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The peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily. These
receptors are also ligand-dependent transcription factors responsible for the regulation of cellular events that range from glucose
and lipid homeostases to cell differentiation and apoptosis. The importance of these receptors in lipid homeostasis and energy
balance is well established. In addition to these metabolic and anti-inflammatory properties, emerging evidence indicates that
PPARs can function as either tumor suppressors or accelerators, suggesting that these receptors are potential candidates as drug
targets for cancer prevention and treatment. However, conflicting results have emerged regarding the role of PPARs on colon
carcinogenesis. Therefore, further investigation is warranted prior to considering modulation of PPARs as an efficacious therapy
for colorectal cancer chemoprevention and treatment.
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1. INTRODUCTION

Understanding the biology of intestinal epithelial cells may
reveal the molecular pathogenesis of a number of digestive
diseases. One such disease, colorectal cancer (CRC), leads to
significant cancer-related morbidity and mortality in most
industrialized countries. Initiation and progression of CRC
are a complex process that results from the loss of the normal
regulatory pathways that govern a balance between epithelial
cell proliferation and death. For example, alterations in
multiple pathways such as Wnt/APC, COX-2, and Ras are
known to play major roles in CRC progression. The standard
treatment for advanced malignancies has improved greatly
over the past decade but is still not satisfactory. Therefore,
significant effort has been exerted to identify novel drug
targets for both the prevention and treatment of this disease.
One group of compounds found to decrease the risk of
colorectal cancer includes nonsteroidal anti-inflammatory
drugs (NSAIDs), which target the cyclooxygenase enzymes
(COX-1 and COX-2). However, prolonged use of high doses
of these inhibitors (except for aspirin) is associated with
unacceptable cardiovascular side effects [1–3]. Thus, it is now

crucial to develop more effective chemopreventive agents
with minimal toxicity and maximum benefit.

Dietary fat intake is an environmental factor that is
associated with some human diseases such as diabetes,
obesity, and dyslipidemias. Some nuclear hormone receptors
play a central role in regulating nutrient metabolism and
energy homeostasis. These nuclear receptors are activated
by natural ligands, including fatty acids and cholesterol
metabolites. Among these receptors, special attention has
been focused on the members of the peroxisome proliferator-
activated receptors (PPARs) family, which were initially
identified as mediators of the peroxisome proliferators in
the early 1990s [4]. PPARs play a central role in regulating
the storage and catabolism of dietary fats via complex
metabolic pathways, including fatty acid oxidation and
lipogenesis [5]. To date, three mammalian PPARs have
been identified and are referred to as PPARα (NR1C1),
PPARδ/β (NR1C2), and PPARγ (NR1C3). Each PPAR iso-
type displays a tissue-selective expression pattern. PPARα
and PPARγ are predominantly present in the liver and
adipose tissue, respectively, while PPARδ expresses in diverse
tissues [6]. In common with other members of the type II
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steroid hormone receptor superfamily, PPARs are ligand-
dependent transcription factors and form heterodimers
with another obligate nuclear receptors, such as retinoid X
receptors (RXRs) [4, 7, 8]. Each PPAR-RXR heterodimer
binds to the peroxisome proliferator responsive element
(PPRE) located in the promoter region of responsive
genes.

