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Climate change is contributing to the widespread redistribution, and
increasingly the loss, of species. Geographical range shifts among many
species were detected rapidly after predictions of the potential importance
of climate change were specified 35 years ago: species are shifting their
ranges towards the poles and often to higher elevations in mountainous
areas. Early tests of these predictions were largely qualitative, though extra-
ordinarily rapid and broadly based, and statistical tests distinguishing
between climate change and other global change drivers provided quantitat-
ive evidence that climate change had already begun to cause species’
geographical ranges to shift. I review two mechanisms enabling this process,
namely development of approaches for accounting for dispersal that contrib-
utes to range expansion, and identification of factors that alter persistence
and lead to range loss. Dispersal in the context of range expansion depends
on an array of processes, like population growth rates in novel environ-
ments, rates of individual species movements to new locations, and how
quickly areas of climatically tolerable habitat shift. These factors can be
tied together in well-understood mathematical frameworks or modelled stat-
istically, leading to better prediction of extinction risk as climate changes.
Yet, species’ increasing exposures to novel climate conditions can exceed
their tolerances and raise the likelihood of local extinction and consequent
range losses. Such losses are the consequence of processes acting on individ-
uals, driven by factors, such as the growing frequency and severity of
extreme weather, that contribute local extinction risks for populations and
species. Many mechanisms can govern how species respond to climate
change, and rapid progress in global change research creates many opport-
unities to inform policy and improve conservation outcomes in the early
stages of the sixth mass extinction.
1. Introduction
Human activities have caused extinction rates to rise sharply among popu-
lations and species in most regions of the world [1–3]. Land use change, land
use intensification and overexploitation have decimated biological communities
where such threats have been concentrated [4,5]. Climate has long been known
to contribute vitally to the distribution of life on Earth [6,7]. Consequently, the
rapidity of human-caused climate change has led to widespread biotic
responses, which demonstrate the pervasive influences—and risks—of climate
change on the life histories of species. Climate change is accelerating and its
relative importance as a cause of present-day extinction is growing [8].

The link betweenwhere a species is found andprevailing climatic conditions in
those areas is one of the oldest relationships that exists in ecology and evolutionary
biology, predating the discovery of natural selection or even area effects [9,10].
Species’ distributions depend on the array of environmental conditions they toler-
ate after accounting for antagonistic or beneficial biotic interactions and dispersal
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limitation [11–13]. This understanding, which draws on classi-
cal approaches to describing species’ niches [14], led to early
predictions that anthropogenic climate change would cause
species’ geographical ranges to shift [15]. There are many pre-
cedents for such shifts throughout the complex climatic
history of the Earth, with past climate changes causing redistri-
butions of species across broad areas [16], such as those detected
through ancient DNA or fossil pollen records [16,17]. Although
climate sensitivities to growth in atmospheric CO2 concen-
trations were predicted (and broadly acknowledged) in the
nineteenth century [18], and confirmed and refined sub-
sequently [19], the rapidity of both warming and the global
torrent of biotic responses to it has been striking.

Range shifts are one of the clearest signs of biotic responses
to climate change. They require at least one of two processes to
operate: dispersal from a leading range boundary that estab-
lishes a population in an area the species did not occupy
historically, or the loss of populations from historically occu-
pied areas, such as from a trailing range boundary [20].
Leaving aside assumptions about other vital processes, like
local population dynamics or adaptation, climate change
will benefit a species if the rate of expansion into new areas
exceeds the rate of loss elsewhere (i.e. geographical ranges
grow larger). Conversely, species’ extinction risks rise if
range losses in some areas exceed range expansions in others
(i.e. ranges get smaller), as geographical range size is strongly
linked to species’ extinction risk [21].

