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Abstract

Intrinsically disordered proteins (IDPs) are important functional proteins, and their deregulation 

are linked to numerous human diseases including cancers. Understanding how disease-associated 

mutations or drug molecules can perturb the sequence-disordered ensemble-function-disease 

relationship of IDPs remains challenging, because it requires detailed characterization of the 

heterogeneous structural ensembles of IDPs. In this work, we combine the latest atomistic force 

field a99SB-disp, enhanced sampling technique replica exchange with solute tempering, and GPU-

accelerated molecular dynamics simulations to investigate how four cancer-associated mutations, 

K24N, N29K/N30D, D49Y, and W53G, and binding of an anti-cancer molecule, epigallocatechin 

gallate (EGCG), modulate the disordered ensemble of the transactivation domain (TAD) of tumor 

suppressor p53. Through extensive sampling, in excess of 1.0 μs per replica, well-converged 

structural ensembles of wild-type and mutant p53-TAD as well as WT p53-TAD in the presence of 

EGCG were generated. The results reveal that mutants could induce local structural changes and 

affect secondary structural properties. Interestingly, both EGCG binding and N29K/N30D could 

also induce long-range structural reorganizations and lead to more compact structures that could 

shield key binding sites of p53-TAD regulators. Further analysis reveals that the effects of EGCG 

binding are mainly achieved through nonspecific interactions. These observations are generally 

consistent with on-going NMR studies and binding assays. Our studies suggest that induced 

conformational collapse of IDPs may be a general mechanism for shielding functional sites, thus 

inhibiting recognition of their targets. The current study also demonstrates that atomistic 

simulations provide a viable approach for studying the sequence-disordered ensemble-function-

disease relationships of IDPs and developing new drug design strategies targeting regulatory IDPs.
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1. Introduction

As key components of cellular signaling and regulatory networks, intrinsically disordered 

proteins (IDPs) do not have stable structures under physiological conditions and deviate 

from the traditional protein structure-function paradigm1–10. Sequence analysis have shown 

that IDPs are highly prevalent in biology11, suggesting that intrinsic disorder provides major 

advantages in supporting related functions. Many IDPs have been shown to interact with 

multiple targets, often working as signaling hubs in protein interaction networks5, 7–8, 11–13. 

Mutation of IDPs or altered IDP abundance are frequently associated with human diseases, 

including cancers, neurodegenerative diseases, cardiovascular disorders, and 

diabetes11, 13–16. Nearly one fourth of disease mutations could be mapped to disordered 

regions15, 17, and many of them may alter the residual structure level of IDPs15. Therefore, 

there is a strong need to understand the molecular mechanisms of how IDPs carry out 

various biological functions and contribute to various diseases. A persisting bottleneck, 

however, is the challenge of detailed characterization of the structural and dynamic 

properties of disordered protein states. The highly dynamic conformations of IDPs do not 

lend themselves to traditional experimental characterizations, which are geared toward 

determining well-defined structures of folded proteins18–24. Several approaches have also 

been described to generate models of the disordered ensembles using experimental data from 

nuclear magnetic resonance (NMR) spectroscopy, small angle X-ray scattering, and others.
25–30 However, a key challenge is that experimentally measured ensemble averages are 

generally insufficient to define the heterogeneous ensemble by themselves. The 

underdetermined nature renders the resulting ensembles prone to inevitable biases in the 

model generation protocol.20 Instead, physics-based molecular dynamics (MD) simulations 

have a crucial and unique role to play in understanding IDPs. It can generate structural 

ensembles with atomistic details, given highly accurate force fields and adequate sampling 

of relevant conformational space. When properly validated using experimental data, the 

simulated ensembles could provide the molecular details required for establishing the 

physical basis on how intrinsic conformational disorder mediates protein functions and how 

such functional mechanisms fail in human diseases.

In this work, we focus on the intrinsically disordered N-terminal transactivation domain 

(TAD) of tumor suppressor p53, one of the most frequently mutated proteins in cancers31–32. 

