and RUNX1)
(Figure 7e). Finally, 10 transcription factors were regulating both the omega-3-supplemented diet
and dementia genes (PPARG, YY1, ELK1, CREB1, GATA2, GATA3, EGR1, RELA, STAT1, and STAT3)
(Figure 7f). Together, we identified 10 transcription factors that are involved in the regulation of the
three different types of supplemented diets, MCI and AD (PPARG, EGR1, CREB1, ELK1, YY1, GATA2,
GATA3, STAT1, RELA, and STAT3).
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4. Discussion

4.1. Regulation of Gene Expression by Components of a Mediterranean Diet

In this study, we identified several differentially expressed genes that are shared between the
various diets. The main finding is that the transcriptional repressor NFIL3, also known as E4 binding
protein 4 E4BP4, was downregulated in all three supplemented Mediterranean diets. NFIL3 can regulate
the expression of several cytokines and is involved in the development of immune cells [63]. In addition,
NFIL3 is an important regulator of the circadian clock, which acts by repressing the expression of PER1
and PER2 [64]. Interestingly, the expression of NFIL3 is regulated by nutrients. Indeed, the expression
of NFIL3 is activated by insulin and feeding, whereas fasting decreases its expression [65]. NFIL3 can
repress the expression of FGF21, a protein with anti-diabetic, and triglyceride-lowering properties [65].
In intestinal epithelial cells, NFIL3 has been shown to regulate lipid storage and body composition in
mice [66]. NFIL3 also regulates the signaling processes involved in heart functions [67], and, in the
brain, NFIL3 blocks neuronal regeneration by competing with the transcription factor CREB [68].
Decreasing expression of NFIL3 using siRNAs induced neurite outgrowth in a rat neuronal model [68].

IL8 is downregulated in diets supplemented with olive oil and nuts. IL8 is a key mediator of
inflammation. This cytokine functions as a chemoattractant allowing target cells, such as neutrophils,
to migrate towards a site of infection. Interestingly, IL8 is one of the immunological signatures of
excess body weight [69,70]. IL8 might play a role in some obesity-related metabolic complications [69].
Adherence to a Mediterranean diet was shown to reduce the plasma levels of IL8 and to delay atheroma
plaque development [71]. Wine, consumed in moderate quantity, could also decrease the level of IL8.
Different varieties of grapes, as well as their phenolic compounds, have been shown to reduce IL8
levels [72].

The serine-threonine kinase STK17B, also known as Death-Associated Protein Kinase-Related
2 (DRAK2), is downregulated in both diets rich in olive and nuts. Free fatty acid (FFA) increases
the expression of STK17B, which participates in the apoptosis of islet β-cells [73]. STK17B has been
proposed as a novel target in the treatment of diabetes. Indeed, knockdown of STK17B by siRNA
attenuated FFA-induced islet β cells apoptosis [73]. In addition, STK17B upregulation was observed
by pro-inflammatory cytokines such as IL-1β, and TNF-α. The downregulation of STK17B was able to
prevent the inflammatory-induced cell death of insulinoma cells [74]. The chemical inhibition of STK17B
has been proposed as a potential diabetes treatment [75]. Together, these studies suggested that the
downregulation of STK17B could be involved in some of the health benefits of the Mediterranean diet.

SERPINB2, also known as plasminogen Activator Inhibitor 2 (PAI2), is downregulated in both
diets rich in olive and nuts. The coagulation factor SERPINB2 inactivates the tissue plasminogen
activator and urokinase. The role of SERPINB2 in diets is largely unknown. It has been shown that, in
mice fed a high-fat diet, SERPINB2 promotes adipose tissue development [76]. Moreover, it has been
shown that SERPINB2 expression is decreased in a methionine-supplemented diet [77].