The establishment of populations in new areas is limited
by, among other things, species’ dispersal and persistence
capacities in particular environments over both short and
longer time frames [22,23]. Both processes—dispersal and per-
sistence—are vital to understanding range dynamics during
climate change. Dispersal in this context is specifically the
movement of individuals of a species into an area that was pre-
viously unoccupied (i.e. dispersal that directly relates to range
shift), regardless of the life stage for their dispersal. Persistence
is the degree to which individuals or populations of a species
within its range remain present over time. Such species
responses are not fixed and can respond to selection, accelerat-
ing eco-evolutionary dynamics [24] and changes in species’
traits, such as dispersal capacity in different areas of their
ranges [25,26]. Other mechanisms, such as the constellation
of existing and potential biotic interactions, each represent
an additional challenge in terms of understanding and
predicting when species will maintain or grow their
geographical ranges in response to climate change [22].

Here, I review recent developments aroundmeasurements
and applications of two mechanisms necessary for under-
standing and predicting species’ range shifts during climate
change. These mechanisms are (i) species’ capacities to dis-
perse to (and establish) in novel environments and (ii) how
species’ exposure and sensitivity (or susceptibility; [27]) to
emerging conditions can be detected and used to understand
their persistence in areas undergoing climate change. Emer-
ging computational and data gathering tools are reviewed
here and have enabled measurement and prediction of disper-
sal and persistence using datasets that are unprecedented
in their spatial and temporal extents. The result has been
rapid progress. Early models measured success if they
detected species’ range shifts in directions that were qualitat-
ively consistent with climate change effects, while new
research links species’ extinction–colonization dynamics
to highly resolved measurements of climate change and
consequent short-term environmental variability. These
developments lead to practical policy advice that could alter
the trajectory of extinction rates.
2. Geographical range shifts and climate change
Informed by extensive understanding of how changes in
palaeoclimates affected species distributions and interactions,
Peters & Darling [15] wrote presciently about the prospects
that anthropogenic climate change would accelerate extinction
rates and cause a widespread redistribution of species. This
work anticipated the need to account for interactions between
land uses and climate change, the potential requirements for
managed relocation of species, the problems of protecting
species in nature reserves whose boundaries were fixed in
place while species’ range boundaries became dynamic
(figure 1a), potential interactions between land use change
and climate change, and the myriad challenges of accounting
for changes to biotic interactions. Moreover, many species’ dis-
persal capacities were thought to be far below rates required to
track shifting climatic conditions, even in the absence of wide-
spread habitat losses and fragmentation [15]. This work
anticipated that extinction risks would rise as a consequence
of climate change through impacts on species’ range dynamics.

Qualitative evidence that anthropogenic climate change
was beginning to take a biotic toll emerged from work com-
paring the limits of species’ present-day geographical ranges
against historical observations and asking a simple, but
powerful, question: what changed [28,29]? In a series of re-
surveys of known populations of the bay checkerspot
butterfly (Euphydryas editha), population extinctions were
found to be most likely in the south [30] (figure 1b). Areas
that had been strongly altered through land use changes
were omitted from the study, leaving climate change promi-
nent among potential causes for this pattern. Colonization
of new areas was not measured because of risks that historical
surveys might not have detected all populations. This work
set a precedent for using butterfly populations as a kind of
sentinel taxon for the biotic effects of climate change [31].
Its focus on patterns of population extinction also differed
from later work, which often emphasized more strongly the
detection of range expansions along poleward range margins.