The stability and activity of p53 are tightly regulated by interactions with other proteins, 

such as the E3 ubiquitin ligase MDM2 and transcriptional coactivator CBP/p30033. These 

interactions are mediated by p53-TAD, which contains two functional sites, AD1 and AD2, 

for specific recognition of target proteins (see Figure 1). In unstressed cells, the level of p53 

remains low, since it binds tightly to the E3 ubiquitin ligase MDM2 through TAD and 

becomes polyubiquitinated and degraded34–35. Under genotoxic stress, p53 becomes 

phosphorylated at multiple sites in TAD (Figure 1), which reduces binding affinity to 

MDM2 and enhanced binding affinity to CBP, thus stabilizing and activating p5336–40. The 

underlying mechanisms of how phosphorylation and cancer-associated mutations modulate 

p53 interactions with these key regulators remains unclear. Importantly, many of these 

phosphorylation and mutation sites are not located at the known binding interfaces (AD1 

and AD2) identified in known structures of p53-TAD complexes41–44. Therefore, 
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modulation of binding affinities by phosphorylation at many sites cannot be explained by 

disruption of inter-molecular interaction itself. Instead, the unbound structural ensemble of 

p53-TAD is likely poised to respond to various cellular signals, including phosphorylation 

and mutations, which can shield key binding sites and affect the entropic and enthalpic costs 

of binding. As such, the unbound state of p53-TAD can provide a central conduit that 

integrates various cellular signals to regulate the activity of p53. Indeed, it has been shown 

that modulating the helicity of p53-TAD alone can have important consequences on binding 

and potentially activation in cells.45 Along this line, detailed characterization of the unbound 

ensemble is critical to understanding the sequence-disordered ensemble-function-disease 

relationship of p53.

Recent advances in developing more accurate protein force fields and enhanced sampling 

techniques have paved the way for using atomistic simulations to study IDPs of biological 

and biomedical importance23, 46. We have critically examined the ability of several latest 

force fields for describing both local and long-range structural features of wild-type (WT) 

p53-TAD47. In comparison with a wide array of experimental observables, including NMR 

chemical shifts, paramagnetic relaxation enhancement (PRE) effects and single-molecule 

and time resolved FRET measurements, we found that the force field a99SB-disp48 in 

particular could accurately describe virtually all key structural features of WT p53-TAD, 

including overall dimension, secondary structural properties and transient long-range contact 

formation. a99SB-disp has also been shown to reliably model many other folded proteins 

and disordered proteins and peptides48, thus providing a solid base for us to integrate 

atomistic simulation and biophysical experiment to further investigate how cancer-associated 

mutations and ligand binding may modulate the disordered ensemble of p53-TAD to perturb 

its interactions with key regulators and biological activities.

Here, we combined the highly accurate atomistic force field a99SB-disp48, enhanced 

sampling technique replica exchange with solute tempering (REST2)49–50, and GPU-

accelerated MD simulations to investigate how four cancer-associated mutations, K24N, 

N29K/N30D, D49Y, and W53G, and binding of an anti-cancer drug, epigallocatechin gallate 

(EGCG) (Fig. 1), may modulate the disordered ensemble of p53-TAD. Combination of 

enhanced sampling and GPU acceleration proves effective in overcoming the computational 

demand of sufficient sampling of the disordered conformational space. The effects of 

cancer-associated mutations and EGCG binding were examined at multiple levels, including 

the overall dimension, secondary structures and conformational distributions, and compared 

with on-going NMR and binding studies.

2. Methods

2.1 Simulation details

The 61-residue p53-TAD domain (MEEPQ SDPSV EPPLS QETFS DLWKL LPENN 

VLSPL PSQAM DDLML SPDDI EQWFT EDPGP D) and its four cancer-associated 

mutants, K24N, N29K/N30D, D49Y, and W53G, were studied in this work. Each peptide 

was capped with an acetyl group at the N-terminus and N-methyl amide at the C-terminus. 

The a99SB-disp force field48 was used in all simulations. To study the effects of an anti-

cancer drug EGCG, another system was constructed with one WT p53-TAD and 10 EGCG 
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molecules simulated together, where EGCG was modelled using the general AMBER force 

field51. For each WT and mutant p53-TAD, we performed two independent REST2 

simulations starting from contrasting structures, either highly helical or fully extended 

extracted from our previous simulations of p53-TAD52. This allows us to critically evaluate 

simulation convergence, because well converged ensembles should be independent of the 

starting conformation. In the case of EGCG molecules interacting with WT p53-TAD, two 

independent REST2 simulations were also performed, but the starting structures were 

centroids of top 16 most populated clusters derived from previous clustering analysis of WT 

p53-TAD47, with 10 EGCG molecules randomly inserted into the simulation box. The 

protein was solvated using ~24,000 water molecules in a truncated octahedron box, whose 

volume was ~710 nm3. Counter ions (14 Na+ ions in all systems, except for 15 Na+ in K24N 

and 13 Na+ in D49Y) was included to neutralize the system.

GROMACS 201853–54 patched with PLUMED 2.3.055–57 was used to carry out all REST2 

simulations. Initial conformations were energy minimized to remove any steric clashes. The 

system was then equilibrated at 298 K for 1 ns under constant temperature (NVT) 

conditions, followed by 1 ns constant temperature and constant pressure (NPT) simulation. 

