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Abstract

Background: Mitochondria are ancient endosymbiotic organelles crucial to eukaryotic
growth and metabolism. The mammalian mitochondrial genome encodes for 13
mitochondrial proteins, and the remaining mitochondrial proteins are encoded by the
nuclear genome. Little is known about how coordination between the expression of
the two sets of genes is achieved.

Results: Correlation analysis of RNA-seq expression data from large publicly available
datasets is a common method to leverage genetic diversity to infer gene co-expression
modules. Here we use this method to investigate nuclear-mitochondrial gene
expression coordination. We identify a pitfall in correlation analysis that results from the
large variation in the proportion of transcripts from the mitochondrial genome in RNA-
seq data. Commonly used normalisation techniques based on total read counts, such
as FPKM or TPM, produce artefactual negative correlations between mitochondrial- and
nuclear-encoded transcripts. This also results in artefactual correlations between pairs of
nuclear-encoded genes, with important consequences for inferring co-expression
modules beyond mitochondria. We show that these effects can be overcome by
normalizing using the median-ratio normalisation (MRN) or trimmed mean of M values
(TMM) methods. Using these normalisations, we find only weak and inconsistent
correlations between mitochondrial and nuclear-encoded mitochondrial genes in the
majority of healthy human tissues from the GTEx database.

Conclusions: We show that a subset of healthy tissues with high expression of NF-κB
show significant coordination, suggesting a role for NF-κB in ensuring balanced
expression between mitochondrial and nuclear genes. Contrastingly, most cancer types
show robust coordination of nuclear and mitochondrial OXPHOS gene expression,
identifying this as a feature of gene regulation in cancer.
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Background
Human mtDNA contains 24 genes encoding for ribosomal and transfer RNAs and 13

protein-coding genes, all of which are involved in oxidative phosphorylation (hereafter

mtOXPHOS genes). Mammalian mitochondrial genome-encoded RNAs (mtRNAs) are

polyadenylated [1] and are thus robustly represented in polyA+ selected RNA-seq li-

braries, comprising a large fraction of total reads in many human tissues [2]. However,

the majority of proteins with mitochondrial localisation are encoded by the nuclear

genome, including over 100 genes involved in oxidative phosphorylation (nuOXPHOS

genes) in humans.

The mtOXPHOS and nuOXPHOS genes are obligate partners in catalysis within pro-

tein complexes with a defined stoichiometry; therefore, their expression should be co-

ordinated in order to maximise cell growth and function. Mitochondrial-to-nuclear

communication is known as ‘retrograde signalling’. While retrograde signalling has

been characterised in the case of overt mitochondrial function dysfunction or depletion

in yeast [3], Caenorhabditis elegans [4], Drosophila [5] and mammals [6, 7], little is

known about whether retrograde signalling functions to co-ordinate mtOXPHOS and

nuOXPHOS gene expression under normal physiological conditions.

One possible method to investigate the coordination between mtRNA and nuclear

mitochondrial gene expression is to examine the correlation between mtOXPHOS and

nuOXPHOS expression across different individuals to investigate whether differences in

mtOXPHOS levels are linked to differences in nuOXPHOS expression. Large datasets

such as the Genotype Expression Project (GTEx) and the Cancer Genome Atlas (TCGA)

are ideal for this purpose, enabling examination of normal and diseased tissues, respect-

ively. Previous approaches utilising this method to examine GTEx data have suggested

that there is a weak positive correlation on average between mtOXPHOS and nuOX-

PHOS expression, indicating coregulation. Surprisingly, however, many tissues were

found to have strongly negative correlations [8]. This question has yet to be directly inves-

tigated using TCGA data, but the expression of nuclear-encoded mitochondrial genes was

shown to correlate, weakly, with predicted mtDNA copy number [9].

An important consideration in the use of gene expression datasets across a number

of different samples drawn from different individuals is how to normalize the data to

enable comparison across genes and samples. Currently, the dominant technology for

high-throughput quantification of gene expression is sequencing RNA (RNA-seq) [10].

The expression level of a gene is indicated by the number of independent sequencing

reads mapping to the gene, known as the read count [11]. However, read counts are

not comparable for genes within a sample, as longer transcripts accumulate more

mapped reads. Read counts are also not comparable for a given gene across samples,

due to potential differences in sequencing depth/library size and, crucially, library

composition.

A common normalisation method is RPKM (reads per kilobase of the transcript, per

million; also known as FPKM for fragments per kilobase of the transcript, per million)

for single- or paired-end sequencing, respectively [11]. This method normalizes read

counts by library size and gene length. However, the average FPKM still varies from

sample to sample, leading to the introduction of the similar TPM (transcripts per mil-

lion) normalisation [12]. The sum of TPM values across samples is invariant, and thus,

TPM is argued to be a better normalisation for the comparison of expression levels
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across samples [12, 13]. GTEx provides data as TPM, and TCGA provides data as

FPKM. Many researchers use data normalized in this way for correlation analysis [8,

14–18], sometimes aided by web-based database interrogation tools [19, 20]. However,

other normalisation methods have been proposed which aim to account for biases in li-

brary composition, in addition to sequencing depth. The median ratio normalisation

(MRN; also known as relative log expression—RLE) provides scaling factors for normal-

izing library read counts in a way that controls for library size and is insensitive to the

presence of a minority of highly expressed transcripts, thus controlling for library com-

position biases across samples [21]. The trimmed mean of M values (TMM) is another

algorithm which performs similarly [22]. An alternative normalisation, the upper quar-

tile (UQ) method, adjusts gene read counts by the library 75th percentile of non-zero

read counts rather than total read count, so as to exclude the influence of a minority of

highly expressed genes [23]. The MRN and TMM normalisation methods are employed

in differential expression analysis by the commonly used R packages DESeq2 and edgeR,

respectively, in which they are used in statistical models.

In this study, we set out to investigate the relationship between mtOXPHOS and

nuOXPHOS expression using GTEx and TCGA RNA-seq data, and establish the effects

that different RNA-seq normalisation methods may have on this analysis. Further, we

aimed to elucidate what might lie behind differences between healthy tissues and tu-

mours in mtOXPHOS-nuOXPHOS coordination.

Results
mtOXPHOS-nuOXPHOS gene expression appears anticorrelated using TPM normalisation

To examine the expression correlation between the mtOXPHOS and nuOXPHOS

genes, we downloaded RNA-seq data for 54 human tissues from the GTEx website,

normalized to TPM (version 8). We excluded tissues with fewer than 100 samples,

leaving 48 tissues remaining. We then applied a linear model to each gene to re-

gress out the influence of known confounders (age bracket, sex, cause of death and

ischemic time [24] interacting with tissue, as well as sequencing batch and individ-

ual donor), continuing downstream analysis with the resulting residuals. We down-

sampled to 100 samples per tissue to ensure equal representation across tissues.

To ensure that the correlations reflect differences among donors and not expres-

sion levels between tissues, we ranked the samples for each gene within each tis-

sue, to reflect the relative level of expression within the tissue-specific randomly-

sampled cohort of each gene within a sample. Finally, we determined the correl-

ation of the ranks of all pairs of genes using Spearman’s rank-correlation coeffi-

cient across the 4800 chosen samples. We repeated this process 100 times and

plotted the median value of each correlation coefficient.

Using this approach, expression of mtOXPHOS genes showed a high degree of posi-

tive correlation with each other (ρ = 0.657), as did nuOXPHOS genes (ρ = 0.521). How-

ever, mtOXPHOS and nuOXPHOS expression appeared to be strongly anticorrelated

(Fig. 1A; ρ = −0.376). As nuclear and mitochondrial gene expression have been re-

ported to correlate positively across tissues [2], this result was unexpected and so we

set out to investigate the source of the apparent anticorrelation in more depth.
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Fig. 1 (See legend on next page.)
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Variance in mtRNA expression within tissues drives negative mito-nuclear correlations

The average total proportion of transcripts derived from mitochondrial DNA ranges

from more than 50% in the heart and most brain tissues to just 4.8% of transcripts in

whole blood samples (Fig. 1B; Additional File 1: Fig S1a for all tissues). The variance

was also high within tissues, with mtRNAs in the 861 heart (left ventricle) samples ran-

ging from 12.5 to 95.4% of total transcripts (Fig. 1B). As the total of TPM values for

each sample must sum to 1 million, a sample with 95.4% mtRNAs leaves fewer than

50,000 transcripts to be shared among the nuclear genome, while a sample with 12.5%

mtRNAs has ~875,000. We reasoned that the variation in total mtRNA proportion be-

tween donors might therefore dominate the variance in other genes, affecting correla-

tions between genes. Samples with high mtRNA levels will exhibit lower levels of all

nuclear genome-derived transcripts and vice-versa, which would result in a spurious

negative correlation between mtRNAs and nuclear-encoded RNAs.

For each tissue, we plotted the total percentage of mtRNAs against the median Spear-

man’s correlation of mtOXPHOS-nuOXPHOS gene pairs, using data for all available

samples within each tissue (Fig. 1C). We observed that the average mtRNA proportion

was anticorrelated to the average correlation between mtOXPHOS and nuOXPHOS

genes, such that high mtRNA proportions led to negative correlations between mtOX-

PHOS and nuOXPHOS (ρ = −0.85 , p < 4.33 × 10-15).