Inferences that climate change contributed to species’
modern geographical range shifts grew rapidly stronger. Evi-
dence of poleward range expansion came from a variety of
taxa, though the geographical foci of early studies were most
commonly European and often British. Poleward range shifts
were detected among European butterfly species [28], and
plant populations along elevational gradients [32,33] were
found to be creeping upward altitudinally. Southern Finnish
birds frequently expanded their ranges northward [34],
and observations of British species across an array of taxa
[35]—including several invertebrate and vertebrate groups—
suggested similar trends. Such observations have expanded
in both their geographical and taxonomic scopes [36]. Evidence
from across many taxa, including birds, mammals, insects and
plants, has led to upward adjustments in the rate at which
shifts are occurring, to about 17 km decade−1 [37]. Early esti-
mates were rarely spatially explicit except in the directional
sense: range shifts assessed along latitudinal and altitudinal
gradients indicated that shifts were broadly poleward and
upward, respectively.
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Figure 1. Development of critical predictions around how species might respond to climate change was followed rapidly by detection of south–north trends in
extinction risk in a western butterfly species. (a) A species’ equatorward range boundary prior to human-caused habitat losses (top panel), its range after land use
change, limited largely to protected areas (middle panel), and range losses consequent to climate change that caused this species to become extinct in one of the
protected areas (adapted from [15]). (b) Latitudinal differences in observed population extinctions of the bay checkerspot butterfly (Euphydryas bayensis; inset photo
by Walter Sigmund, licence CC BY-SA 3.0), with the likelihood of a population extinction shown by the length of bars, on the left. The latitudinal range of popu-
lation resurveys is shown in black and corresponds to the edges of the bar graph. June 2018 temperatures vary from warm (in the south) to cool (in the north)
based on brightness temperature measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on Terra. These temperature data were
rendered slightly transparent and overlaid on a shaded relief map to depict topographic variation also. (Online version in colour.)
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The detection of such shifts and even their attribution
specifically to climate change is still a vital step removed
from establishing quantitative relationships with range
dynamics or understanding the mechanisms underlying such
relationships [38]. These mechanisms were largely and necess-
arily implicit in pioneering detection and attribution studies,
drawing on realized niche concepts, long-term monitoring
datasets, and extensive natural history expertise [12].

Measurements indicating that species were responding in
variousways to anthropogenic climate change enabled correla-
tive or other statistical tests of links between those responses
andparticular global change drivers [39]. That species are shift-
ing poleward, for example, can as readily be a consequence of
land use change as of warming conditions, and distinguishing
between their relative roles is obviously necessary to under-
stand whether their effects might benefit or harm species’
survival prospects [40]. For example, warming could facilitate
poleward expansion for a species but so could land use
changes that make new habitats suitable for potential range
expansion, as has been observed among many generalist
species [41]. Similarly, baseline forest cover and forest cover
change, as well as climate change [42], have contributed to
species redistributions along elevation gradients (based on
1464 separate observations of elevation shift from 46 locations).
Among butterflies in the Sierra Nevada mountains, climate
changes and habitat losses led to opposite responses, with
range loss predominating in low elevation areas where habitat
loss was extensive, and range expansion being more common
at high elevations, where climate changes predominated [43].
Other kinds of biotic responses, such as phenological shifts,
can also reflect signals of both climate and land use changes,
respectively [44].

Statistical approaches provide, minimally, tests of the
strength of the potential climate change signal in biological
change data and can test alternative causes of those biotic
responses [45]. They have the potential to be spatially explicit,
testing or predicting specific trends that are particular to
localities within the total study area, given a range ofmeasured
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environmental changes in those areas. These models can
specify mechanisms underlying particular hypotheses,
creating a pseudo-experimental framework for testing the
strengths of different global changedrivers [46]. Distinguishing
the relative roles of climate and land use change, respectively, is
difficult without more sophisticated models incorporating
mechanisms that logically govern range shifts, such as
dispersal or tolerance to environmental changes. Nevertheless,
quantitative links between warming and range shifts are now
widely documented: species in terrestrial, freshwater and
marine ecosystems are shifting their geographical distributions
in relation to rapid warming [47].
 pb
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3. Dispersal and range dynamics
In the context ofgeographical range shifts, dispersal results in the
establishment of a species’ population in an area that was pre-
viously unoccupied [48]. Successful dispersal consequently
leads to local expansion of a species’ geographical range.Despite
this vital role in global change responses, challenges associated
with measuring dispersal—which varies contextually [23],
potentially in response to selection [49] and interspecifically
[50]—have slowed the development of models that assess its
effects in specific terms.Dispersal has oftenbeen ignored entirely
[51], for lackofdataor because its inclusioncomplicates themod-
elling process, in predictions of species’movements in response
to climate change. If the limits of individual movement are
known, they can be included in models predicting shifts in
species’ geographical ranges over time, such as through the
use of dispersal kernels (but see [52,53]). Models incorporating
different dispersal scenarios are uncommon [53]. Dispersal that
leads to range shifts can be modelled using species’ known
movement limits. Across a range of dispersal capacities (includ-
ing known dispersal limits, zero dispersal and unlimited
dispersal, respectively) and climate scenarios, many bumblebee
species in North America are confronted with steep declines in
the habitable area [53]. For some species, the disappearance of
existing combinations of climatic conditions [54], not just shifts
in climate zones, makes range losses inevitable [55]. Yet, disper-
sal is inextricably linked with many species’ conservation
prospects during environmental change.