All production runs were carried out at 298 K under NVT conditions. Short-range 

nonbonded interactions were truncated at 1.2 nm, and long-range electrostatic interactions 

were calculated using the Particle Mesh Ewald (PME) method58. LINCS algorithm59 was 

applied to constrain lengths of all bonds involving hydrogen atoms. The MD time step was 2 

fs. In the subsequent REST2 simulations, 16 replicas were used with the effective 

temperatures of protein spaced exponentially between 298 K and 500 K. The higher 

effective temperature of protein facilitates its conformational transitions, which can be 

achieved by reducing potential energies. Specifically, we scaled the solute-solute and solute-

solvent interactions by λ and λ, respectively, with λ ranging from 1.0 to 0.6. Exchange 

between replicas was attempted every 2 ps, and the average acceptance ratio was 

approximately 0.25. Trajectories were saved every 2 ps. All simulations lasted for at least 1 

μs/replica. The total aggregated REST2 MD time was 192 μs, making this one of the most 

extensive explicit solvent simulations of p53-TAD.

2.2 Analysis

The simulated ensembles were derived only from unbiased replicas of λ = 1.0, with the first 

300 ns trajectories of each simulation discarded to remove the initial equilibration phase. All 

analyses were conducted using the GROMACS toolset53–54 unless otherwise specified.

3. Results and Discussion

3.1 Assessment of simulation convergence

Achieving a sufficient level of convergence is critical for examining how the disordered 

ensembles respond to mutations and/or ligand binding. In this work, the simulation 

convergence was examined by comparing the structural ensembles obtained from two 

independent runs (see Methods for details). As illustrated in Figure 2 and Figure 3, key 

structural features of p53-TAD, including the chain dimension, measured by radius of 

gyration Rg, and secondary structural properties, are quite consistent between two 
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independent runs, suggesting that these simulations are reasonably well converged. We note 

that substantially differences persist between results from control and folding simulations, 

which reflects the highly challenging nature of generating extremely well converged 

disordered ensembles. This is an important limitation that will prevent one from reliably 

detecting and resolve small perturbations of mutations and/or drug binding on IDPs. 

Nonetheless, it has been shown that a99SB-disp could accurately describe the key structural 

features of many biologically important IDPs48 and particularly p53-TAD47. These 

simulated ensembles thus should provide solid insights on how ligand binding and mutations 

may perturb the properties of unbound p53-TAD and modulate its interactions with key 

regulators.

3.2 Modulation of p53-TAD secondary structural properties

IDPs could interact with different cellular targets under different conditions, thus often 

working as signaling hubs in protein interaction networks5, 7–8, 11–13. The secondary 

structural properties of IDPs are considered an important determinant of signaling fidelity8. 

For example, missense disease mutations in IDPs alter residual secondary structure with 

higher probabilities than neutral evolutionary substitutes15, which implies that changing IDP 

secondary structural properties may have detrimental impacts on their functions. Transiently 

formed partial helices have also been observed in unbound p53-TAD61–62, and they are 

critical in mediating interactions with p53 regulators like MDM2 and CBP33. Therefore, we 

would like to examine how ligand binding and cancer-associated mutations may modulate 

p53-TAD secondary structural properties. As shown in Figure 3, p53-TAD in all cases 

contains residual helices in regions similar to those observed for the WT protein. This is 

generally consistent with ongoing NMR characterizations, where secondary chemical shift 

analysis has confirmed that mutations do not lead to significant changes in the secondary 

structural propensity (unpublished data, Prakash and Zolkiewski labs, Kansas State 

University). However, some subtle and local effects can also be observed. For example, 

N29K/N30D almost completely abolishes residual helicity at residues 25–35, while D49Y 

increases helical probability at residues 45–55. Since these regions often undergo disorder-

to-order transitions upon binding to target proteins, such changes in helical propensities of 

unbound p53-TAD may lead to changes in folding conformational entropy cost in the 

coupled binding and folding, thus affecting the binding affinities.

