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ABSTRACT
The spectacular diversity of personality and behaviour of animals and humans has
evoked many hypotheses intended to explain its developmental and evolutionary
background. Although the list of the possible contributing mechanisms seems long,
we propose that an underemphasised explanation is the division of labour creating
negative frequency dependent selection. We use analytical and numerical models of
social division of labour to show how selection can create consistent and heritable
behavioural differences in a population, where randomly sampled individuals solve
a collective task together. We assume that the collective task needs collaboration of
individuals performing one of the two possible subtasks. The total benefit of the
group is highest when the ratio of different subtasks is closest to 1. The probability
of choosing one of the two costly subtasks and the costs assigned to them are under
selection. By using adaptive dynamics we show that if a trade-off between the costs
of the subtasks is strong enough, then evolution leads to coexistence of specialized
individuals performing one of the subtasks with high probability and low cost. Our
analytical results were verified and extended by numerical simulations.

Subjects Computational Biology, Evolutionary Studies, Mathematical Biology
Keywords Division of labour, Behavioural syndrome, Personality, Adaptive dynamics,
Cooperation, Specialization

INTRODUCTION
Behavioural differences among conspecifics of the same population have been reported

from all kinds of living organisms, from bacteria to vertebrates, including humans (Dall,

Houston & McNamara, 2004; Dingemanse et al., 2004; Stampsa, Briffa & Biro, 2012;

Grinsted et al., 2013; Cordero & Polz, 2014). A bacterium’s behaviour is determined by

its possession or lack of certain genes. However, as organismal complexity rises, behaviour

also becomes more subtle and less predictable, reaching the greatest complexity in humans.

Interestingly, while variation in bacterial behaviour is widely studied as a classical model of

fluctuating or negative frequency dependent selection (Cordero & Polz, 2014), the adaptive

value of individual variation in animal personality, especially in humans, is still the subject

of debate (Penke, Denissen & Miller, 2007; Montiglio, Ferrari & Réale, 2013).
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There are several approaches to explaining the ultimate causes of human and animal

personality variation (where animal personality is also called as coping style, behavioural

syndrome, etc. (Wolf et al., 2007)), and though the available methods and background

knowledge are quite different in the two areas, the basic explanations are rather similar.

These include trade-offs between different life-history strategies (i.e., reproducing

early vs. growing more) (Wolf et al., 2007) or personality dimensions (Nettle, 2006),

individual niche specialisation (Bergmüller & Taborsky, 2010; Montiglio, Ferrari &

Réale, 2013) and different forms of fluctuating or frequency dependent selection

(Penke, Denissen & Miller, 2007).

However, the possibility that selection for cooperation can also play a role in causing

or maintaining this diversity has not yet received proper attention. We think that there

are many social situations with dividable tasks that require mutualistic cooperation;

that is, cooperation from which all participants benefit, where behaviourally diverse

groups must be better off. Examples for such dividable tasks could be the operation of

hives, webs, etc. (Buech, 1995; Duarte et al., 2011; Grinsted et al., 2013), the rearing of off-

spring (Clutton-Brock, Russell & Sharpe, 2004; Barta et al., 2014), group hunting (Stander,

1992; Newton-Fisher, 2014) or even trade in human context (Gowdy & Krall, 2013).

We propose that division of labour between socially related conspecifics can cause and

maintain variation in behaviour through negative frequency-dependent selection that con-

tinuously decreases a phenotype’s benefit as its frequency increases. Selection thus creates

diversity, by favouring the rare, acting on preferences and skills; that is, on personality

traits. The aim of this article is to study such a strategic model of division of labour. But

first, because the theoretical and empirical literature on division of labour (henceforth DL)

is so diverse, we find it useful to give a short outline and classification of the phenomena.

DL, which is a cooperative act where the acting parties are engaged in different tasks,

can be observed on every level of organization from genes to social groups (Maynard

Smith & Szathmáry, 1995). However, the literature is somewhat confusing in what DL

actually is, as authors put the same label on very distinct phenomena or mechanisms.