Frameworks for assessing dispersal rates predate nearly all
global change biology research but have been adapted to enable
predictions for species’ range shifts during global change. Skel-
lam [56] developed the reaction–diffusion equation to account
for random dispersal of individuals from a point of origin,
enabling the predictions of changes in population density
spatially and temporally. Interestingly, a motivation for this
work was to explain rates of climate change-driven recoloniza-
tion of Britain by oaks, which appeared to have occurred too
rapidly for oak dispersal rates to permit. The mechanisms in
thismodel—includingdispersal, population growth and spatial
displacement of climate zones—create a constellation of sub-
sequent, specific predictions that help inform conservation
applications [57]. Applying this framework to poleward range
expansion in response to climate change (reviewed in [58]),
the rate of change of species’ population density, u, depends
on the diffusion rate, D, of individuals through space, x, from
occupied areas:

@

@t
u ¼ D

@2

@x2
uþ ru, ð3:1Þ
where r is the per capita growth rate of the dispersing species
when its population size is small.

The minimum critical patch size (Lc) for a species in a
bounded space is

Lc ¼ p

ffiffiffiffi
D
r

r
: ð3:2Þ

This model was adapted to test whether a species’
capacity to disperse into new areas is likely to track shifting
climatic conditions (q, the rate at which climatically suitable
areas shift in space) rapidly enough to enable it to persist,
assuming habitat suitability is binary:

Lc(q) ¼ p
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r
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Finally, this model predicts species persistence if

q , c ¼ 2
ffiffiffiffiffiffi
Dr

p
, ð3:4Þ

where c is the species’ capacity for dispersal and q is the rate of
movement of climatically tolerable conditions for the species.
The critical dispersal rate to enable successful tracking of
shifting climatic conditions, Dc, can then be calculated by
rearranging the following equation:

Dc ¼ q2

4r
: ð3:5Þ

This mechanistic framework predicts how quickly species’
geographical ranges could shift in response to climate change,
given measurements for q and r. The rate of expected geo-
graphical displacement for species’ climatic envelopes can be
estimated using ubiquitous species distribution modelling
methods over successive time periods. Predicted rates of
range shift (figure 2a) can then be comparedwith habitat avail-
ability through time and species’ measured dispersal rates
(equations (3.3) and (3.4); see figure 2b for an example of a
modelled species) to help understand extinction risk [57,58].

The existence of such frameworks that demonstrate the
importance of dispersal does not imply an understanding of
when dispersal rates will suffice to enable particular species
to track shifting climatic conditions. A constellation of other
factors can strongly affect dispersal leading to range shifts,
notably interspecific (or other biotic) interactions, such as com-
petition [59]. Whatever the mechanisms involved, dispersal
‘succeeds’with the establishment of a new population in a pre-
viously unoccupied location (for a review of patterns and
processes related to species’ ranges, see [60]). This outcome
can be broken down into two processes: movement of one or
more individuals from an established location to an unoccu-
pied one and population growth in the new location that
leads to successful range extension.