3.3 Modulation of p53-TAD overall chain dimension

The activity of p53 is tightly regulated by TAD’s interaction with MDM2 (the degradation 

pathway) and transcriptional coactivator CBP (activation pathway), forming ternary 

complexes that mediate p53 turnover37. Multi-site phosphorylation of TAD under prolonged 

genotoxic stress stabilizes p53 and activates its tumor suppressor function by weakening 

binding to MDM2 and at the same time enhancing binding to CBP36–40. Considering the 

cooperative nature of p53 regulation and existence of multiple binding and phosphorylation 

sites in p53-TAD, changes in overall chain dimension may directly affect the availability of 

binding sites, thus perturbing the balance between degradation and activation pathways. As 

summarized in Figure 2, cancer-associated mutations do not appear to dramatically change 

the overall dimension of p53-TAD, while EGCG binding leads to significant compaction of 

peptide chain. Such effect of EGCG binding is consistent with NMR studies, where 
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enhanced R2 relaxation rate have been observed across the entire sequence of p53-TAD in 

the presence of EGCG (unpublished data, Wang lab, Rensselaer Polytechnic Institute). 

Surface plasmon resonance competition assay has further confirmed that EGCG binding 

indeed could disrupt the interaction between p53 and its regulator, the E3 ubiquitin ligase 

MDM2, thus stabilizing p53 (unpublished data, Wang lab, Rensselaer Polytechnic Institute).

We further examined the local compactness of around AD1, which is a key recognition site, 

such as for with high binding affinity to MDM2 and moderate binding affinity to CBP 

domains37 (see Figure 1). As shown in Figure 4, the results reveal that N29K/N30D can 

induce significant compaction around AD1, with a greatly enhanced probability adopting 

highly compact structures with Rg ≤ 1.25 nm. This is consistent with NMR results showing 

that N29K/N30D is the only mutant among the four examined here that leads to significant 

increase in R2 relaxation rates (unpublished data, Prakash lab, Kansas State University). 

Importantly, preliminary binding assay has also revealed that the N29K/N30D double 

mutation abolishes binding of p53-TAD to MDM2 and CBP domains (unpublished data, 

Zolkiewski lab, Kansas State University). The conformational consequence of N29K/N30D 

appears to be similar to those caused by EGCG binding (Figure 4), and both lead to 

impairment of binding. These results support our hypothesis that increasing chain collapse 

may shield the functional sites of p53-TAD and perturb its interaction network.

3.4 Mutations and ligand binding dramatically shift p53-TAD conformational equilibria

The above analyses of peptide chain dimension and secondary structural properties suggest 

that these cancer-associated mutations and ligand binding could perturb the structural 

ensemble of unbound p53-TAD. To directly visualize the conformational space available to 

p53-TAD and changes induced by mutations and ligand binding, we have performed 

principal component analysis (PCA). For this, we combined conformational ensembles 

obtained from all simulations, and performed featurization on peptide backbone heavy atoms 

using the DRID algorithm, distribution of reciprocal of interatomic distances63, as 

implemented in MSMBuilder 3.6.164. PCA analysis in DRID space (Figure 5) reveals that 

WT p53-TAD and all four mutants could visit a very large conformational space, as 

expected for a highly dynamic and disordered peptide. On the other hand, the 

conformational space available to p53-TAD becomes highly restricted in the presence of 

EGCG molecules (Figure 5). As illustrated by the representative snapshots, the 

conformational ensemble of p53-TAD becomes dominated by compact conformers in the 

presence of EGCG. This is consistent with the previous observation that EGCG could lead to 

significant compaction of peptide chain (Figure 2). Interestingly, D49Y appears to slightly 

increase the conformational heterogeneity of p53-TAD, leading to a broader distribution 

(Figure 5).

We have further examined the impacts of four cancer-associated mutations and EGCG 

binding on the conformational space of residues 10 – 40, which includes AD1 subdomain of 

p53-TAD. As shown in Figure 6, PCA analysis of AD1 conformations in DRID space 

suggests that besides EGCG binding, the double mutation N29K/N30D could also 

significantly perturb the conformational equilibria of AD1 subdomain, which is consistent 

with above observation that both EGCG binding and N29K/N30D could induce more 
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compact AD1 structures (Figure 4). The apparent changes induced by D49Y cannot be 

faithfully evaluated, since AD1 conformations in this system are not well converged (e.g., 

Figure 4).

3.5 Nonspecific binding of EGCG to p53-TAD

To further understand how EGCG induces collapse of p53-TAD conformations, we 

computed the contact probabilities between EGCG molecules and each residue of the 

peptide. A contact is considered formed when the minimum heavy-atom distance between 

any EGCG molecule and the residue in p53-TAD is less than or equal to 0.42 nm. As shown 

in Figure 7, although the contact profiles are not well converged at the level of each 

individual residue, it’s obvious that most residues in the peptide sequence could form 

contacts with EGCG molecules with significant probabilities. This seems to suggest that 

EGCG binds to p53-TAD through highly nonspecific interactions. The EGCG molecule is 

rich in hydroxyl groups and aromatic rings, which could then form various hydrogen bonds 

and hydrophobic contacts with the peptide. We have also observed similar nonspecific 

interactions of small drug molecules that could induced local compaction of Aβ42, another 

IDP that is associated with Alzheimer’s diseases, to suppress oligomerization and potentially 

aggregation65. Taken together, these results suggest that nonspecific interaction may likely 

be a common and effective mode of action for small molecules targeting IDPs.