If this was a result of a technical artefact, we should observe the same pattern when

we consider the correlations of mtOXPHOS with randomly selected nuclear genes, in-

stead of the nuOXPHOS genes. Indeed, the median Spearman’s correlation of

mtOXPHOS-random nuclear gene pairs also showed a strong negative correlation with

total mtRNA percentage (Fig. 1D; (ρ = −0.87, p < 2.2 × 10-16). Thus, as tissue mtRNA

levels climb, their variance between samples increasingly comes to dominate the vari-

ance of other genes, leading to artefactual negative correlations.

(See figure on previous page.)
Fig. 1 High mitochondrial reads in GTEx libraries lead to artefactual correlations between genes using TPM
normalisation, obscuring biological relationships. A Heatmap showing median Spearman’s correlation for mtOXPHOS
and nuOXPHOS gene expression using TPM normalisation in 48 GTEx tissues combined (100 samples from each tissue,
sampled 100 times). The order of genes for this and all mtOXPHOS-nuOXPHOS heatmaps throughout the paper is
determined by the hierarchical clustering of correlations from Fig. 2A. B Violin plot showing total expression from
mtDNA-encoded genes in samples from a selection of 15 healthy human tissues from the GTEx database. C Scatterplot
shows median Spearman’s correlation (ρ) of mtOXPHOS-nuOXPHOS gene pairs within 48 GTEx tissues vs tissue mean
of mtRNA levels as a percentage of total transcripts. Shown for data normalized by TPM, TPM excluding mitochondrial
reads for normalizing nuclear genes, UQ, MRN and TMMmethods. Error bars indicate IQR. Blue line shows linear
regression with R2 and ρ noted within panel. D Scatterplot shows mean over 100 iterations of the tissue median ρ of
mtOXPHOS with 126 random expressed nuclear genes vs tissue mean of mtRNA levels as a percentage of total
transcripts. Shown for data normalized by TPM, TPM excluding mitochondrial reads for normalising nuclear genes, UQ,
MRN and TMMmethods. 95% confidence interval error bars are smaller than the plotted symbols. The blue line shows
linear regression with R2 and ρ noted within panel. Green circles for MRN and TMM highlight unusually high
correlations in the testis. E Scatterplot shows mean over 100 iterations of the tissue median ρ within 100 random
expressed nuclear genes vs tissue mean of mtRNA levels as a percentage of total transcripts. Shown for data normalized
by TPM, TPM excluding mitochondrial reads for normalising nuclear genes, UQ, MRN and TMM methods. 95%
confidence interval error bars are smaller than the plotted symbols. The blue line shows linear regression with R2 and ρ
noted within panel. Red circles for TPM highlight the whole blood and pancreas; green circles for MRN and TMM
highlight unusually high correlations in the testis. F Boxplot shows mean values for 10 samples of the median ρ of 100
random expressed nuclear genes with TPM normalisation or TPM excluding the read counts for PRSS1 & PRSS2
(pancreas) or HBA1, HBA2, HBB and HBD (whole blood). G Scatterplot shows Spearman’s ρ within tissues for two genes,
INSR and TSPAN5, for TPM normalized data and MRN normalized data. Colour indicates the tissue mean mtRNA level (%
total transcripts). Tissues that fall in the top left quadrant are those in which the negative correlation observed using
MRN normalisation has switched sign and appears to be positive using TPM normalisation
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mtRNA expression variance drives positive correlations between random nuclear

transcripts

If sample mtRNA level is a dominant factor in the variance of nuclear gene TPM

values, then we reasoned that this might drive artefactual correlations between random

nuclear genes which are functionally unrelated to the mitochondria. As the mean tissue

mtRNA level rises, variance in mtRNA levels between samples would become an in-

creasingly dominant factor in the variance of nuclear gene TPMs, which are all artifi-

cially depressed or inflated in each sample according to mtRNA level.

Supporting this hypothesis, we found that the average correlation for TPM values of

pairs of randomly expressed nuclear genes was positive and increased with mtRNA

transcript levels (Fig. 1E). The average correlation of random nuclear genes for a tissue

was predicted by not only the tissue mean mtRNA level but also the coefficient of vari-

ation (CV) of mtRNA levels (linear model, p(mtRNA levels) = 1.37 × 10-8 p(CV) = 3.46

× 10-5, p(mtRNA levels * CV) = 0.0136). Stronger artefactual correlations are therefore

produced when analysing tissues with higher and more variable mtRNA levels.

We noticed two outlying tissues with low mtRNA levels and high correlations be-

tween random nuclear genes (Fig. 1E; red circles)—the whole blood and pancreas. We

looked at the highest expressing genes in these tissues to see if these correlations might

be driven by different library composition biases. In whole blood samples, just 4 genes

encoding haemoglobin subunits—HBB, HBA2, HBA1 and HBD—make up 40.8% of

transcripts on average. Meanwhile in pancreas samples, there is high expression of

many digestive enzymes, with two paralogous genes encoding serine proteases—PRSS1

and PRSS2—comprising an average of 18.4% of transcripts. Removing the read counts

for these genes from whole blood and pancreas samples before computing sample sums

for TPM normalisation led to large and significant decreases in correlation coefficients

between random genes (Fig. 1F). This shows that the effect we observe is not specific

for mitochondrial transcripts but rather applies generally for any transcripts that tend

to comprise a high proportion of the total RNA-seq read count.

The inflation of correlations using TPM normalisation is a problem for all tissue

datasets, but much more so for those with a high mean mtRNA level (or other strong

library composition bias), leading in some cases to gene pairs with true negative corre-

lations switching sign and giving the appearance of being significantly and robustly co-

expressed (Fig. 1G).

Notably, all these analyses were entirely consistent when using Pearson’s correlations

instead of Spearman’s rank correlation coefficient (Additional File 1: Fig S1). Similar

artefactual correlations between mito-nuclear gene pairs or pairs of random nuclear

genes were also found using data subjected to FPKM normalisation instead of TPM

(Additional File 1: Fig S2).

Normalizing libraries with MRN or TMM scaling factors abrogates correlation artefacts

We sought to determine if alternative normalisation methods could mitigate these arte-

facts during correlation analysis. We tried four alternative normalisations. First, we

tried removing the mtRNA reads when computing sample read sums for the purposes

of normalising nuclear gene expression as with TPM (mtRNAs were still normalized by

the total sample sums). We also tried UQ normalisation, which is already applied to
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some pre-normalized expression datasets available from TCGA. Lastly, we employed

MRN and TMM algorithms, which use different procedures to arrive at a scaling factor

for library normalisation that is designed to be insensitive to library composition bias.

When computing TPM values for nuclear genes with mitochondrial reads excluded,

we find that the strong negative correlation of tissue mitochondrial level with average

mtOXPHOS-nuOXPHOS was successfully mitigated (Fig. 1C). Indeed, there was no re-

lationship between tissue mtRNA level with average mtOXPHOS gene-random nuclear

correlations (Fig. 1D) or average correlations between random nuclear genes (Fig. 1E).

However, in the tissues with different sources of library composition biases such as the

whole blood or pancreas, average correlations of random nuclear genes were still

strongly positive, while they remained at least slightly positive in all tissues. Excluding

mitochondrial reads alone therefore fails to account for all library composition biases.

UQ normalisation performed similarly to TPM with mitochondrial reads excluded

with respect to artefacts driven by high mitochondrial transcript levels (Fig. 1C–E) and

abrogated the strong positive correlation between random nuclear genes driven by al-

ternative library composition biases in whole blood and pancreas samples (Fig. 1E).

However, UQ normalisation resulted in a stronger inflation of correlations between

random nuclear genes in most tissues (Fig. 1E) and therefore cannot be recommended

for performing correlation analyses.

MRN and TMM normalisations abrogated the artefactual correlations of mitochon-

drial genes with random nuclear genes (Fig. 1D) and between random nuclear genes

(Fig. 1E). We conclude that scaling read counts by library scaling factors produced by

MRN or TMM algorithms is a simple and appropriate way of normalising RNA-seq

data before correlation analysis. We note that the processed data used for QTL analysis

available for download on the GTEx portal are already TMM-normalized and thus may

be appropriate for use in correlation analysis (note however that in further processing

these values have been corrected for biological as well as technical variance and so may

not be suitable for all analyses).

We note that one tissue, the testis (green circles, Fig. 1D, E; Additional File 1: Fig

S1C, D), displayed positive correlations between mtOXPHOS genes and random nu-

clear genes and also between pairs of random nuclear genes when using MRN and

TMM normalisations. The distribution of correlations across random nuclear gene

pairs differed in width across tissues (Additional File: Fig S3A); in some tissues, more

extreme positive and negative correlations were more common, which was apparent

when inspecting correlation heatmaps between random nuclear genes (Additional File:

Fig S3B). Nonetheless, the distributions were centred around 0 and were unimodal for

all tissues but the testis (Additional File: Fig S3A), which displayed a significantly bi-

modal distribution of correlations between gene pairs for 7/100 samples of 100 random

nuclear genes (Hartigan’s dip test; FDR < 0.05; no significant samples in any of the 47

other tissues). This unusual property may be related to the unique transcriptional com-

plexity of the testis, with over 80% of protein-coding genes expressed [25].