RGS1, a regulator of the G-protein superfamily, is downregulated in both diets rich in nuts and
omega-3. Polymorphic variants in RGS1 have been linked to chronic inflammatory diseases such as
celiac disease, multiple sclerosis, and type I diabetes [78–80]. RGS1 was upregulated in the epididymal
white adipose tissue of high-fat diet-fed mice [81]. In addition, RGS1 expression was upregulated in
both obese adipose tissue and atherosclerotic aortae models [82]. RGS1 was upregulated in both PBMC
and brain samples from Alzheimer’s disease patients [83]. Altogether, whereas RGS1 is upregulated in
different diseases, its expression is decreased with Mediterranean diets.

4.2. Gene Expression Regulation by Transcription Factors and miRNA in Mediterranean Diets

Performing a gene-transcription factor interaction network, we identified 10 transcription factors
that might regulate the genes differentially expressed in Mediterranean diets. The transcription factor
CREB1 is increased by listroside, a purified olive secoirodoid derivative [84]. It has been proposed
that listroside could ameliorate the mitochondrial function in an Alzheimer’s disease cell model [84].
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In addition, CREB1 is proposed as an early biomarker candidate for obesity-induced pathophysiological
changes in the colon [85]. PPARG is considered a key regulator of lipid metabolism [86]. It has been
shown that a polymorphism in PPARG was associated with the effect of diet on the health of the
individual [87]. Hydroxytyrosol, a component of olive oil, was shown to downregulate STAT3 in
K562 cells [88]. Polyphenol extract from olive oil has also been shown to inhibit STAT3 in a model of
rheumatoid arthritis [89]. Polymorphism in the STAT3 gene might interact with higher saturated fat
intake and increases the risk of abdominal obesity [90].

MicroRNAs are crucial in the regulation of gene expression and have been implicated in several
diseases including metabolic disorders and insulin resistance (reviewed in [91]). We also performed a
network analysis to reveal the microRNAs involved in the regulation of the differentially expressed
genes by the supplemented diets and observed three shared microRNAs (miR-17-5p, miR-355-5p,
and miR-93-5p). MiR-17-5p is involved in angiogenesis, proliferation, apoptosis, and autophagy [92,93],
and it plays a role in several cancers, including hepatocellular carcinoma, osteosarcoma, leukemia,
lung, gastric, colorectal, prostate, and breast cancer [93]. MiR-17-5p levels increase after high-fat
diet consumption and activate adipogenic differentiation [94]. Interestingly, the plant polyphenol
curcumin decreases miR-17-5p levels and inhibits adipogenesis [94]. However, another study on retinal
inflammation indicated that high-fat diets for 8 weeks induced obesity and insulin resistance, as well
as, decreased miR-17-5p [95]. Endoplasmic reticulum stress was proposed to trigger the reduction
of miR-17-5p [95]. MiR17-5p reduces inflammation and lipid accumulation in an atherosclerosis
model [96]. Finally, a role for miR-17-5p in aging has been proposed [97]. Surprisingly, whereas several
miRNAs are decreased in aging brains, an increase in miR-17-5p levels was observed [98]. However,
in neurodegenerative diseases such as Alzheimer’s disease, miR-17-5p expression is inhibited and
this may be responsible for an increase in APP protein levels [99]. Flavonoids are components of
Mediterranean diets that inhibit oxidative stress and neuroinflammation. MiR-355-5p was one of the
miRNAs potentially regulated after exposure to flavonoids [100]. In a dietary methionine restriction
mouse model, miR-355-5p was elevated in the bone marrow and might be involved in osteoblast
differentiation and function [101]. Finally, an increase of miR-355-5p was observed in white adipose
tissue of ob/ob mice and mice on a high-fat diet [102]. Altogether, these studies indicate that miR-355-5p
might be involved in the network of genes differentially regulated by the Mediterranean diet and,
consequently, in the cellular effect of this diet. Little is known about the impact of diets on miR93-5p;
however, its expression increases in coronary artery disease patients, suggesting the potential use of
this miRNA as a diagnostic marker [103].