4. Conclusions

IDPs are important functional proteins in cellular signaling and regulation, and their 

mutations are often associated with human diseases. However, it remains challenging to 

determine the underlying molecular mechanisms of IDP function and design effective 

therapeutic strategies to target these IDPs. In this work, we combined the state-of-the-art 

atomistic force field a99SB-disp with enhanced sampling and GPU accelerated MD 

simulation to investigate how cancer-associated mutations and ligand binding may modulate 

the disordered ensemble of unbound p53-TAD. Through microsecond-timescale REST2 

enhanced sampling, all simulated ensembles are reasonably converged at levels of overall 

dimension and secondary structural propensities. The impacts of K24N and W53G on the 

unbound state of p53-TAD do not seem to be obvious according to this study. D49Y, on the 

other hand, has local effect on the intrinsic helical propensities of p53-TAD. Similar local 

effects have been observed in N29K/N30D as well, but this double mutation could also 

induce long-range effects, like the collapse of p53-TAD subdomain AD1. The impacts of 

EGCG binding seems to be the most dramatic, which bind nonspecifically to p53-TAD and 

lead to a highly restricted compact conformational ensemble. These observations are 

generally consistent with ongoing experimental studies, which have also confirmed the 

ability of N29K/N30D and EGCG binding to affect p53-TAD binding to key regulators. 

Structural insights derived from these simulations will lay the foundation for establishing the 

sequence-disordered ensemble-function-disease relationship of p53-TAD and shed light on 

new drug design strategies targeting p53 and other regulatory IDPs.

Our studies suggest that induced compaction may to be a general mechanism for shielding 

functional sites of IDPs to achieve inhibitory effects. This is consistent with previous studies 
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suggesting a key role of entropic modulation in IDP-drug interactions65–66. Furthermore, 

nonspecific interaction is likely a common and effective mode of action for small molecules 

targeting IDPs, which is in contrast to traditional drug design strategy relying on specific 

interactions between drug molecules and target proteins. Our study also demonstrates a 

viable approach that integrates physics-based atomistic simulation and biophysical 

experiments to unravel how the disordered ensemble of IDPs may be modulated by various 

cellular signals including mutations, post-translational modifications and ligand binding. We 

note that generating reliable structural ensembles of IDPs remains a formidable task, due to 

the sampling requirement and more importantly persisting limitations in atomistic force 

fields. It is thus imperative to examine the properties of the simulated ensembles across of a 

series of mutations and/or with and without the presence of drug molecules, such that 

systematic biases may be cancelled and reliable features identified.
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Figure 1. 
(A) Domain structure of p53, sequence of p53-TAD and its key interaction partners (blue 

ovals). Phosphorylation sites are colored in red and known cancer mutants are listed below 

the sequence. Mutants studied in this work are underlined. (B) Chemical structure of EGCG.
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Figure 2. 
Distributions of Rg of p53-TAD at 298 K calculated from two independent REST2 runs. The 

corresponding ensemble averaged values are indicated using vertical bars on the x-axis.
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Figure 3. 
Residual helicity profiles of p53-TAD at 298 K calculated from two independent REST2 

runs. Each run was equally divided into three portions. Secondary structure of each snapshot 

was calculated using the DSSP60 program, and probabilities of forming α-helix were 

reported here.
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Figure 4. 
Probability distributions of Rg of p53-TAD subdomain AD1 (residues 10 – 40) calculated 

from two independent simulations.
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Figure 5. 
Projection of simulated structural ensembles of p53-TAD onto the first two principal 

components. The heat maps indicate probability distributions derived from simulation 

statistics. Values in the parenthesis are percentages of variance in each direction. Ten 

representative snapshots are shown for each of the two selected states, with the color 

changing from red at the N-terminus to blue at the C-terminus.
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Figure 6. 
Projection of simulated structural ensembles of p53-TAD subdomain AD1 (residues 10 – 40) 

onto the first two principal components. The heat maps indicate probability distributions 

derived from simulation statistics. Values in the parenthesis are percentages of variance in 

each direction. Ten representative snapshots are shown for each of the two selected states, 

with the color changing from red at the N-terminus to blue at the C-terminus.
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Figure 7. 
Probability of forming contacts between each residue of p53-TAD and any EGCG molecule 

calculated from two independent simulations.
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