Therefore, we will categorize DL along two dimensions: whether it is linked to reproduction

or is unlinked to reproduction, and whether it occurs within an individual or between

individuals (Table 1.). Reproduction-linked DL means that it directly arises from some kind

of reproductive DL. Sensu stricto reproductive DL means that some members of a group

are reproducing, while others are not (Simpson, 2011) like the sterile castes in eusocial

insect societies or the somatic cells after the germ-soma differentiation in multicellular

organisms. We think that reproductive DL in a broader sense happens between other-sex

individuals too. These could allow reproduction-linked DL to arise, such as the functional

and physical specialisation of reproductively inactive female ants and Trematoda larvae

to defence (Duarte et al., 2011; Lloyd & Poulin, 2014), and also any sexually breeding pair

of parents taking mildly or strongly different roles in rearing their offspring (Buech, 1995;

Barta et al., 2014; Gurven et al., 2009).

Many examples of DL also occur between reproductively similar (or nearly identical)

members of a group and therefore are not the direct result of reproductive asymmetries:
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Table 1 A possible classification of the diverse phenomena labelled as division of labour (DL). DL can occur within or between individuals and can
be linked to reproduction or unlinked, that is independent of it (for further details see the main text). This paper concentrates on the section with
grey background that we call social DL.

Reproduction-linked Reproduction-unlinked

Within ind. – Germ-soma differentiation in Volvox colonies (Michod et al., 2006) – Paralogous genes (Rueffler, Hermisson & Wagner, 2012)

– Non-reproductive polyps in Hydrozoa colonies (Cartwright, 2003) – Enzymes in a protocell (Boza et al., 2014)

– Specialized limbs (Rueffler, Hermisson & Wagner, 2012)

Between ind. – Sterile workers in Hymenoptera societies (Sherman et al., 1995) – Cooperative hunting in chimpanzees (Boesch, 2002)

– Sterile Trematoda rediae (Lloyd & Poulin, 2014) – DL between reproductive female spiders in a common
web (Grinsted et al., 2013; Wright, Holbrook & Pruitt, 2014)

– Task specialisation due to the reproductive hierarchy in
meerkats (Clutton-Brock, Russell & Sharpe, 2004)

– Task specialization of sterile Hymenoptera workers
(Duarte et al., 2011)

– Biparental care in different animal societies (Barta et al., 2014)

– Sexual DL in human societies (Gurven et al., 2009)

we call this reproduction-unlinked DL. Examples include complementary enzymes in a

protocell (Boza et al., 2014), the specialisation of limbs or organs (Rueffler, Hermisson &

Wagner, 2012), task-specialisation in social spider colonies (Wright, Holbrook & Pruitt,

2014) and Hydrozoa colonies (Cartwright, 2003), and the cooperative hunting of lions and

chimpanzees (Stander, 1992; Newton-Fisher, 2014).

As the abovementioned examples show, DL is not restricted to groups of individuals:

any cooperatively linked pair or group of any kind of organisation (i.e., organelles,

cells, tissues, etc.) can be involved. Hence, we differentiate between within and between

individuals (Table 1). Naturally, boundaries between the categories outlined above and in

Table 1 are sometimes blurred and controversial, yet we think that such a division still helps

to see differences and similarities between these interconnected phenomena.

Each of the four categories circumscribes a type of DL that has been studied on its own

(for examples and references see Table 1.), but one can also unfold a bigger picture with

several interrelations between categories. For instance, the process by which between

individuals DL becomes within individual DL is where a higher level or organisation

emerges from a cooperative group of lower level organisms (or organizations). This

mechanism often contributes to major transitions in evolution (Maynard Smith &

Szathmáry, 1995). Classic examples are organelles constituting the eukaryota cell, the

differentiation of germ and soma in multicellular animals and the appearance of sterile

castes in eusocial insect societies, which are known as superorganisms (Maynard Smith

& Szathmáry, 1995). Eusocial insect societies do not just represent a major evolutionary

transition, but are also good examples for the blurred boundaries between the divisions

outlined above, as they can be seen as one superorganism with an incomplete germ-soma

differentiation and a flexible functional specialisation or as a social group of insects with

strict reproductive DL and highly evolved DL among the non-reproductive members of the

group with both physical and functional specialisation. Therefore, they can be put in both

rows, that is in all elements of Table 1.
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In this paper we are interested in reproduction-unlinked DL between individuals, which

we will call social DL. We want to make a general argument about the possible role of social

DL in creating and maintaining personality variation, as we find the literature lacking

in this area. We present two variants of an analytically tractable model of DL. We show

that skill differentiation is typical in both cases, even though they are not qualitatively

nor quantitatively identical. Then we study an individual-based model representation of

the problem to support and widen the analytical results, and finally we show how this

mechanism can lead to diverse personalities or behavioural syndromes.