Correlations of mtOXPHOS-nuOXPHOS genes are weak and inconsistent across tissues

Having established appropriate normalisations for the data, we returned to the question

of the correlation of the mtOXPHOS and nuOXPHOS genes. We normalized GTEx
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read counts using MRN or TMM across all tissues and regressed out the influence of

confounding variables as above. We sampled 100 samples from each tissue, ranked the

residuals for each gene within the tissue sample and aggregated these ranks across tis-

sues before computing the Spearman’s correlation across 4800 samples. We repeated

this process 100 times and plotted the median coefficient of the 100 iterations for each

gene pair (Fig. 2A).

After MRN or TMM normalisation, the overall correlation between mtOXPHOS and

nuOXPHOS genes between samples in the GTEx data was very weak. The mean me-

dian Spearman’s correlation for mtOXPHOS-nuOXPHOS gene pairs was only slightly

higher than the mean median Spearman’s correlation between mtOXPHOS genes and

random nuclear genes (0.0166 vs 0.00488 for MRN normalisation; −0.0120 vs −0.0315

for TMM normalisation; Fig. 2B). Although significant (t test p = 3.13 × 10-18 for

MRN; 5.58 × 10-30 for TMM), only a tiny fraction of the variation in nuOXPHOS gene

expression could be explained by mtOXPHOS gene expression. This suggests that des-

pite broad coordination of mtOXPHOS-nuOXPHOS expression across tissues (Fig. 2C)

[2], there is limited coordination that can be detected between the nuclear and mito-

chondrial gene expression programs within tissues. Notably, this contrasts to very clear

coregulation within the mtOXPHOS (MRN, ρ = 0.859; TMM, ρ = 0.847) and nuOX-

PHOS (MRN, ρ = 0.351; TMM, ρ = 0.407) gene sets.

With MRN normalized data, we observed that the relationship between mtOXPHOS

and nuOXPHOS gene expression in individual tissues is inconsistent (Fig. 2D, Add-

itional File 1: Table S1, Additional File 2). 23/48 tissues exhibited a median

mtOXPHOS-nuOXPHOS correlation that was not significantly different from 0 (boot-

strap p value, FDR > 0.05). 20/48 tissues exhibited a median mtOXPHOS-nuOXPHOS

correlation significantly higher from 0, the most striking being the small intestine (ter-

minal ileum), breast (mammary tissue), stomach and skeletal muscle all with median

correlations between 0.30 and 0.32 (FDR < 0.003; Fig. 2E). 5/48 tissues displayed a cor-

relation significantly lower than 0; the left ventricle of the heart, liver, hippocampus

(brain), caudate (basal ganglia of the brain) and adrenal gland, with medians −0.361,

−0.204, −0.206, −0.177 (all FDR < 0.003) and −0.0606 (FDR = 0.0349), respectively (Fig.

2E). Although the testis has a positive mtOXPHOS-nuOXPHOS correlation, it was sig-

nificantly lower than that observed between mtOXPHOS and random nuclear genes

(Additional File 1: Fig S4A & Table S1), which was unusually high as noted above.

Similar results were obtained starting with a TMM normalisation, albeit with 17 signifi-

cantly positive tissues and 9 significantly negative tissues (Additional File 1: Fig S5).

We were concerned that additional confounders, namely genetic ancestry and the cell

type composition of different samples, might influence these conclusions. We repeated

the single-tissue mtOXPHOS-nuOXPHOS expression correlation analysis with MRN

normalisation as above, but additionally regressing out the top 5 genotyping principal

components and estimated sample cell type compositions [26]. For the 27 tissues for

which these estimates were available, the resulting median mtOXPHOS-nuOXPHOS

correlations were largely unchanged and spread across a similar range (Additional File

1: Fig S6). While some tissues gain or lose significant correlations, no tissues signifi-

cantly switch signs and the estimates from one analysis are not significantly different

from the estimates in the other in any case. As such, we conclude that these additional

confounding variables do not strongly influence our analysis.
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Fig. 2 MRN normalisation reveals weak and inconsistent correlations between mtOXPHOS and nuOXPHOS within
tissues. A Heatmap showing median Spearman’s ρ for mtOXPHOS and nuOXPHOS gene expression using MRN
normalisation in 48 GTEx tissues combined (100 samples from each tissue, sampled 100 times). B Boxplot showing
median Spearman’s ρ for 100 iterations of mtOXPHOS genes with random nuclear genes or mtOXPHOS with
nuOXPHOS genes for 48 GTEx tissues combined. C Scatterplot showing mean MRN-normalized pseudocounts for
mtOXPHOS and nuOXPHOS genes in 48 GTEx tissues. The 13 brain tissues display a high mtOXPHOS count and are
shown in red. D Observed median Spearman’s ρ between mtOXPHOS and nuOXPHOS genes for 48 GTEx tissues.
Error bars show 95% bootstrap confidence interval. Blue bars indicate observed correlation significantly lower than 0
(bootstrap empirical p value, FDR-adjusted < 0.05), red bars indicate observed correlation significantly higher than 0
and grey bars indicate FDR > 0.05. Z statistics and p values for observed value relative to mtOXPHOS with random
nuclear genes are shown in Additional File 1:Table S1. E Heatmap showing Spearman’s ρ for mtOXPHOS and
nuOXPHOS genes for 8 GTEx tissues showing clear positive or negative correlations
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Positive correlation between mtOXPHOS and nuOXPHOS gene expression in cancer

We next explored whether any relationship between mtOXPHOS and nuOXPHOS

gene expression exists in cancer samples. We downloaded data from TCGA (harmo-

nised) for 31 cancer types with more than 50 primary tumour samples.

We observed substantial variation in mtRNA expression across and within cancer types

(Fig. 3B). As we observed for GTEx data, normalisation of TCGA gene expression values

using TPM led to spurious correlations, both between mtOXPHOS-nuOXPHOS genes

and random nuclear gene pairs (Fig. 3A, C–E). We then proceeded to apply MRN nor-

malisation and repeated the analysis. These normalisation methods corrected the spurious

correlations between mtOXPHOS genes and random nuclear genes and between pairs of

random nuclear genes (Fig. 3A, D, E).

Nevertheless, with MRN normalisation 21 of 31 individual cancer types tested displayed

a significantly positive correlation (FDR < 0.05), with none displaying a significant negative

correlation (Fig. 4C, Additional File 1: Table S2; Additional File 3). Median correlations of

mtOXPHOS gene expression with random nuclear genes were around 0 for all cancer

types (Additional File 1: Fig S4B). Analysing across cancer types, the mean median Spear-

man’s correlation for mtOXPHOS-nuOXPHOS genes was 0.110, while for mtOXPHOS

with random nuclear genes it was −0.0147 (Fig. 4A, b; t test p value = 5.53 × 10-158). In

contrast, the mean median correlations within the mtOXPHOS genes (ρ = 0.781) and

nuOXPHOS genes (ρ = 0.314) were similar to those observed in the GTEx (ρ = 0.859 &

0.351, respectively). Interestingly, the degree of mtOXPHOS-nuOXPHOS correlation

within a cancer type increased with mean mtRNA expression level (Fig. 3C), in a reversal

of the apparent relationship when using TPM-normalized data.

We tested whether sample cell type composition strongly influences these results, as

we had for the GTEx data. We corrected MRN-normalized gene expression values with

cancer type-specific molecular subtypes computed by DeClust, a gene expression de-

convolution tool [27], for 13 TCGA cancer types. We found that although one cancer

type (UCEC) lost its significant positive correlation, the results were similar to those

found without molecular subtype classification (Additional File 1: Fig S7). We conclude

that sample cell type composition is not a major confounder of our analysis.

We analysed 14 cancer types for which data for at least 10 normal adjacent tissue sam-

ples were available and identified the matched tumour counterpart samples. Using MRN-

normalized data, we then computed the correlations between mtOXPHOS and nuOX-

PHOS genes within the normal and tumour samples to compare them (Fig. 4D). Direct

comparison between tissues for the two databases is not possible, as healthy tissue sam-

ples from the TCGA are taken from an area in close proximity to the tumour and do not

necessarily derive from the same tissue within the organ as their apparent GTEx counter-

parts. That said, we note that the mtOXPHOS-nuOXPHOS correlations we observed for

normal samples in TCGA were broadly congruous with those observed in the GTEx tis-

sues, in particular the strong positive correlations in TCGA adjacent normal tissue sam-

ples from the stomach (STAD) and breast (BRCA). We found that the mtOXPHOS-

nuOXPHOS correlation tended to be positive in diseased samples in those tissues in

which the normal cohort displayed a negative or nonsignificant correlation, such as in thy-

roid cancer (Fig. 4E; Additional Files 4-5). Overall, 13/14 matched tumour samples dis-

played a significantly positive mtOXPHOS-nuOXPHOS correlation, compared to 7/14 of

the matched normal tissue samples (p = 0.0329, Fisher’s exact test).
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NF-κB expression is correlated with OXPHOS coordination in healthy tissues