There is considerable uncertainty in forecasts of both disper-
sal and population growth, highlighting some of the critical
gaps between elegant mathematical models and messy empiri-
cal realities [61]. For example, population growth can vary
stochastically both intrinsically and owing to external environ-
mental factors, including complexes of biotic interactions
[59,62]. This challenge is exacerbated because climate change
is notmerely the accelerated change ofmean climatic conditions
but is also associated with increasing variability in temperature
and precipitation [63]. This variability can lead to different
effects on population growth rates. For zooplankton in lakes,
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Figure 2. (a) Species distribution models or other approaches can yield esti-
mates of the displacement of a species’ geographical range over time. The
gap between historical northern range margins, shown approximately as
the southern line across the mapped area near the observation points
(black-outlined dots) for the species, and the expected range boundary
(northern line) following climate change can be measured based on the aver-
age distance between those boundaries, shown as q1–7. This value can be
compared against known dispersal capacities to predict whether the species
will persist using the framework developed through equations (3.1)–(3.5).
(b) A great spangled fritillary (Speyeria cybele), one of many butterfly species
whose poleward range expansion in response to climate change has been
modelled in North America. Photo by J. Kerr. (Online version in colour.)
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growing temperature variability associated with climate could
lead to higher overall population growth rates [64]. In a separate
study of 644 paired population growth measurements from
high and low levels of biotic, abiotic and human-related drivers,
population growth proved to be highly sensitive to each class of
driver [65]. The potential complexity of models needed to pre-
dict these aspects of species’ range dynamics is very high:
models could includemany imperfectlymeasuredmechanisms
that interact transiently or stably, operate differently over short-
and long time periods, and vary in their strengths along spatial
and environmental gradients. Models with manymoving parts
are hard to parameterize and harder still to validate or transfer
to new environments, time periods or species [66,67].
Approaches to assessing the adequacy of ecological models
have been summarized elsewhere, and model adequacy
needs to be evaluated in light of model purpose [68].

Research into dispersal and how climatic conditions affect
habitat suitability contributed to the development of conser-
vation applications around climate connectivity to facilitate
species’ geographical range shifts. Four groups of approaches
to this research area have been identified [69], focusing on:
projected ranges for species in the future (predominantly
based on species distribution models), the related question of
the spatial trajectory for how climatic ‘zones’will shift, existing
environmental gradients that might account for directionality
of species’ range shifts, and the distribution of landforms
or physiographic features that are associated with the eco-
evolutionary processes that contribute to the origins and
maintenance of biological diversity in the first place [70–72].
Accounting for differences in species’ dispersal capacities
informs conservation interventions, which can range from
nothing at all (for strong dispersers with rapid population
growth) to managed relocation (for the poorest dispersers,
which may be unable to track anthropogenic climate change
even in the most connected landscapes) [73]. Most species
likely fall between these extremes and emerging techniques
to account for their dispersal capacities and habitat require-
ments lead to specific recommendations for protecting
particular habitat patches and corridors (despite imperfect
data) to facilitate species movements through fragmented,
intensively used landscapes [74,75]. Linking correlative
models, like most species distribution models, with mechan-
ism- or process-driven approaches offers potential insight
that could vitally inform those planning processes [61].

The balance between species’ capacities to disperse to
novel environments and to maintain populations in areas
that have been colonized is vital for understanding how
their extinction risk changes over time [8]. Many species dis-
perse weakly, limiting potential range expansion [76], and
making it more likely that they will not track shifting climatic
conditions or maintain their range size. The spatial difference
between how far a species needs to move to track shifting cli-
matic conditions and how far its range has actually shifted is
its climate debt. Despite evidence of fairly rapid poleward
range expansions, birds and butterflies in Europe have accu-
mulated climate debts of 212 and 135 km, respectively [77].
Population extinctions in areas that have warmed beyond
species’ upper thermal limits (measured in terms of their rea-
lized niches) have been less commonly detected than range
expansions, but such populations face greater extinction
risks in the future.
4. Persistence during climate change
Extinctions have been documented among populations present
in areas where warming now exceeds the upper thermal limits
of species’ realized niches [78,79]. Given species’ life-history
characteristics, warming has rendered populations in areas
near thewarm limits of species’ realized niches particularly sus-
ceptible to extinction [49]. Bumblebee species’ ranges across
Europe and North America tended to retract from their histori-
cal southern limits relative to historical baselines, indicating
losses among southernpopulations [79]. Bumblebees originated
in temperate environments [80], and present-day trends of
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population decline among species in North America and
Europe from warm, southern areas have a phylogenetic signal
that may reflect this taxon’s evolutionary origins. In other
words, niche conservatism in conjunction with temperate
origins for species represents a distinct (though far from
exclusive) pathway towards elevated extinction risk.