It is well established that modulation of PPAR activity
maintains cellular and whole-body glucose and lipid home-
ostases. Hence, great efforts have been made to develop drugs
targeting these receptors. For example, PPARγ synthetic
agonists, rosiglitazone and pioglitazone, are antidiabetic
agents which suppress insulin resistance in adipose tissue.
The antiatherosclerotic and hypolipidemic agents including
fenofibrate and gemfibrozil are PPARα synthetic agonists
that induce hepatic lipid uptake and catabolism. Genetic
and pharmacological studies have also revealed important
roles of PPARδ in regulating lipid metabolism and energy
homeostasis. Genetic studies indicate that overexpression of
constitutively active PPARδ in mouse adipose tissue reduced
hyperlipidemia, steatosis, and obesity induced by either
genetics or a high-fat diet. In contrast, PPARδ null mice
treated in similar fashion exhibited an obese phenotype
[9]. Pharmacologic studies demonstrate that the PPARδ
selective-agonist (GW501516) attenuated weight gain and
insulin resistance in mice fed with high-fat diets [10]
and increased HDL-C while lowering tryglyceride levels
and insulin in obese rhesus monkeys [11]. Furthermore,
preclinical studies revealed that PPARδ agonists diminished
metabolic derangements and obesity through increasing
lipid combustion in skeletal muscle [12]. These results
suggest that PPARδ agonists are potential drugs for use
in the treatment of dyslipidemias, obesity, and insulin
resistance. Therefore, the PPARδ agonist (GW501516) is
currently in phase III clinical trials to evaluate its use for
treatment of patients with hyperlipidemias and obesity.
However, recent studies showing that some agonists of
PPARs promote carcinogenesis in animal models have raised
concerns about using these agonists for the treatment of
metabolic diseases. For example, long-term administration
of a PPARα agonist induces the development of hepato-
carcinomas in mice but not in PPARα null animals, con-
clusively demonstrating that PPARα mediates these effects
in promoting liver cancer [13]. Furthermore, the PPARδ
agonist (GW501516) accelerates intestinal polyp growth
in ApcMin/+ mice [14, 15]. These results raise concerns
for developing this class of agents for human use and
support the rationale for developing PPARδ antagonists as
chemopreventive agents.

2. PPARs AND COLORECTAL CANCER

Significant effort has been concentrated on deducing the
role of PPARs in CRC and other cancers. A large body of
evidence indicates that PPARγ serves as a tumor suppressor.
Contradictory evidences suggest that PPARδ can act as either
a tumor suppressor or tumor promoter. A few evidences
support a role of PPARα in CRC.

2.1. PPARα

Although the tumor-promoting effects of PPARα in hep-
atocarcinomas are clear, less is known about the role of
PPARα in human tumors. Generally, activation of PPARα by
exogenous agonists causes inhibition of tumor cell growth
in cell lines derived from CRC, melanoma, and glial brain
tumors [16–18]. There is no evidence showing that PPARα
expression is elevated in human cancers.

2.2. PPARγ

The prominent role of PPARγ in regulating cellular differ-
entiation prompted a great effort to investigate the function
of PPARγ in cancer field. While PPARγ is elevated in CRC
[19], suggesting that this receptor may contribute to tumor
biology, studies of PPARγ mutation in CRC from humans,
animals, and cultured cells produced controversial results.
One study showed that 8% of primary human colorectal
tumors had a loss of function mutation in one allele of
the PPARγ gene [20]. Recent data revealed that a Pro12Ala
(P12A) polymorphism in the PPARγ gene is associated with
increased risk of CRC [21, 22]. These results suggest a
putative role for this receptor as a tumor suppressor. In
contrast, another study showed that mutant PPARγ gene has
not been detected in human colon tumor samples and CRC
cell lines, suggesting that PPARγ mutations in human CRC is
a rare event [23].