To understand what might underlie the variation in mtOXPHOS-nuOXPHOS correlation

across tissues, we correlated the mean expression of all genes within each GTEx tissue to

the observed tissue OXPHOS correlation. We selected the 1000 genes whose expression

across tissues (tissue mean expression) most strongly positively correlated to

mtOXPHOS-nuOXPHOS correlation across 48 tissues (the top 1000, Spearman’s ρ >

0.487, FDR < 0.0210) and performed a gene ontology and KEGG pathway enrichment

Fig. 3 Artefactual correlations are also driven by mtRNA expression in the Cancer Genome Atlas (TCGA) database. A
Heatmap showing median Spearman’s correlation for mtOXPHOS and nuOXPHOS gene expression using TPM
normalisation in 31 TCGA cancer types combined (50 samples from each tissue, sampled 100 times). B Violin plot
showing total expression from mtDNA-encoded genes in samples from 33 cancer types from TCGA database. C
Scatterplot shows median Spearman’s correlation (ρ) of mtOXPHOS-nuOXPHOS gene pairs within 31 TCGA cancer
types vs cancer type mean of mtRNA expression as a percentage of total transcripts. Shown for data normalized by
TPM, TPM excluding mitochondrial reads for normalising nuclear genes, UQ, MRN and TMM methods. Error bars
indicate IQR. Blue line shows linear regression with R2 noted within panel. D Scatterplot shows mean over 100
iterations of the cancer type median ρ of mtOXPHOS with 126 random expressed nuclear genes vs cancer type mean
of mtRNA expression as a percentage of total transcripts. Shown for data normalized by TPM, TPM excluding
mitochondrial reads for normalising nuclear genes, UQ, MRN and TMM methods. 95% confidence interval error bars
are smaller than the plotted symbols. The blue line shows linear regression with R2 and ρ noted within panel. E
Scatterplot shows mean over 100 iterations of the cancer type median ρ within 100 random expressed nuclear genes
vs cancer type mean of mtRNA expression as a percentage of total transcripts. Shown for data normalized by TPM,
TPM excluding mitochondrial reads for normalising nuclear genes, UQ, MRN and TMM methods. 95% confidence
interval error bars are smaller than the plotted symbols. The blue line shows linear regression with R2 and ρ noted
within panel. Abbreviations for cancer type are given in Additional File 1: Table S5
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analysis; we did the same for the 1000 most anticorrelated genes (the bottom 1000, Spear-

man’s ρ < −0.443, FDR < 0.0325). While the anticorrelated genes yielded no significantly

enriched terms, the positively correlated genes were strongly enriched for terms related to

Fig. 4 Most cancer types display a positive correlation between mtOXPHOS and nuOXPHOS expression. A Heatmap
showing median Spearman’s ρ for mtOXPHOS and nuOXPHOS gene expression using MRN normalisation in 31 TCGA
cancer types combined (50 samples from each tissue, sampled 100 times). B Boxplot showing median Spearman’s ρ for
100 iterations of mtOXPHOS genes with random nuclear genes or mtOXPHOS with nuOXPHOS genes for 31 TCGA cancer
types combined. C Observed median Spearman’s ρ between mtOXPHOS and nuOXPHOS genes for 31 TCGA cancer
types. Error bars show bootstrap 95% confidence interval. The blue bar indicates observed correlation significantly lower 0
(bootstrap empirical p value, FDR-adjusted < 0.05), red bars indicate observed correlation significantly higher than 0 and
grey bars indicate FDR > 0.05. Z statistics and p values for observed value vs mtOXPHOS-random nuclear correlations are
shown in Additional File 1: Table S2. DMedian mtOXPHOS-nuOXPHOS ρwithin matched samples of tumour (purple) or
normal tissue (green) from TCGA projects. Error bars show bootstrapped standard error. EmtOXPHOS-nuOXPHOS
correlation heatmaps for thyroid cancer (TCGA) matched normal tissue samples (above) and tumour samples (below).
Abbreviations for cancer types are given in Additional File 1: Table S5
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immune function and B cell activation (Additional File 1: Fig S8A, B; Additional Files 6-

7). On closer inspection, we found that this was mostly due to a large number (221) of

immunoglobulin-encoding genes within the top 1000 genes. These immunoglobulin genes

represented all three major immunoglobulin clusters: IGH (107 genes), IGK (50) and IGL

(42), as well as IGH (15) and IGK (7) orphons located outside the main clusters. As a con-

trol, we performed the same analysis with the 1000 genes whose expression correlated

most positively to mtOXPHOS-random nuclear correlation across tissues; no enriched

terms were observed.

We used estimates of immune cell fraction for GTEx samples produced by GEDIT, a

gene expression deconvolution tool [28] to see if this was predictive of nuOXPHOS-

mtOXPHOS correlation. Immune cell fraction could explain little of the OXPHOS cor-

relation variance (R2 = 0.0199, p < 1.57 × 10-77) (Additional File 1: Fig S9A).

In addition to immune-related terms, there was an enrichment for terms that implied

a possible role for cellular proliferation, such as ribosome biogenesis and DNA replica-

tion. To assess this contribution to mtOXPHOS-nuOXPHOS correlation, we used the

expression data to infer a measure of active proliferation, the Proliferative Index (PI)

[29], for all GTEx samples. Despite a significant relationship, the PI explained a tiny

fraction of the variance across tissues in OXPHOS correlation (R2 = 0.00759, p < 1.22

× 10-30; Fig. 5B, Additional File 1: Fig S10B).

Another possibility was that immunoglobulin expression was driven by NF-κB, a pro-

tein complex present in almost all cell types that can drive immunoglobulin expression

in non-immune cells [30] and has been implicated in mitochondrial signalling to the

nucleus in mammals [31] and in mitochondrial gene regulation [32]. Three of the 5

NF-κB members (NFKB1, REL and RELB) were found in the top 1000 genes. Indeed,

there was a strong correlation between tissue NFKB1 expression level and total expres-

sion from IG genes (Additional File: Fig S9B-E). Together the expression of the 5 NF-

κB members explain much of the variance in mtOXPHOS-nuOXPHOS correlation,

with NFKB1 expression alone the most important contribution (Fig. 5A, Additional File

1: Fig S10B & Table S3). Sample NFKB1 expression alone explains 10.7% of variation in

OXPHOS coordination (p = 0.0306 compared to random nuclear genes).

Proliferation is negatively correlated to OXPHOS coordination in cancer

Having established the importance of NF-κB expression in OXPHOS coordination in

healthy tissues, we next tested whether NF-κB could play a similar role in cancer. How-

ever, we found only a weak, negative relationship between NFKB1 expression and

mtOXPHOS-nuOXPHOS correlation in the TCGA data (R2 = 0.0194, p < 1.34 × 10-43;

Fig. 5C, Additional File 1: Fig S10B).

We next correlated the mean expression of all genes within 31 TCGA cancer types to

the observed mtOXPHOS-nuOXPHOS correlation, before performing a gene ontology

enrichment analysis on the top and bottom 1000 genes (Spearman’s ρ > 0.467, FDR <

0.196 and ρ < −0.502, FDR < 0.160, respectively; Additional Files 8-9). Overall, there

was no overlap at all between the gene ontology terms that were positively or negatively

related to OXPHOS coordination in both GTEx and TCGA databases. For the TCGA,

the top 1000 genes yielded only 7 enriched terms, related to the lysosome and Golgi ap-

paratus. On the contrary, the 1000 most negatively correlated genes were associated
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with 220 significant terms, many associated with replication and mitosis (Additional

File 1: Fig S11). While control analyses using the top and bottom 1000 genes correlat-

ing to mtOXPHOS-random nuclear correlation did yield a few significantly enriched

Fig. 5 mtOXPHOS-nuOXPHOS coordination is correlated to NF-κB expression and cellular proliferation in the GTEx and
TCGA, respectively. AWithin-tissue mtOXPHOS-nuOXPHOS correlation against NFKB1 expression (MRN pseudocounts)
for GTEx tissues. Each violin represents the samples within a tissue. BWithin-tissue mtOXPHOS-nuOXPHOS correlation
against Proliferative Index for GTEx tissues. Each violin represents the samples within a tissue. CWithin-tissue
mtOXPHOS-nuOXPHOS correlation against NFKB1 expression (MRN pseudocounts) for TCGA cancer types. Each violin
represents the samples within a tissue. DWithin-tissue mtOXPHOS-nuOXPHOS correlation against Proliferative Index for
TCGA cancer types. Each violin represents the samples within a tissue. Dashed grey vertical line shows no correlation.
AU, arbitrary units. Also see Additional File 1: Fig S10 for nonparametric analysis
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terms (6 for top 1000, 30 for bottom 1000 over 4 gene set libraries), there was no over-

lap with terms enriched for genes correlating with mtOXPHOS-nuOXPHOS

correlation.

In agreement with the enrichment of proliferation-related terms in the bottom 1000

genes, we found a strong negative relationship between Proliferative Index and

mtOXPHOS-nuOXPHOS coordination (R2 = 0.279, p < 2.2 × 10-16; Fig. 5D; Additional

File 1: Fig S10B & Table S4), suggesting that variation in the rate of proliferation in

cancer might explain differences in OXPHOS coordination (see the “Discussion”

section).