THE ANALYTICAL MODEL
Model definition
Our model studies a large well-mixed population, where members of small groups solve

a collective task. Solving this task produces a common good for the group which is

distributed among the members after performing the task. Groups consist of a fixed

number of (N) individuals sampled randomly from the population. Individuals can

choose between two kinds of subtasks, A and B, which we will also call strategies. When

entering a group, individuals make their subtask choice before they observe the choices

of others, and task switching is not allowed. Individuals can specialize more or less to one

strategy, but then they necessarily loose some of their flexibility: the more an individual

specializes on one subtask, the less is his cost for performing it and more his cost for

performing the other subtask. Hence, the abilities to perform the two strategies are not

independent, and are in negative trade-off.

Individuals are characterised by two heritable traits: the probability of choosing A or

B strategies, and the degree of specialisation to A or B. For simplicity, we assume that

the population is asexual, so progenies own the same trait values as their parent did. We

apply the methodology of adaptive dynamics to analyse the course of evolution. Our

main interest is whether DL emerges as a result of an evolutionary branching into two

subpopulations specialized for the two subtasks.

Costs
Each individual is characterised by the propensities of choosing each subtask and the costs

assigned to performing them. Costs cA and cB, associated with tasks A and B, respectively,

are constrained by the trade-off

cα
A + cα

B = kα (1)

(Fig. 1), where k > 0 represents an additional cost to a basic minimal cost (which is scaled

to be zero in the model). α > 1 means that the average cost is higher when individuals play

mixed strategies (i.e., choose both subtasks with nonzero probability) than when they play

only one (pure) strategy, A or B, with probability 1. The opposite is true when α < 1. We

will choose cA as the independent variable, therefore

cB =
α


kα − cα

A. (2)
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Figure 1 The characteristic trade-offs and cost-minimisation. The thick lines are the trade-off curves
for α = 0.5 (solid), α = 1.0 (dashed) and α = 1.5 (dotted). In general, trade-off curves are convex for
α < 1 and concave for α > 1. Thin lines represent iso-c lines of given q values (here q = 0.4). Higher the
position of a line, the larger average cost, c, it means. As we are looking for the lowest c, we look for the
lowest points where these iso-c lines touch the trade-off curves at least in one point. For α < 1, we get
the minimal c where the iso-c line is a tangent of the concave trade-off curve, the coordinates of the one
common point define the optimal cA and cB. The maximal extremum we get where the iso-c line is a
tangent of the convex trade-off curve. For α ≥ 1, the minimum is one of the endpoints of the scale.

Observe that the derivative of this dependence at the two extreme points is either zero or

infinite for α ≠ 1.

Benefits
The total benefit of a group, β(i), depends on the number of members (i) playing A (and

consequently the number of members (N − i) playing B). β(i) is a function typically

with one maximum in {0,1,..N}. That is, there exists a distribution of A and B tasks

where solving the collective task brings the highest possible benefit. We assume that β is

symmetrical, i.e.,

β(N − i) = β(i), (3)

and has a single maximum in the middle.

We will study two types of models differing only in their way of benefit sharing. In

model (I), the group benefit, β(i), is shared out equally among the group members, which

could be a model of a cooperatively acquired common good from which nobody can be
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excluded. In model (II), β(i) is first split into two and then, within the subgroups playing

A or B, halves of it are shared out equally, representing a sharing system, where the scarcer

strategy gives a higher return. Therefore the individual benefits in the subgroups A and B

are

bA(i) =

β(i)/N for model (I)
1

2
β(i)/i for model (II)

(4)

bB(i) =

β(i)/N for model (I)
1

2
β(i)/(N − i) for model (II).

(5)

We discuss these two models together until differences emerge. In the following, we will

dismiss the term 1/2 from the model (II) calculations, as it makes only a quantitative

difference. Note that

Δb(i) = bA(i + 1) − bB(i) (6)

is the benefit advantage (or disadvantage) of playing strategy A over strategy B for an

individual, provided that the rest of the group have i members playing A. It is easy to see

that

Δb(i) = −Δb(N − 1 − i), (7)

which we will use later on.