In vitro studies show that activation of PPARγ results
in growth arrest of colon carcinoma cells through induc-
tion of cell-cycle arrest or/and apoptosis. Several potential
downstream targets of PPARγ for mediating antitumor
effects of PPARγ have been identified in various cancer
cell types. Activation of PPARγ negatively regulatescell cycle
progression by modulating a number of cell cycle regulators:
(1) inhibiting E2F activity in transformed adipogenic cells
[24], (2) Rb hyperphosphorylation in vascular smooth
muscle cells and pituitary adenoma cells [25, 26], (3) cyclin
D1 expression in Ras-transformed intestinal epithelial cells,
pancreatic, or breast cancer cells [27–29], and (4) inducing
CDK inhibitor expression such as p18, p21, and p27 in
hepatoma cells [30]. Activation of PPARγ has also been
reported to inhibit tumor cell growth by upregulation of
the transcriptional repressor TSC22 in colon cancer cells
[31] and GADD153 in nonsmall-cell lung carcinoma cells
[32]. PPARγ agonists induce apoptosis by induction of
PTEN expression in pancreatic, breast, and colon cancer cells
[33] and inhibition of NFκB and Bcl-2 expression in colon
cancer cells [34]. Moreover, PPARγ exhibits antiangiogenic
effects by inhibiting VEGF expression in tumor cells and
VEGF receptors in endothelial cells [35, 36]. It has also
been reported that PPARγ agonists suppress tumor cell
invasion in colon and breast cancer cells by downregulation
of matrix metalloproteinase-7 (MMP-7) and induction of
MMP inhibitors [37, 38]. In addition, the ability of PPARγ
to suppress tumor growth is also through inhibiting APC/β-
catenin and COX-2/PGE2 signaling pathways, which are
pivotally involved in colon carcinogenesis [39–42].
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However, the role of PPARγ in colorectal cancer progres-
sion is controversial because there are conflicting results in
mouse models of colon cancer. Although PPARγ agonists
inhibit colorectal carcinogenesis in xenograft models and
in the azoxymethane (AOM)-induced colon cancer model
[43, 44], these drugs are reported to have both tumor-
promoting and tumor-inhibiting effects in a mouse model
for familial adenomatous polyposis, the ApcMin/+ mouse. It
has been reported that administration of PPARγ agonists
significantly increases the number of colon adenomas in
the ApcMin/+ mice [45–47] and even in wild-type C57BL/6
mice [48]. However, other studies show that treatment of 2
different Apc-mutant models (ApcMin/+ and ApcΔ1309) with
the PPARγ agonist pioglitazone resulted in reduction in the
number of both small and large intestinal polyps in a dose-
dependent manner [49, 50]. These paradoxical observations
appear to have been resolved by genetic studies showing
that the heterozygous disruption of PPARγ is sufficient
to increase tumor number in AOM-treated mice and that
intestinal-specific PPARγ knockout promotes tumor growth
in ApcMin/+ mice [39, 51]. These genetic evidences support
the hypothesis that PPARγ serves as tumor suppressor in
colorectal cancer. One possible explanation for the differ-
ences in phenotype caused by pharmaceutical versus genetic
manipulation of PPARγ in mouse models may be due to
the PPARγ-independent effect of the agonist drugs, drug
doses used, and animal models employed. This controversial
extends beyond CRC. For example, data are conflicting from
different animal models of breast cancer as well. PPARγ
agonist suppresses NMU-induced mammary carcinomas
[52]. However, overexpression of a constitutively active form
of PPARγ accelerates mammary gland tumor development in
MMTV-PyV transgenic mice [53].

2.3. PPARδ

PPARδ has been shown to play an important role in
embryo implantation [54], atherogenic inflammation [55],
regulating cell survival in the kidney following hypertonic
stress [56], and skin following wound injury [57, 58].
The role of PPARδ in colorectal carcinogenesis is more
controversial than that of PPARγ. The first evidence linking
the PPARδ to carcinogenesis actually emerged from studies
on gastrointestinal cancer. PPARδ is elevated in most human
colorectal cancers and in tumors arising in the ApcMin/+

mice, and AOM-treated rats [59, 60]. Importantly, the
PPARδ proteins are accumulated only in human CRC cells
with highly malignant morphology [61]. Downregulation
of PPARδ is correlated with antitumor effects of dietary
fish oil/pectin in rats treated with radiation and AOM [62].
PPARδ was identified as a direct transcriptional target of
APC/β-catenin/Tcf pathway and as a repression target of
NSAIDs [59, 63]. A case-control study in a large popula-
tion showed that the protective effect of NSAIDs against
colorectal adenomas was reported to be modulated by a
polymorphism in the PPARδ gene [64]. PPARδ expression
and activity are also induced by oncogenic K-ras [65].
In addition, COX-2-derived PGl2 directly transactivates
PPARδ [60], and COX-2-derived PGE2 indirectly induces

PPARδ activation in CRC, hepatocellular carcinoma, and
cholangiocarcinoma cells [66–68]. These studies indicate
that PPARδ is a focal point of cross-talk between these
signaling pathways.