Discussion
Here we investigated the coordination between the expression of mitochondrial and

nuclear transcripts, in particular the mtOXPHOS genes which comprise all 13 mito-

chondrially encoded protein-coding genes and their nuclear-encoded catalytic partners,

the nuOXPHOS genes. Using tens of thousands of RNA-seq samples across 48 healthy

human tissues from the GTEx database and 31 distinct cancer types from TCGA, we

examined the correlation of mtOXPHOS and nuOXPHOS expression to identify signs

of co-regulation. We found that most healthy tissues in the GTEx database showed lit-

tle correlation between mtOXPHOS and nuOXPHOS expression. In contrast, in TCGA

we find that cancers showed a clear tendency towards positive correlations between

mtOXPHOS and nuOXPHOS expression. Our results have implications for the analysis

of gene expression coordination as well as the potential for retrograde signalling to bal-

ance the nuclear and mitochondrial expression of genes with mitochondrial function.

Avoiding artefacts when analysing correlations between expressed genes

In the course of our investigation, we discovered that the apparent relationship between

mtOXPHOS and nuOXPHOS expression depends strongly on the choice of normalisa-

tion method used for RNA-seq data. We showed that this is due to the fact that

mtRNA levels, including mtOXPHOS genes, make up more than 50% of the total se-

quenced transcripts in some tissue or cancer types and show a very large range of vari-

ation across samples within a cohort. We showed that this leads to artefactually

negative correlations between mtOXPHOS and nuOXPHOS expression across samples

within a cohort when using TPM or FPKM normalisations. Importantly, we also show

that the effect of mtRNA expression variation between tissue samples leads to artefac-

tual positive correlations between TPM values for random nuclear-encoded genes unre-

lated to the mitochondria. These artefacts are more severe for tissues or cancers with

strong library composition biases, of which the most common is high levels of expres-

sion from mitochondrial DNA.

Because it allows direct comparison across samples, TPM is often considered to be a

superior normalisation to FPKM [12, 13]. However, as the total sum of TPM values is

invariant, the strength of the artefactual correlations introduced are actually greater

than those observed with FPKM normalisation.

It has previously been pointed out that library composition biases make comparison

of samples from different tissues problematic when using TPM or FPKM normalisation

[13, 22]. Here we have demonstrated that library composition biases make comparisons
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and correlations of TPM/FPKM values problematic even when the analysis is limited to

samples of the same tissue type.

These results have strong implications for any reported correlation analyses using ex-

pression values normalized by TPM or FPKM. As correlation coefficients between al-

most all pairs of nuclear genes are artificially inflated in almost every tissue, these

artefacts can obscure the true relationship between genes, with negatively correlated

gene pairs appearing to be strongly co-expressed. This also presents difficulties in un-

derstanding changes in the interactions of pairs of genes across tissues, as changes may

be simply due to different library composition biases in those tissues. Lastly, this adds

additional difficulties in interpretation of the already problematic [33] but frequently

observed practice of plotting TPM values of a favourite gene for each tissue from the

GTEx database side-by-side as a qualitative measure of tissue expression level, given

that a gene’s mean TPM value for a tissue will in large part be determined by the mean

mtRNA level of that tissue.

We demonstrate that scaling libraries using MRN or TMM algorithms is a simple

and effective way to account for these biases prior to correlation analysis. We strongly

dissuade researchers from using TPM or FPKM for gene expression correlation analysis

and recommend that researchers employ alternative scaling normalisations that ac-

count for library composition bias before embarking on correlation analyses.

Coordination between mitochondrial and nuclear gene expression

Our analysis using correct normalisation substantially updates our view of how gene

expression is coordinated between mitochondrial and nuclear genomes. The lack of

strong correlations between mtOXPHOS and nuOXPHOS gene expression in the ma-

jority of healthy tissues in the GTEx database implies that these genes are generally not

strongly co-ordinated by retrograde signalling pathways. The broad coordination

afforded by tissue-specific transcriptional programs [2] is likely sufficient for supporting

tissue function under normal physiological conditions. However, we found that the tis-

sue expression level of NF-κB genes is associated with the strength of coordination be-

tween mtOXPHOS and nuOXPHOS expression, supporting a role for this complex in

mito-nuclear communication as proposed previously [31]. The biological significance of

strong negative correlations, such as observed in the left ventricle of the heart and the

liver, remains unclear. However, we note that they tend to be observed in tissues with

very high expression levels from the mitochondrial genome.

It is clear from our analysis that the mechanisms by which apparent coordination be-

tween the mitochondrial and nuclear OXPHOS genes arises differ sharply between

healthy tissues and tumour cells. The positive correlation of mtOXPHOS and nuOX-

PHOS genes across samples within many cancer types does not necessarily imply that

retrograde signalling is active in cancers, as other differences between healthy tissues

and tumours could play a role. Both mtOXPHOS and nuOXPHOS gene expression are

often altered in cancers [34]. Positive correlations might result from selection within tu-

mours for clones with concordant OXPHOS expression, with this selection becoming

stronger with higher mtOXPHOS expression; this might explain the strong positive re-

lationship between mtOXPHOS-nuOXPHOS correlation and mtRNA levels among

TCGA cancer types.
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Intriguingly, however, we found that although cancers tend to exhibit positive

mtOXPHOS-nuOXPHOS correlation, the strength of this correlation in a particular

cancer type relates strongly to its inferred proliferation status, with stronger prolifera-

tion related to lower mtOXPHOS-nuOXPHOS correlation. This may be due to the

Warburg effect, in which metabolism in rapidly proliferating tumour cells is reported

to shift towards aerobic glycolysis, thereby bypassing the mitochondrial role in respir-

ation [35]. In the fastest proliferating cancer types, the importance of mitochondrial

respiration may therefore be reduced, leading to reduced selection within tumours for

concordant OXPHOS expression. Thus, although selection between cells within prolif-

erating tumours may act to produce a positive mtOXPHOS-nuOXPHOS correlation in

most cancers, this selection may be weakened and increasingly dominated by the War-

burg effect in the fastest proliferating cancers.

Conclusions
Understanding how coordination between mitochondrial and nuclear genes with

mitochondrial function is an important question in biology. Large-scale datasets

showing gene expression across humans, either in healthy tissues (GTEx) or cancer

(TCGA) represent attractive options to analyse this question. Here we provided a

robust methodology to normalize these data correctly so that correlations in gene

expression can be assessed. On the basis of this, we showed that the correlation

between mitochondrial and nuclear gene expression was weak in most tissues. Tis-

sues with higher correlations are associated with increased NF-κB subunit expres-

sion, implicating this pathway in nuclear-mitochondrial communication.

Contrastingly, we demonstrated that cancers have much stronger coordination be-

tween mitochondrial and nuclear gene expression, but that the fastest proliferating

cancers have a weaker correlation. These data highlight the complex, context-

specific control of mitochondrial and nuclear gene expression coordination and its

sensitivity to both external and intrinsic factors.

Methods
Raw data

RNA-Seq data were downloaded from the GTEx data portal for GTEx V8, apart from

data shown in Additional File 1: Fig S2 from GTEx V6p. Data were downloaded as nor-

malized TPM values (or FPKM values for GTEx V6p, later also converted to TPM) or

as raw counts. ‘Harmonised’ (hg38) RNA-seq data were downloaded for TCGA projects

using the ‘TCGAbiolinks’ package in R as normalized FPKM values or as raw counts.

For TCGA cancer type analyses, we only considered samples annotated as Primary

Tumours, except where we explicitly note that we perform analyses on adjacent normal

tissue samples.

We were mindful of the possibility of contamination of mitochondrial RNA reads by

the expression of nuclear integrations of mitochondrial DNA (NUMTs). Previous stud-

ies have established that NUMT contamination of mtDNA expression quantification in

RNAseq data is negligible for the GTEx [8] and TCGA [34] databases.

We restricted our analyses to GTEx tissues with at least 100 samples or TCGA can-

cer types with at least 50 Primary Tumour samples.
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mtOXPHOS and nuOXPHOS genes

The list of mtOXPHOS and nuOXPHOS genes was taken from [8] and can be found in

Additional File 10.

Normalisations

For TCGA data and GTEx V6p, TPM values were obtained by converting FPKM values

according to the following formula for gene i:

TPMi ¼ RPKMi

Total library RPKM
� 106

The MRN normalisation was performed using the ‘DESeq2’ package in R. Normalisa-

tions were applied both individually for each tissue or cancer type cohort and across all

samples within each database. Normalized pseudocounts were obtained by converting

raw counts data to a DESeqDataSet using the ‘DESeqDataSetFromMatrix()’ function, ap-

plying the ‘estimateSizeFactors()’ function to the resulting dds object, and then retrieving

the normalized pseudocounts with the function ‘counts()’ with ‘normalized = TRUE’.

The TMM and UQ normalisations were performed using the ‘edgeR’ package in R. Nor-

malisations were applied individually for each tissue or cancer type cohort. Raw counts

were converted into a DGEList object with the function ‘DGEList’. Normalisation factors

were returned using the function ‘calcNormFactors()’ with method set as either ‘TMM’ or

‘UQ’. Library scaling factors were then obtained by multiplying the resulting library sizes

by the resulting normalisation factors. All read counts for each library/sample were then

multiplied by 106 and divided by the scaling factor for that library.