4.3. Mediterranean Diets and Disease Association

Schizophrenia was identified as one of the six diseases associated with olive-, nuts-,
and omega-3-rich diets. Schizophrenia patients have a shorter lifespan due to metabolic and
cardiovascular disease and often practice unhealthy dietary habits [104–106]. Improving the diet
of Schizophrenic patients could be very beneficial [107]. For example, eating a Mediterranean diet
improved cardiovascular risks in Schizophrenic patients [108]. In addition, the omega-3 fatty acid
supplement was beneficial for Schizophrenic patients by improving their psychopathology, reducing
tardive dyskinesia, and attenuating the risk of conversion to psychosis in patients [109–111].

We also observed that rheumatoid arthritis is associated with all three types of supplements used
in this study. Compared to a Western diet, eating a Mediterranean diet reduces inflammatory activity,
improves physical function, and vitality [112]. In a rat model of rheumatoid arthritis, the gavage
of hydroxytyrosol, a typical virgin olive oil phenolic compound, decreased both acute and chronic
inflammation [113]. Rheumatoid arthritis patients consume less monounsaturated fatty acids than
healthy individuals [114]. Monounsaturated fatty acids are a component of the Mediterranean diet,
and, therefore, it may be beneficial for these patients [114]. Although several trials and systemic
reviews show that a Mediterranean diet might improve the patient’s condition, further clinical studies
are necessary to recommend the use of this diet as an adjunct therapy to standard treatment [115–117].
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An inverse correlation between the consumption of a Mediterranean diet and cancer risk has been
proposed for several neoplasms, including breast and prostate [118–121]. However, recent meta-analyses
suggested that further investigations are needed for a better assessment [122,123]. Moreover, it is interesting
to note that, in addition to possibly decreasing the risk of cancer development, the Mediterranean diet
may improve the quality of life of a cancer survivor [124,125].

4.4. Limitations

This comparison of gene expression using diets with different supplements associated with
Mediterranean diets is based on publicly available microarray data, and, therefore, several limitations
should be considered. For example, the sample size could influence the power of the analysis.
Moreover, the studies were performed at different sites, following different protocols, and these
differences might also influence the results. The present study was performed using the statistical
criteria described in the methods section with the datasets that were available at the time of the analysis.
The gene expression data were curated using the database BSCE. The differential expression of genes
at the lower end of the thresholds was applied (1.2 FC, p < 0.05) in order to produce a larger set
of genes for the initial analysis. These criteria may produce a higher likelihood of false positives.
Alternatively, future studies could use more stringent thresholds initially to reduce the number of
false positives. It is also important to note that datasets are updated routinely and thus analysis of the
data with newer datasets may yield different results. In addition, the results may be influenced by
the participant themselves. Their genetics, age, sex and disease risk status, as well as their lifestyle,
can influence gene expression. To improve the power of this gene expression comparison, we had to
combine data from individuals who had different characteristics (Table 1). Future studies with many
more participants will be needed to determine if the Mediterranean diet influences gene regulation
differently in young and aging populations, males and females, and in healthy participants and those
with a high risk of cardiovascular disease. In addition, it would be interesting to analyze the effect
of Mediterranean diet on populations of individuals with different health conditions such as cancer,
dementia, or metabolic disorders to determine if there is a benefit. Finally, whereas the individual
component of the Mediterranean diet was used for this study, it would be interesting to determine the
effect of the full Mediterranean diet and to determine if a synergistic effect of the component would
be beneficial.

5. Conclusions

Comparing gene expression profiles, we determined that NFIL3, IL8, STK17B, SERPINB2, and RGS
were differentially expressed by supplementation of different components of the Mediterranean diets.
These genes were associated with infection and inflammation. The Mediterranean differentiated
genes were regulated by several key transcription factors (HNF4A, IRF1, REST, CTCF, and SREBF2)
and miRNA (miR-17-5p, miR-335-5p, miR-93-5p). Finally, we determined several diseases for which
the Mediterranean diet could be beneficial (schizophrenia, several neoplasms, rheumatoid arthritis,
and dementia).
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