

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. Contents lists available at ScienceDirect

American Journal of Emergency Medicine

journal homepage: www.elsevier.com/locate/ajem

Neuroleptic malignant syndrome following COVID-19 vaccination

Table 1Clinical laboratory results.

We have read the article by Soh et al. reporting two cases of neuroleptic malignant syndrome (NMS) with CoronaVirus 2019 (COVID-19) [1] and we have identified another case by Kajani et al. [2] and the three cases represent NMS with COVID-19, as a part of its neurological complications that was attributed to injury of skeletal muscles and Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) utilizing central nervous system ACE2 receptors. Also, autopsy studies of COVID-19 patients have shown evidence of neuronal degeneration and hyperemic and edematous brain tissue [3].

Since the pandemic started late in 2019 and the hunt for COVID-19 vaccine started and recently many vaccines received emergency use authorization (EUA) including BNT162b2 mRNA COVID-19 Vaccine and in the clinical trial four cases of Bell's palsy were reported [4] as the main neurological complication of this vaccine besides many reported cases of anaphylaxis afterwards.

Herein we report the first case of NMS following COVID-19 vaccination which highlights possible complications and alert emergency medicine physicians to uncommon presentations following COVID-19 vaccine.

A 74-year-old female with medical history significant only for dementia and bipolar disorder on maintenance therapy with memantine, Donepezil and quetiapine presented to Emergency Room (ER) after she sustained a fall and facial injury.

Her family members noticed that she had abnormal posture three days prior to admission and was confused so family members increased quetiapine dose and when she remained confused for two more days which ended by a ground level fall and head injury, they brough her to hospital ER, they reported she got COVID-19 vaccine 16 days prior to this event.

In the ER she was vitally stable but febrile at 38.5C with delirium and on and off agitation, she had bilateral periorbital swelling and ecchymosis, she had generalized muscular rigidity including neck rigidity and hyperreflexia.

In the ER her initial labs were reported (See Table 1) and she had negative CT of the brain followed by a spinal tap and COVID-19 RT PCR Swab.

Given negative cerebrospinal fluid analysis and elevated CPK she was diagnosed with NMS and started urgently in ER with intravenous dantrolene and transferred to ICU where amantadine and cyproheptadine were added to IV fluids with subsequent improvement in body temperature and rigidity and within two days she was out of bed to chair and after eight days she was discharged from hospital and followed up in clinic five days later after returning to her baseline mental status and ability to ambulate.

Variable	Reference Range	Admission Results
C- Reactive Protein (mg/l)	<5.0	4
Procalcitonin (ng/mL)	<0.5	0.06
D-dimer (ng/ml)	<400	890
Sodium (mmol/l)	136-145	146
Potassium (mmol/l)	3.5-5.1	3.8
Blood Urea Nitrogen (mg/dl)	9-23	9.3
Creatinine (mg/dl)	0.7-1.3	0.68
Glucose (mg/dl)	80-140	95
Calcium (mg/dl)	8.7-10.4	9.18
Total Proteins (g/dl)	5.7-8.2	6.5
Albumin (g/dl)	3.2-4.8	3.8
AST (U/I)	10-40	39
ALT (U/I)	10-49	25
CPK (U/L)	26-192	2538
Total Bilirubin (mg/dl)	0.3-1.2	0.89
Alkaline Phosphatase (U/l)	46-116	63
Lactate Dehydrogenase (U/l)	120-246	250
White Cell Count (per mm3)	3800-11,000	5600
Hemoglobin (g/dl)	13.2-17.0	10.1
Hematocrit (%)	39.0-50.0	31,3
Platelets (per mm3)	150,000-400,000	115,000
Absolute neutrophil count (per mm3)	1900-7400	4200
Absolute lymphocyte count (per mm3)	1100-3900	1100
Erythrocyte sedimentation rate (mm/h)	1-20	9
CSF cell count (cells /µl)	<5	0
CSF total Proteins (mg/100 mL)	15-60	50.3
CSF Glucose (mg/100 mL)	50-80	55
CSF Lactic Acid (mmol/L)	<3	1.85
CSF Culture		No growth
Urine Culture		No growth
Blood Culture		No growth

Results of admission laboratory results.

This case presents a grave complication of COVD-19 vaccine requiring ICU admission, there is a possibility that the condition was aggravated by increasing the dose of quetiapine, but family members reported worsening mental status even before increasing the dose. Her inflammatory markers were negative, and her cultures returned with no growth which rules out infection as precipitating factor for NMS.

Our patient here had acellular CSF which made encephalitis less likely and was tested for COVID-19 and her nasopharyngeal RT PCR was negative. COVID-19 is known to have many neurological complications ranging from anosmia to encephalomyelitis, seizures, and stroke [6] Although mRNA vaccines were found generally safe in clinical trials [5] apart from anaphylaxis and the few cases of Bell's palsy but the immune activation associated with such vaccines could have huge impact on the elderly.

Our case should raise awareness to NMS as a potential complication of COVID-19 vaccine and ER physicians should get vaccination history to

Th American J Emergency

https://doi.org/10.1016/j.ajem.2021.02.011 0735-6757/© 2021 Elsevier Inc, All rights reserved. properly diagnose such problem and any other possible future side effects of this novel vaccine.

References

- Soh M, Hifumi T, Isokawa S, Shimizu M, Otani N, Ishimatsu S. Neuroleptic malignant syndrome in patients with COVID-19. Am J Emerg Med. 2020;38(10):2243.e1-2243.e3.
- [2] Kajani R, Apramian A, Vega A, et al. Neuroleptic malignant syndrome in a COVID-19 patient. Brain Behav Immun. 2020;88:28–9.
- [3] Ubhayakar N, Liu A. Letter to the editor: Neuroleptic malignant syndrome in COVID-19 patients by Soh et al [published online ahead of print, 2020 Jun 23]. Am J Emerg Med. 2020 S0735–6757(20)30526-X.
- [4] Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020 Dec 31;383(27):2603–15.
- [5] Castells MC, Phillips EJ. Maintaining safety with SARS-CoV-2 Vaccines. N Engl J Med. 2021;384(7):643–9.
- [6] Divani AA, Andalib S, Biller J, et al. Central nervous system manifestations associated with COVID-19. Curr Neurol Neurosci Rep. 2020 Oct 30;20(12):60. doi: https://doi. org/10.1007/s11910-020-01079-7. Erratum in: Curr Neurol Neurosci Rep. 2020 Nov 12;20(12):66.

American Journal of Emergency Medicine 49 (2021) 408-409

Mostafa Alfishawy

Infectious Diseases Consultants and Academic Researchers of Egypt (IDCARE), Egypt *Corresponding author at: Infectious Diseases Consultants and Academic Researchers of Egypt (IDCARE), 9 Saray Street, Cairo, Egypt. *E-mail address:* malfishawy@kasralainy.edu.eg

> Zouheir Bitar Ahmadi Hospital of Kuwait Oil Company, Kuwait City, Kuwait

> Amr Elgazzar Ahmadi Hospital of Kuwait Oil Company, Kuwait City, Kuwait

> Mahmoud Elzoueiry Ahmadi Hospital of Kuwait Oil Company, Kuwait City, Kuwait

> > 3 February 2021