TPM (nuclear only) values for nuclear-encoded genes were obtained by multiplying

raw read counts for nuclear genes by 106 and dividing by the sample sum of reads for

all genes excluding those borne on mitochondrial DNA. mtDNA-encoded genes were

normalized with the total sample sum instead, as for TPM. We did not normalize for

transcript length; the values thus calculated should be considered as counts per million.

However, for correlation analysis, which does not involve direct comparison of genes

within samples, this is equivalent to TPM.

TPM values excluding haemoglobin reads or PRSS1/2 reads for GTEx Whole Blood

or Pancreas samples, respectively, were obtained as for TPM nuclear only but excluding

the read counts for those genes when computing the total sample read count, instead

of the read counts for the mitochondrial genes.

Correlations

Correlations were computed using the ‘cor.test()’ function in R, with ‘method = “spear-

man”’ or ‘method = “pearson”’.

Linear model correction of data prior to correlation analysis

Before correlation analysis, we applied linear model corrections to normalized data to

control for known confounders in the GTEx and TCGA datasets.

Sample and donor information for the GTEx were downloaded from the GTEx data

portal in the form of the Subject Phenotypes and Subject Annotations files accompany-

ing GTEx V8 (or V6p as appropriate). TCGA metadata was obtained using the ‘all_
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metadata(subset = “tcga”)’ function of the ‘recount’ package in R. Some TCGA donors

provided multiple cancer samples; these were all excluded to leave only samples unique

to a single donor.

For single-tissue or cancer type analyses, linear models within each tissue or cancer

type cohort were applied, to account for tissue-specific trends. TMM and MRN nor-

malisations were applied within the tissue or cancer type cohort. A linear model was

fitted for each gene using the ‘lm()’ function in R, and the resulting residuals were used

downstream in correlation analyses. GTEx data were corrected for the age bracket of

the patient, sex of the patient, cause of death (Hardy scale), sample ischemic time and

sequencing batch. The age bracket was considered to be a numerical variable, and the

midpoint of the appropriate age bracket was taken for each sample to be entered into

the linear model. We opted to use the publicly available age-bracket data so that our

analyses can be readily reproduced. TCGA data (including matched normal samples)

was corrected for the gender, race, tumour stage and age of the patient and the sequen-

cing centre where the samples were processed.

For single-tissue GTEx analyses accounting for cell-type composition estimates and

genotyping principal components, we downloaded the cell type composition estimates

for available tissues from the supplementary material of [26] (see Availability of Data

and Materials section). We downloaded genotyping principal components from the

eQTL covariates file from the GTEx download portal. We then included these factors

in linear models for each gene in addition to the five factors reported above and pro-

ceeded with our analysis using the residuals from these models.

For single cancer-type TCGA analyses accounting for cell-type composition-based sub-

types, we downloaded the ‘DeClust’ R package [27] from GitHub [36], which loads pre-

calculated DeClust subtypes for 13 TCGA cancer types. We then included the sample

DeClust subtype in the linear models for each gene alongside the other potentially con-

founding variables and proceeded with our analysis using the residuals from these models.

For analyses combining different GTEx tissues, we accounted for the fact that mul-

tiple samples from different tissues may derive from the same donor. TMM and MRN

normalisation were applied across all tissues. We then applied a linear mixed-effects

model for each gene across all samples from all tissues, with age bracket, sex, cause of

death and sample ischemic time interacting with tissue type. Additionally individual

donor and sequencing batch were included as random effects. We then proceeded with

residuals from these mixed-effects models. As sample independence was not an issue

for the TCGA data, we used residuals from the single-cancer type analysis in the com-

bined analysis.

Correlations combining tissues or cancer types

To perform a correlation analysis on combined tissues or cancer types, we took the re-

siduals of expression data that had been normalized and corrected by fitting a linear

model to control for confounding variables, as above. We filtered the tissue or cancer

types for those with at least 100 (GTEx) or 50 (TCGA) samples, leaving 48 tissues and

31 cancers, respectively. To ensure equal representation of each tissue or cancer type,

we randomly sampled 100 (GTEx) or 50 (TCGA) from each tissue. Combining raw

gene expression residuals for tissues or cancer types with different mtRNA levels may
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introduce artefacts, as high-expressing tissues will have much greater variance in the

absolute value of the residuals, despite the linear model controlling for the tissue aver-

age gene expression level. To account for this, we ranked the sample residuals for each

gene within the sample chosen for each tissue or cancer type. We then combined the

ranks for the chosen samples across tissue types, using the ranks in place of the raw re-

siduals; this gave us 4800 samples for GTEx or 1550 samples for TCGA. The Spear-

man’s correlation was then computed across these aggregated ranks. As the result

varies slightly depending on the random sampling within each tissue, we repeated this

process 100 times. Heatmaps show the median correlation for any gene pair over the

100 iterations. The order of mtOXPHOS/nuOXPHOS genes for all heatmaps for both

GTEx and TCGA data throughout the manuscript is identical and was determined by

clustering of the correlations for the MRN-normalized data combining GTEx tissues.

Although the gene names are not shown in main figure panels, the genes are fully an-

notated with HGNC symbols in Additional Files 2-5.

In order to provide a null distribution for the correlation of mtOXPHOS genes with

nuOXPHOS genes, we repeated the process as above, but replaced the 126 nuOXPHOS

genes with a random sample of 126 expressed nuclear genes (median TPM > 5 across

all samples for all tissues/cancer types) for each iteration. This process was repeated

100 times. In order to test the observed mtOXPHOS-nuOXPHOS correlation against

this distribution, the 100 median correlations for mtOXPHOS-nuOXPHOS gene pairs

for each iteration was compared to the 100 median correlations of mtOXPHOS genes

with random nuclear genes with a two-tailed t test.

Correlations within tissues or cancer types

For correlations reported within cancer types or tissue types, all available samples were

utilised for the calculations. To provide a bootstrapped distribution, we calculated the

median mtOXPHOS-nuOXPHOS for each tissue or cancer type 1000 times in samples

constituted by resampling with replacement. The 95% confidence intervals shown in

the main figure panels were the observed 2.5th and 97.5th percentiles in the bootstrap

distribution. We used empirical p values from the bootstrap distributions to test if ob-

served median mtOXPHOS-nuOXPHOS correlations were different from 0. Raw p

values were the fraction of bootstrap values > 0 for tissue/cancer types s with observed

negative correlations or < 0 for positive correlations. These p values were then cor-

rected to FDR across tissue/cancer types. Prior to correction, if any bootstrap distribu-

tion did not contain 0 or opposite sign correlations, the observed 0 was substituted for

1/1000 and the p value was reported to be less than this value after FDR adjustment.

To test the significance of mtOXPHOS-nuOXPHOS correlations against mtOXPHOS

with random nuclear genes, correlations were computed for each tissue/cancer type for

the mtOXPHOS genes and 126 random nuclear genes (median TPM > 5 across all

samples from all tissues/cancer types). This was repeated 100 times and the medians of

the correlations of mtOXPHOS genes with random nuclear genes from each iteration

were taken to be the null distribution. We confirmed that these medians conformed to

a normal distribution, as would be expected under the Central Limit Theorem, by per-

forming a Shapiro-Wilk normality test on the 100 medians for each tissue. The ad-

justed p values (FDR) for the Shapiro-Wilk tests are reported in Additional File 1:
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Table S1 & S2. The Z statistic for the observed median mtOXPHOS-nuOXPHOS cor-

relation was then calculated by subtracting the mean and dividing by the standard devi-

ation of the mtOXPHOS-random nuclear medians. p values were then calculated for

each tissue according to the normal cumulative distribution function and corrected to

FDR (Additional File 1: Table S1 & S2).

Matched cancer and normal samples

Matched primary tumour and adjacent normal tissue samples were identified using

TCGA metadata and barcodes. Tissues were identified with at least 10 normal samples.

Using the donor portion of the TCGA barcode, matching primary tumour samples

were identified. If multiple primary tumour samples matched the adjacent normal tis-

sue sample, one was retained at random and the remainder were discarded. Addition-

ally, normal tissue samples without identifiable primary tumour samples in the

expression data were discarded, such that all normal tissue samples had one matching

primary tumour sample and vice versa. mtOXPHOS-nuOXPHOS correlations were

computed using all samples. To calculate the bootstrapped standard error, we repeated

the correlations using unique subsets of 90% of the datapoints 100 times. The boot-

strapped standard error for the median mtOXPHOS-nuOXPHOS correlation is the

standard deviation of the bootstrapped median mtOXPHOS-nuOXPHOS correlations.

Dip test for bimodality

To test for bimodality in the distribution of correlations among random nuclear genes,

correlations for 100 sets of random genes were computed for all GTEx tissues using

MRN-normalized data. Hartigan’s dip test was then performed for each set of 100 ran-

dom genes in each tissue using the ‘dip.test()’ function of the ‘diptest’ package in R. Dip

test p values were adjusted to FDR within each tissue.

Gene ontology enrichment analysis

To test for genes whose expression was associated with mtOXPHOS-nuOXPHOS coord-

ination, we calculated the mean expression of each gene in each tissue or cancer type (in

pseudocounts generated by MRN normalisation of raw counts across all tissues/cancers).