Among tropical reptile populations, extinction risks have
risen as climate changes have imposed conditions at or
beyond species’ physiological limitations, indicating that elev-
ated extinction risk due to climate change is not limited to
lineages that originated in temperate environments. The prob-
ability of local population extinctions in these reptiles is
expected to grow to about 20% by 2080 [78]. Moreover, for
both bumblebees and tropical reptiles, the rates of range expan-
sion into new areas do not come close to offsetting the rates of
range loss elsewhere, indicating that climate change is tilting
the balance strongly towards elevated extinction risk. After
accounting for dispersal limitation and realistic extinction
debt assessments, about 1 in 6 species by 2080 will face elev-
ated extinction risks from climate change, given the present
trajectory of carbon emissions [8]. While this estimate is
lower than earlier projections [81], it implies rates of loss that
are comparable with mass extinctions, especially if those
rates are maintained or rise beyond 2080 [4,82].

‘Climate chaos’ is the growing frequency and intensity of
extreme weather events associated with climate change [83]
and it is linked to species’ local extinction risk both in the
fossil record and, increasingly, in relation to anthropogenic
climate change. Such effects may help explain why popu-
lation extinctions are sometimes more rapid than predicted
given changing climatic conditions [27], though other extinc-
tion drivers, such as land use change and intensification [84],
and overkill [85,86], certainly contribute strongly to popu-
lation and species losses. Nevertheless, most models of
climate change-driven species declines, such as obtained
through species distribution modelling, assess habitat suit-
ability using climate measurements derived from weather
averages over various time periods (commonly 30 years
[87]) that many organisms do not live long enough to experi-
ence. For many organisms, it is not a changing climate that
directly affects them, but the fluctuations in weather associ-
ated with climate change. Consequently, it is valuable to
distinguish between ‘press’ (longer-term) exposures to novel
conditions related to climate change and ‘pulse’ (episodic)
exposures that include weather extremes [88].

The potential effects of climate change, as mediated by
changing weather, reflect organismal sensitivity to new con-
ditions, exposure to those conditions and adaptive potential
[89]. Consequently, extremeweather events, such as heatwaves,
drought, or storms, contribute to an array of localized biotic
responses [90]. Effects can be direct (e.g. on physiological per-
formance) or indirect (e.g. through emergent phenological
mismatches between pollinators and host plants) [91–94].
Growing frequencies and intensities of such extreme events
can be rapid and catastrophic, such as widely observed degra-
dation of tropical coral reef communities, which are highly
susceptible to warming water temperature associated with
climate change [95], despite the smaller role of some stressors,
like habitat fragmentation, that pervasively complicate and
inhibit the movement and persistence of individuals in
terrestrial habitats.

There can be strong interplay between dispersal and local
persistence due to extreme weather. In terrestrial systems,
habitat corridors between species’ current ranges and areas
to which they must move are likely to be more effective if
they provide microclimatic refugia—limiting individual or
small population exposure to extreme events and to shifts
in mean conditions (e.g. warming average temperatures)
[96,97]. Among studies examining biotic effects of extreme
weather, 57% (of 534 studies found in 205 journals, between
1941 and 2015) reported negative impacts and nearly a fifth
found that populations declined by 25% or more [98]. In
these studies, the rates of recovery following extreme weather
events (e.g. heatwaves, storms or drought) varied, with 30%
of studies showing that populations did not recover and
most others showing recoveries taking 2–10 years. For
many other taxonomic groups, exposure to ‘pulse’ conditions
(namely, extreme events) represents a key pathway for bio-
logical impacts that is distinct from long-term ‘press’
exposures.