In a murine xenograft cancer model, the disruption of
both PPARδ alleles in human HCT-116 colon carcinoma
cells decreased tumorigenicity, suggesting that activation of
PPARδ promotes tumor growth [69]. However, PPARδ has
been reported to have both tumor-promoting and tumor-
inhibiting effects based on conflicting data obtained from
mouse models of colon cancer. For example, activation of
PPARδ by a selective synthetic PPARδ agonist (GW501516)
or a PPARδ endogenous activator (PGE2) accelerates intesti-
nal adenoma growth in ApcMin/+ mice by promoting tumor
cell survival [14, 66]. A subsequent genetic study showed that
deletion of PPARδ attenuates both small and large intestinal
adenoma growth, and PPARδ is required for the tumor-
promoting effects of PPARδ ligand (GW501516) and PGE2

in ApcMin/+ mice [15, 66]. Another study showed that loss
of PPARδ in ApcMin/+ mice significantly reduced growth
of tumors larger than a diameter of 2 mm, even though
PPARδ deficiency did not affect overall tumor incidence
[70]. In contrast to these reports suggesting that PPARδ
serves as tumor accelerator, recent conflicting reports show
that PPARδ deficiency enhances polyp growth in ApcMin/+

and AOM-treated mice in the absence of exogenous PPARδ
stimulation [71, 72]. Moreover, a PPARδ ligand (GW0742)
inhibits colon carcinogenesis in AOM-treated mice but
promotes small intestinal polyp growth in ApcMin/+ mice
[73].

One explanation for these disparate results may be due
to differences in the genetic background of ApcMin/+ mice,
animal breeding, or possibly to differences in the specific
targeting strategy employed to delete PPARδ. For example,
the average number of polyps in 13-week old ApcMin/+

mice on a C57BL/6 genetic background is about 50, while
the polyp number in ApcMin/+ mice on a mixed-genetic-
background (C57BL/6 × 129/SV) is about 120. Our results
also show that the breeding strategy affects the number and
size of polyps in mice even on the same genetic background.
Mice generated by breeding female PPARδ−/−/ApcMin/+ with
male PPARδ−/−/Apc+/+ exhibit increased adenoma number
with a larger average size than those obtained by breeding
female PPARδ−/−/Apc+/+ with male PPARδ−/−/ApcMin/+.
Finally, the PPARδ null mice we studied were obtained
from Beatrice Desvergne in Switzerland. These mice were
generated by deleting exons 4 and 5 encoding the DNA
binding domain [74], while Peters group generated the
PPARδ knockout mice by inserting a neomycin resistance
cassette into the last exon (exon 8) [75]. It has been
suggested that the strategy employed to disrupt PPARδ by the
Peters group might have led to a hypomorphic allele, which
retains some aporeceptor function, thus making it difficult to
correctly interpret their results. Indeed, conflicting results in
the context of embryonic lethality have also been observed
from these two PPARδ mutant mouse strains [74, 75]. To
further clarify the role of PPARδ in colorectal tumorigenesis,
it is important to investigate the role of PPARδ in animal
models that are dependent on activation of other oncogenes
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Figure 1: A potential model for PPARs regulating colorectal tumor
growth.

or disruption of other tumor suppressors to verify our
conclusions that activation of PPARδ is proneoplastic.

Studies in other types of cancer also support the
hypothesis that PPARδ serves as a tumor accelerator. A
selective PPARδ agonist (GW501516) has been shown
to stimulate proliferation of human breast, prostate, and
hepatocellular carcinoma cells [68, 76, 77]. In a xenograft
model, blocking PPARδ activation reduced ovarian tumor
growth [78]. PPARδ knockout mice exhibited significant
impaired angiogenesis and tumor growth after these mice
were injected s.c. with mouse Lewis lung carcinoma and
melanoma cells [79]. In a mouse mammary tumor model,
treatment with the PPARδ agonist (GW501516) accelerated
tumor formation, while a PPARγ agonist (GW7845) delayed
tumor growth [80]. Taken together, the role of PPARδ in
cancer biology remains unclear.

3. SUMMARY

Despite extensive research on both PPARγ and PPARδ in
CRC, the role of these receptors remains highly controversial
in this disease. Emerging evidence demonstrates that cooper-
ative interactions between Wnt, COX-2, and PPARs signaling
pathways can initiate cellular transformation and promote
progression of colorectal cancer. These studies provide
support for evaluating the efficacy of PPARδ antagonists for
cancer prevention and/or treatment. We propose a potential
working model as a useful starting point for future studies
(see Figure 1).
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