We then computed the Spearman’s correlation for each gene of the mean tissue/cancer

pseudocounts with tissue/cancer mtOXPHOS-nuOXPHOS correlation calculated earlier

using MRN normalisation. We ordered the gene lists in order of correlation and took the

top or bottom 1000 genes. As these were ENSEMBL gene IDs, we retrieved the HGNC

symbols for these genes using the ‘biomaRt’ package in R; this typically resulted in the loss

of a fraction of the genes which lack HGNC symbols (such as some lncRNA genes). We

then submitted the HGNC symbols to the ‘enrichr()’ function of the ‘enrichR’ package in

R [37] using the reference databases ‘KEGG_2021_Human’, ‘GO_Molecular_Function_

2018’, ‘GO_Cellular_Component_2018’ and ‘GO_Biological_Process_2018’. p values com-

puted by ‘enrichR’ which we used to assess the significance of enrichments are calculated

using Fisher’s exact test.

In order to be sure our enrichment results were specific to mtOXPHOS-nuOXPHOS

correlation, we repeated the above process but using the top or bottom 1000 genes

which correlated with median mtOXPHOS-random nuclear correlation in each tissue.
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Proliferative Index

The Proliferative Index (PI) was calculated with the ‘ProliferativeIndex’ package in R.

Briefly, the entire dataset across all tissues or cancer types was normalized by MRN

and variance stabilising transformation using the ‘varianceStabilizingTransformation()’

function of DESeq2. Following the normalisation, the PI was calculated by applying the

‘readDataForPI()’ function with a randomly selected gene specified in the ‘modelIDs’ ar-

gument, then running ‘calculatePI()’ on the resulting object.

Estimations of total immune fraction

The estimates for the total immune fraction of GTEx samples were taken directly from

the GitHub repository associated with the GEDIT tool [28, 38].
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Additional File 5. TCGA matched normal heatmaps. mtOXPHOS-nuOXPHOS expression heatmaps for matched
normal samples for 14 cancer types.

Additional File 6. GTEx top 1000 Gene Ontology. Gene Ontology enrichment for the top 1000 genes, whose
expression across GTEx tissues is most positively correlated with tissue mtOXPHOS-nuOXPHOS correlation. Note the
spreadsheet has multiple tabs corresponding to different gene set libraries interrogated.

Additional File 7. GTEx bottom 1000 Gene Ontology. Gene Ontology enrichment for the bottom 1000 genes,
whose expression across GTEx tissues is most negatively correlated with tissue mtOXPHOS-nuOXPHOS correlation.
Note the spreadsheet has multiple tabs corresponding to different gene set libraries interrogated.

Additional File 8. TCGA top 1000 Gene Ontology. Gene Ontology enrichment for the top 1000 genes whose
expression across TCGA cancer types is most positively correlated with cancer type mtOXPHOS-nuOXPHOS correl-
ation. Note the spreadsheet has multiple tabs corresponding to different gene set libraries interrogated.

Additional File 9. TCGA bottom 1000 Gene Ontology. Gene Ontology enrichment for the bottom 1000 genes,
whose expression across TCGA cancer types is most negatively correlated with cancer type mtOXPHOS-nuOXPHOS
correlation. Note the spreadsheet has multiple tabs corresponding to different gene set libraries interrogated.
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Review history
This paper was previously reviewed at another journal, and no review history is available.

Authors’ contributions
MFP conceived, designed, performed and interpreted analyses and drafted the manuscript. PS conceived, designed
and interpreted analyses and edited the manuscript. All authors read and approved the final mansucript.

Authors’ information
Twitter handle: @Psarkies (Peter Sarkies).
Twitter handle: @Mfpez (Marcos Francisco Perez).

Funding
This work was funded by the United Kingdom Medical Research Council (MC-A652-5PY80 “Epigenetics and Evolution”).
PS is a member of the EMBO Young Investigator scheme.

Availability of data and materials
The datasets supporting the conclusions of this article are available in the dbGaP repository: GTEx V8 data (accession
phs000424.v8.p2), GTEx V6p (accession phs000424.v6.p1) and TCGA (accession phs000178.v11.p8). GTEx sample cell
type composition estimates were obtained from ref. [26], Supplementary Datasets 4-9 and 11-17. TCGA deClust decon-
volution subtypes were obtained from the ‘DeClust’ R package [27, 36]. GTEx immune cell fraction predictions were ob-
tained from refs [28, 38].

Perez and Sarkies Genome Biology          (2021) 22:328 Page 22 of 24

https://doi.org/10.1186/s13059-021-02541-6


All code used to produce the analyses presented in the manuscript is available on Github [39] under a GPL 3.0 licence
and on Zenodo [40] under a Creative Commons licence 4.0.

Declarations

Ethical approval and consent to participate
No ethical approval was required for this study.

Competing interests
The authors declare that they have no competing interests.

Author details
1MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK. 2Institute of Clinical Sciences,
Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK. 3Department of
Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.

Received: 5 November 2021 Accepted: 11 November 2021

References
1. Taanman J-W. The mitochondrial genome: structure, transcription, translation and replication. Biochimica et Biophysica

Acta (BBA)-Bioenergetics. 1999;1410(2):103-23.
2. Mercer TR, Neph S, Dinger ME, Crawford J, Smith MA, Shearwood A-MJ, et al. The human mitochondrial transcriptome.

Cell. 2011;146(4):645–58. https://doi.org/10.1016/j.cell.2011.06.051.
3. Parikh VS, Morgan MM, Scott R, Clements LS, Butow RA. The mitochondrial genotype can influence nuclear gene

expression in yeast. Science. 1987;235(4788):576–80. https://doi.org/10.1126/science.3027892.
4. Haynes CM, Petrova K, Benedetti C, Yang Y, Ron D. ClpP mediates activation of a mitochondrial unfolded protein

response in C. elegans. Developmental Cell. 2007;13(4):467–80. https://doi.org/10.1016/j.devcel.2007.07.016.
5. Owusu-Ansah E, Song W, Perrimon N. Muscle mitohormesis promotes longevity via systemic repression of insulin

signaling. Cell. 2013;155(3):699–712. https://doi.org/10.1016/j.cell.2013.09.021.
6. Zhao Q, Wang J, Levichkin IV, Stasinopoulos S, Ryan MT, Hoogenraad NJ. A mitochondrial specific stress response in

mammalian cells. The EMBO Journal. 2002;21(17):4411–9. https://doi.org/10.1093/emboj/cdf445.
7. Münch C, Harper JW. Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation.

Nature. 2016;534(7609):710–3. https://doi.org/10.1038/nature18302.
8. Barshad G, Blumberg A, Cohen T, Mishmar D. Human primitive brain displays negative mitochondrial-nuclear expression

correlation of respiratory genes. Genome Research. 2018;28(7):952–67. https://doi.org/10.1101/gr.226324.117.
9. Reznik E, Miller ML, Şenbabaoğlu Y, Riaz N, Sarungbam J, Tickoo SK, et al. Mitochondrial DNA copy number variation

across human cancers. eLife. 2016;5:e10769. https://doi.org/10.7554/eLife.10769.
10. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics. 2009;10(1):

57–63. https://doi.org/10.1038/nrg2484.
11. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-

Seq. Nature Methods. 2008;5(7):621–8. https://doi.org/10.1038/nmeth.1226.
12. Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN. RNA-Seq gene expression estimation with read mapping

uncertainty. Bioinformatics. 2010;26(4):493–500. https://doi.org/10.1093/bioinformatics/btp692.
13. Zhao S, Ye Z, Stanton R. Misuse of RPKM or TPM normalization when comparing across samples and sequencing

protocols. RNA. 2020;26(8):903–9. https://doi.org/10.1261/rna.074922.120.
14. Galai G, Ben-David H, Levin L, Orth MF, Grünewald TG, Pilosof S, et al. Pan-cancer analysis of mitochondria chaperone-

client co-expression reveals chaperone functional partitioning. Cancers. 2020;12(4):825. https://doi.org/10.3390/cancers12
040825.

15. Sakharkar MK, Kaur Dhillon S, Chidambaram SB, Essa MM, Yang J. Gene pair correlation coefficients in sphingolipid
metabolic pathway as a potential prognostic biomarker for breast cancer. Cancers. 2020;12(7):1747. https://doi.org/10.33
90/cancers12071747.

16. Yang Y, Zhang Y, Miao L, Liao W, Liao W. LncRNA PPP1R14B-AS1 promotes tumor cell proliferation and migration via
the enhancement of mitochondrial respiration. Frontiers in Genetics. 2020;11. https://doi.org/10.3389/fgene.2020.557614.

17. Boardman NT, Migally B, Pileggi C, Parmar GS, Xuan JY, Menzies K, et al. Glutaredoxin-2 and Sirtuin-3 deficiencies impair
cardiac mitochondrial energetics but their effects are not additive. Biochimica et Biophysica Acta (BBA)-Molecular Basis
of Disease. 2021;1867(1):165982.