Species’ sensitivities to new weather conditions should
reflect the proximity of their realized niche boundaries (e.g.
their upper thermal limits), while exposure depends on vary-
ing magnitudes of weather changes throughout species'
ranges relative to their tolerance limits. Both sensitivity and
exposure have previously been linked to climate change-
driven extinction risks globally, as measured using expert
opinion, and both will vary spatially [27,89]. For a hypoth-
esized environmental limitation on the distribution and
abundance of a species over a broad area, the species’ proxi-
mity to its tolerance limits (sensitivity) relative to changing
conditions (exposure) can be estimated as [99]

P ¼ 1
t

Xt

i¼1

Nm �NSmin

NSmax �NSmin

� �
, ð4:1Þ

where P is the species’ position in realized niche space assessed
based on weather data over a time period of interest divided
into t units (e.g. 12 if the time units are months), Nm is the
environmental measurement for that area during that month,
NSmax is the species’ upper realized niche limit, and NSmin is
the species’ lower realized niche limit. For bumblebee species
in Europe and North America, a measurement of thermal pos-
ition between a baseline and recent time period (1901–1974 and
2000–2014) explains spatio-temporal range dynamics, includ-
ing extinction and colonization, better than temperature or
precipitation change (electronic supplementary material,
figure S1). This measurement is easily implemented in geo-
graphic information systems and can be calculated readily
across broad areas and through time using weather data. It
can also be integrated across species assemblages, as with cli-
mate metrics such as the community temperature index [77],
to help predict geographical variation in extinction risks, or
potentially to inform the development of corridors, stepping
stone habitats, or protected area management strategies.
Changing frequencies and intensities of extreme weather
conditions were related to the likelihood of population persist-
ence and colonization of new areas, spatially and temporally.
5. Mechanisms, models and management
The challenge is to produce models that successfully predict
whether, where and when species will decline or benefit from
climate change and other forms of global change [45,100]. To
achieve this, models ‘should be made as simple as possible,
but no simpler’1 (see also [61]). At one extreme, it is possible
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to construct correlativemodels describing a species’ distribution
on the basis of an array of environmental conditions, such as
those derived through species distribution models [101]. Such
a model can capture real biological processes that generate
measurable patterns that can improve predictions of global
change impacts on species, such as their dependence on temp-
erature in aspects of life history. Conversely, these models can
sometimes describe distributions purely because species’
ranges are commonly continuous through space and environ-
mental factors can have a similar spatial structure to species’
ranges [102,103]. That causation is hard to infer from pure
correlation is axiomatic, necessitating strategies to avoid
weak inference [104], such as assessing spatial models’ transfer-
ability through time [105] or to independent locations [106].
At the other extreme, mechanisms affecting how species
respond to climate change have been grouped into six broad cat-
egories: biotic interactions, evolutionary responses, physiology,
dispersal and range dynamics, demography and life-history
characteristics, and responses to environmental variation [22].
Each of these groups includes an unknown number of more
specific mechanisms, many of which necessarily interact
(e.g. dispersal can respond rapidly to selection, life-history
characteristics like phenology interact with range dynamics,
etc.). Testing each of these mechanisms thoroughly is imposs-
ible, as no measurements (let alone field-based tests) for any
of them exist for most described species [22], and most species
have probably not been described [107,108]. The challenge,
from a conservation perspective, is to identify the mechanisms
that are necessary for predicting population or species’ extinc-
tion risks. This uncontroversial objective is analogous to
statistical frameworks designed to balance model complexity
with model information (as well as Einstein’s advice, quoted
above) [109,110].