Payoffs
The two independent heritable traits of individuals are q ∈ [0,1], the probability of

choosing subtask A, and cA ∈ [0,k], the cost assigned to this task. The expected payoff

values for an individual playing both strategies are:

wA(q,cA) =

N−1
i=0

fi,N−1(q)bA(i + 1) − cA

wB(q,cA) =

N−1
i=0

fi,N−1(q)bB(i) − (kα
− cα

A)
1
α , (8)

where q denotes the average q value of all the other population members, i.e., the

probability of a randomly chosen individual playing A. The value for cB was substituted.

The probability of having i individuals playing A among the other N − 1 group members is

given by the binomial distribution

fi,N−1(q) =


N − 1

i


qi(1 − q)N−1−i (9)

obeying the symmetry relation

fi,N−1(q) = fN−i,N−1(1 − q). (10)
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Finally, the expected payoff for an individual with trait values {q,cA} is

w(q,cA,q) = qwA(q,cA) + (1 − q)wB(q,cA). (11)

Cost optimisation
The sub-problem of cost-minimisation of an individual with a fixed q value can be

considered separately, because it depends only on the q value of the individual and

contributes to the payoff additively. Therefore, our first interest is to find the optimal cA

cost strategy that minimizes the average cost

c(cA) = qcA + (1 − q)cB = qcA + (1 − q)(kα
− cα

A)
1
α (12)

for a fixed q.

For α = 1 it reduces to

c(cA) = qcA + (1 − q)(k − cA) = k(1 − q) + (2q − 1)cA, (13)

which is monotonous in cA. For q < 1
2 it means that cost minimization results in cA = k

(full specialisation for task B), while q > 1
2 makes cA = 0 (full specialisation for task A) the

optimal strategy. For q =
1
2 , cA is a neutral trait, which does not affect the average cost.

For α ≠ 1 we can look for an internal extremum determined by

dc(cA)

dcA
= q − (1 − q)cα−1

A (kα
− cα

A)(1−α)/α
= 0, (14)

leading to

cextr
A (q) = k


q

1 − q

 α
1−α

+ 1

−1/α

(15)

extreme cA value. This function decreases for α < 1 and increases for α > 1. Relatedly, as it

can be seen in Fig. 1, this extremum is the cost minimum for α < 1 and the cost maximum

for α > 1.

Hence, for α < 1, the cost optimum is internal and is determined by Eq. (15), while for

α ≥ 1, it is at one of the end-points according to

cmin
A (q) =


0, for q >

1

2

k, for q <
1

2
.

(16)

In the latter case the two end points are equally optimal for q =
1
2 .

The cost optimisation problem is trivial: q = 0, or 1, when the individual always choose

the same subtask. Then it is optimal to fully specialize to the same subtask, leading to zero

cost, and pessimal to specialize to the other subtask, leading to the maximal cost k. If q

changes from 0 to 1, the optimal cA changes from k to 0. This transition is continuous for

Vásárhelyi et al. (2015), PeerJ, DOI 10.7717/peerj.977 7/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.977


α < 1, but abrupt at q =
1
2 for α > 1. It can be seen that the optimal c increases with q until

q =
1
2 and decreases afterwards.

Singular points, invasion analysis
Now we turn our attention to the full evolutionary problem, the invasion of a mutant

strategy and the emergence of DL, which is inherently frequency-dependent, as the benefit

of an individual no longer depends only on the traits of its own, but on the traits of its

opponents too. Therefore, we apply the methodology of adaptive dynamics (Geritz et al.,

1997). In particular, we consider pairwise invasion, because it is known that continuous

evolution (i.e., evolution via small muational steps) is controlled by invasion (Meszéna et

al., 2005; Geritz et al., 2002; Geritz, 2005).

We describe an individual with the vector x: x = {q,cA} and assume that the population

has two types of members, a common (resident) and a rare (mutant) type. Denoting the

mutant traits by prime marks, the relative fitness of the mutant is

W(x′,x) = w(q′,c′
A,q) − w(q,cA,q), (17)

which is 0 by definition for x′
= x. (Since the mutant is rare, it does not modify q in the

leading term.)

Note that the fitness is linear in q′, but is not so in q. Linearity in a rare trait is a common

feature of game theoretic models with mixed strategies (Hofbauer & Sigmund, 1998),

leading to non-standard behaviour relative to standard adaptive dynamics (Meszéna et

al., 2001). On the other hand, the non-linearity in q is different from those commonly

experienced in matrix games, and it is the consequence of the focal individual not playing

against another individual, but instead, against a group of individuals.