18. Marquardt A, Solimando AG, Kerscher A, Bittrich M, Kalogirou C, Kübler H, et al. Subgroup-independent mapping of
renal cell carcinoma—machine learning reveals prognostic mitochondrial gene signature beyond histopathologic
boundaries. Frontiers in Oncology. 2021;11. https://doi.org/10.3389/fonc.2021.621278.

19. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and
interactive analyses. Nucleic Acids Research. 2017;45(W1):W98–W102. https://doi.org/10.1093/nar/gkx247.

20. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and
interactive analysis. Nucleic Acids Research. 2019;47(W1):W556–W60. https://doi.org/10.1093/nar/gkz430.

21. Anders S, Huber W. Differential expression analysis for sequence count data. Nature Precedings. 2010:1-.
22. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome

Biology. 2010;11(3):1–9.
23. Bullard JH, Purdom E, Hansen KD, Dudoit S. Evaluation of statistical methods for normalization and differential

expression in mRNA-Seq experiments. BMC Bioinformatics. 2010;11(1):1-13, DOI: https://doi.org/10.1186/1471-2105-11-94.

Perez and Sarkies Genome Biology          (2021) 22:328 Page 23 of 24

https://doi.org/10.1016/j.cell.2011.06.051
https://doi.org/10.1126/science.3027892
https://doi.org/10.1016/j.devcel.2007.07.016
https://doi.org/10.1016/j.cell.2013.09.021
https://doi.org/10.1093/emboj/cdf445
https://doi.org/10.1038/nature18302
https://doi.org/10.1101/gr.226324.117
https://doi.org/10.7554/eLife.10769
https://doi.org/10.1038/nrg2484
https://doi.org/10.1038/nmeth.1226
https://doi.org/10.1093/bioinformatics/btp692
https://doi.org/10.1261/rna.074922.120
https://doi.org/10.3390/cancers12040825
https://doi.org/10.3390/cancers12040825
https://doi.org/10.3390/cancers12071747
https://doi.org/10.3390/cancers12071747
https://doi.org/10.3389/fgene.2020.557614
https://doi.org/10.3389/fonc.2021.621278
https://doi.org/10.1093/nar/gkx247
https://doi.org/10.1093/nar/gkz430
https://doi.org/10.1186/1471-2105-11-94


24. Ferreira PG, Muñoz-Aguirre M, Reverter F, Godinho CPS, Sousa A, Amadoz A, et al. The effects of death and post-
mortem cold ischemia on human tissue transcriptomes. Nature Communications. 2018;9(1):1–15. https://doi.org/10.103
8/s41467-017-02772-x.

25. Soumillon M, Necsulea A, Weier M, Brawand D, Zhang X, Gu H, et al. Cellular source and mechanisms of high
transcriptome complexity in the mammalian testis. Cell Reports. 2013;3(6):2179–90. https://doi.org/10.1016/j.celrep.2013.
05.031.

26. Donovan MK, D’Antonio-Chronowska A, D’Antonio M, Frazer KA. Cellular deconvolution of GTEx tissues powers
discovery of disease and cell-type associated regulatory variants. Nature Communications. 2020;11(1):1-14.

27. Wang L, Sebra RP, Sfakianos JP, Allette K, Wang W, Yoo S, et al. A reference profile-free deconvolution method to infer
cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles. Genome Medicine. 2020;12(1):1–22. https://doi.
org/10.1186/s13073-020-0720-0.

28. Nadel BB, Lopez D, Montoya DJ, Ma F, Waddel H, Khan MM, et al. The Gene Expression Deconvolution Interactive Tool
(GEDIT): accurate cell type quantification from gene expression data. GigaScience. 2021;10(2):giab002.

29. Ramaker RC, Lasseigne BN, Hardigan AA, Palacio L, Gunther DS, Myers RM, et al. RNA sequencing-based cell proliferation
analysis across 19 cancers identifies a subset of proliferation-informative cancers with a common survival signature.
Oncotarget. 2017;8(24):38668–81. https://doi.org/10.18632/oncotarget.16961.

30. Liu H, Zheng H, Duan Z, Hu D, Li M, Liu S, et al. LMP1-augmented kappa intron enhancer activity contributes to
upregulation expression of Ig kappa light chain via NF-kappaB and AP-1 pathways in nasopharyngeal carcinoma cells.
Molecular Cancer. 2009;8(1):1–18. https://doi.org/10.1186/1476-4598-8-92.

31. Butow RA, Avadhani NG. Mitochondrial signaling: the retrograde response. Molecular Cell. 2004;14(1):1–15. https://doi.
org/10.1016/S1097-2765(04)00179-0.

32. Cogswell PC, Kashatus DF, Keifer JA, Guttridge DC, Reuther JY, Bristow C, et al. NF-κB and IκBα are found in the
mitochondria: evidence for regulation of mitochondrial gene expression by NF-κB. Journal of Biological Chemistry. 2003;
278(5):2963–8. https://doi.org/10.1074/jbc.M209995200.

33. Lovén J, Orlando DA, Sigova AA, Lin CY, Rahl PB, Burge CB, et al. Revisiting global gene expression analysis. Cell. 2012;
151(3):476–82. https://doi.org/10.1016/j.cell.2012.10.012.

34. Reznik E, Wang Q, La K, Schultz N, Sander C. Mitochondrial respiratory gene expression is suppressed in many cancers.
eLife. 2017;6:e21592. https://doi.org/10.7554/eLife.21592.

35. Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends in Biochemical Sciences. 2016;
41(3):211–8. https://doi.org/10.1016/j.tibs.2015.12.001.

36. Wang L, Sebra RP, Sfakianos JP, Allette K, Wang W, Yoo S, et al. integrativenetworkbioogy/DeClust. Github. https://
github.com/integrativenetworkbiology/DeClust. 2020.

37. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list
enrichment analysis tool. BMC bioinformatics. 2013;14(1):1–14. https://doi.org/10.1186/1471-2105-14-S18-S1.

38. Nadel BB, Lopez D, Montoya DJ, Ma F, Waddel H, Khan MM, et al. BNadel / GEDIT. Github. https://github.com/BNadel/
GEDIT/tree/master/GEDITv1.7. 2021.

39. Perez MF, Sarkies P. SarkiesLab/GBiol2021-MitoNuclearCorrelation. Github. https://github.com/SarkiesLab/GBiol2021-
MitoNuclearCorrelation. 2021.

40. Perez MF, Sarkies P. R script for analysis. Zenodo. https://doi.org/10.5281/zenodo.5670083. 2021.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Perez and Sarkies Genome Biology          (2021) 22:328 Page 24 of 24

https://doi.org/10.1038/s41467-017-02772-x
https://doi.org/10.1038/s41467-017-02772-x
https://doi.org/10.1016/j.celrep.2013.05.031
https://doi.org/10.1016/j.celrep.2013.05.031
https://doi.org/10.1186/s13073-020-0720-0
https://doi.org/10.1186/s13073-020-0720-0
https://doi.org/10.18632/oncotarget.16961
https://doi.org/10.1186/1476-4598-8-92
https://doi.org/10.1016/S1097-2765(04)00179-0
https://doi.org/10.1016/S1097-2765(04)00179-0
https://doi.org/10.1074/jbc.M209995200
https://doi.org/10.1016/j.cell.2012.10.012
https://doi.org/10.7554/eLife.21592
https://doi.org/10.1016/j.tibs.2015.12.001
https://github.com/integrativenetworkbiology/DeClust
https://github.com/integrativenetworkbiology/DeClust
https://doi.org/10.1186/1471-2105-14-S18-S1
https://github.com/BNadel/GEDIT/tree/master/GEDITv1.7
https://github.com/BNadel/GEDIT/tree/master/GEDITv1.7
https://github.com/SarkiesLab/GBiol2021-MitoNuclearCorrelation
https://github.com/SarkiesLab/GBiol2021-MitoNuclearCorrelation
https://doi.org/10.5281/zenodo.5670083

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	mtOXPHOS-nuOXPHOS gene expression appears anticorrelated using TPM normalisation
	Variance in mtRNA expression within tissues drives negative mito-nuclear correlations
	mtRNA expression variance drives positive correlations between random nuclear transcripts
	Normalizing libraries with MRN or TMM scaling factors abrogates correlation artefacts
	Correlations of mtOXPHOS-nuOXPHOS genes are weak and inconsistent across tissues
	Positive correlation between mtOXPHOS and nuOXPHOS gene expression in cancer
	NF-κB expression is correlated with OXPHOS coordination in healthy tissues
	Proliferation is negatively correlated to OXPHOS coordination in cancer

	Discussion
	Avoiding artefacts when analysing correlations between expressed genes
	Coordination between mitochondrial and nuclear gene expression

	Conclusions
	Methods
	Raw data
	mtOXPHOS and nuOXPHOS genes
	Normalisations
	Correlations
	Linear model correction of data prior to correlation analysis
	Correlations combining tissues or cancer types
	Correlations within tissues or cancer types
	Matched cancer and normal samples
	Dip test for bimodality
	Gene ontology enrichment analysis
	Proliferative Index
	Estimations of total immune fraction

	Supplementary Information
	Review history
	Authors’ contributions
	Authors’ information
	Funding
	Availability of data and materials
	Declarations
	Ethical approval and consent to participate
	Competing interests
	Author details
	References
	Publisher’s Note