Accounting for critical mechanisms, such as dispersal or the
limits of species’ physiological tolerances, in models of species’
extinction risk is difficult but obviously necessary for many
practical purposes. Models that correctly identify vital mechan-
isms predicting species’potential range expansions or losses are
more useful because mechanisms improve prediction of bio-
logical responses to novel conditions and can consequently
indicate where intervention, planning, and management are
necessary [22,45]. For example, recognition of dispersal limit-
ation in fragmented landscapes launched research programmes
into the roles of habitat corridors, and recognition that species’
persistence can be threatened by some kinds of extreme
weather events has led to calls to account for microrefugia
and topoclimatic heterogeneity in landscape management
[111]. Alternatively, a purely correlative model might link the
distribution of a species to an array of environmental factors
and describe that species’ distribution ably. Without evidence
of causation, purely correlative models’ main contribution is
to suggest avenues for potentially useful further research. For
example, correlations between numbers of species within a
region and that region’s mean climatic conditions are well
known [6,7,112], and there is little doubt that climate is causally
related to gradients of biological diversity. However, early cor-
relativemodels linking regional climate to species richnesswere
exploratory and implied little about how to conserve biological
diversity potentially threatened by climate change beyond
mitigating climate change itself. Recognition of potential
mechanisms governing the climate–richness relationship,
such as niche conservatism and evolutionary origins in tropi-
cal or temperate climates [79], suggests avenues for specific
management actions and could inform decisions about which
species are vulnerable to rapid warming.

The roles of mechanisms, such as dispersal capacity, can be
assessed and benefit management interventions even when
such traits cannot be precisely measured in complex environ-
ments [25]. The critical requirement is that there must be
strong confidence that the mechanism actually affects the like-
lihood of conservation success. The interaction between land
use change and intensification and climate change will clearly
amplify threats to biological diversity for many species, with
climate change imposing a requirement to shift into new
areas while land use changes create barriers to that movement
[113], likely accentuating species’ extinction risks [114]. Such
effects are mediated by species’ traits. Research into landscape
connectivity predates widespread recognition of extinction
risks posed by anthropogenic climate change and can be
traced back, at least, to original applications of island biogeo-
graphic theory to protected area design [115]. Interactions
between landscape connectivity and climate change were
recognizedmuch later, but approaches to their assessment have
advanced rapidly and are beginning to inform continent-wide
conservation planning research.
6. Conclusion
Understanding of the consequences of global climate change
for biological diversity and its conservation has grown expo-
nentially since those risks were first outlined. Whether
through its direct or indirect effects on species, predictions
that climate change alone is sufficient to launch a mass extinc-
tion are credible, as are observations that this process has
begun. Other aspects of human activity, such as land use
change or the spread of invasive species, are sufficient to
create such a crisis directly, and the contributions of multiple
stressors, including climate change, amplify those risks.

Geographical range shifts among species have now been
documented in terrestrial, marine and freshwater ecosystems
globally. Every such shift can include range expansion,
achieved through dispersal to (and establishment in) new
areas or range loss, the consequence of local population
losses from historically occupied areas. These are necessary
logical foundations for research into range dynamics, and pro-
gress towards understanding how such processes alter species’
ranges has been rapid.

Mechanistic approaches to considering dispersal can yield
valuable and surprisingbenefits, suchaspredictions for themini-
mum patch sizes needed to conserve species whose ranges are
shifting. The growing realization that climate change exerts
some of itsmost serious effects through changes in the frequency
and intensity of extreme weather reflects the formal recognition
that consequences to species’ extinction risks reflect their sensi-
tivities and exposure to such change, as well as their adaptive
capacities. Much progress is needed to understanding whether,
when and why species may adapt to or tolerate changing
weather patterns associated with climate change. However,
new techniques that account for both species’ sensitivities and
exposure to change inform predictions for colonization and
extinction and consequently for range dynamics overall.

The motivations of research into range dynamics can be as
diverse as the researchers who pursue them, ranging from
academic curiosity to a desire to inform practical policy
goals. As with conservation biology [116], however, global
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change biology is at least partly a mission-driven discipline
whose core objective is to minimize the negative impacts of
pressures such as climate change, whether for populations,
species or ecosystem processes. In terms of species conserva-
tion, rapid progress is vital and should be commensurate
with the pace and global scale of climate change itself, inform-
ing practical strategies to reduce conservation threats, such as
identifying networks that minimize species’ exposures to intol-
erable conditions and maximize their capacity for movement.
Understanding the critical processes and mechanisms that
affect species’ range dynamics is vital to identifying useable
solutions. Knowledge of how and why global change affects
biological diversity is constantly evolving but is more than
sufficient to inform policy options that would change the
trajectory of the sixth mass extinction for the better.
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