Following the standard analysis we are interested in the singular points of the dynamics

and their stabilities (Geritz et al., 1997; Leimar, 2009). x∗ is a singular point, if

∂W(x′,x)

∂x′

i


x′=x

= 0, (18)

i.e., if

∂W(x′,x)

∂q′


x′=x

= wA(q,cA) − wB(q,cA) = 0, (19)

and if

∂W(x′,x)

∂c′
A


x′=x

= −
dc(cA)

dcA
= 0. (20)

We have already solved Eq. (20) by Eq. (15) for α ≠ 1. Substituting it into (19), q is

determined by

G(q) + H(q) = 0 (21)
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at the singular point, where

G(q) =

N−1
i=0

fi,N−1(q)Δb(i) (22)

is the expected benefit advantage for the focal individual to play A, instead of B, and

H(q) = −
dc(cextr

A (q))

dq
= k


q

1 − q

 1
1−α

− 1


q

1 − q

 α
1−α

+ 1

−1
α

(23)

is the contribution from the cost term, valid for α ≠ 1.

It follows from the symmetry of Δb(i) and Δfi,N−1(q) (see (7) and (10)) that

G(q) = −G(1 − q), so G(1/2) = 0 for model (I) and model (II) as well. One can see

that H(q) is also zero for q = 1/2; that is (19) is satisfied for q = 1/2 at α ≠ 1.

The case α = 1 requires separate consideration, as the internal extremum of the average

cost cA does not exist in this case. However, recall that cost is a neutral trait for α = 1, q =
1
2 .

That is, the singular point is replaced by a singular line at q =
1
2 . This situation is usually

neglected in adaptive dynamics.

Now we study the possibility of other singular points. It is easy to see that G(q) > 0 if

q < 1/2, and consequently G(q) < 0 if q > 1/2. The same is true for function H(q) for

α > 1, because c has a minimum at q = 0. Therefore, the only solution of G(q) = 0 is

q = 1/2. Further, similar to G(q), H(q) = −H(1 − q), and it can be shown that if α < 1

(α ≥ 1), then H(q) is strictly monotonously increasing (decreasing) with

lim
q→0

H(q) = −θk (24)

lim
q→1

H(q) = θk, (25)

where

θ =


−1, for α > 1

0, for α = 1

1, for α < 1,

(26)

that is, for α = 1 H(q) ≡ 0. Consequently, q∗
= 1/2 is the only solution of (21) if α ≥ 1,

so there is no other singular point except x∗. In contrast, for α < 1 other singular points

are possible too. It is easy to see that because of the continuity and the symmetry of the

functions G and H, if

G(1) + H(1) > 0 (27)

d

G(q) + H(q)


dq


q=1/2

< 0, (28)
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Figure 2 Function G(q) + H(q) on a schematic figure with singular points x∗∗
u , xu and x∗

u, when
(Eq. (28)) are valid.

then at least one additional pair of singular points exists besides x∗ (Fig. 2). Denote these

points by x∗
u = {q∗

u,c∗
u}, where q∗

u > 1/2 and x∗∗
u = {q∗∗

u ,c∗∗
u }, where q∗∗

u = 1 − q∗
u < 1/2,

because of the symmetry of G and H. (If more than one such a point pair exists, then it is

assumed that x∗ has the biggest and x∗∗ has the smallest equilibrium frequency.) Based on

these results and assumptions, in the following subsection we investigate the invasion of a

mixed strategy solving both subtasks in a resident population, where only one of the pure

strategies is present as the resident strategy.

Invasion of a pure strategy by a mixed one
We consider the case when only one pure cost-free strategy is present initially; that is, the

evolution begins either from the x(1)
= {1,0} or from the x(0)

= {0,k} state, and we are

interested in whether a mutant mixed strategy solving the alternative subtask with nonzero

probability can invade or not. (Here, cost-free means that the subtask has no additional

cost, since we can assume that any subtask has a constant basic cost which we can build

in the benefit.) Without losing generality, let us look at the case of x(1), that is, every

individual chooses subtask A and this subtask is cost-free. Now we study the invasion of a

mutant in the neighborhood of x(1) by asking whether there are x′
= {q′,c′

A} mutants with

higher fitness than the resident one, that is whether

W(x′,x(1)) ≈
∂W(x′,x)

∂q′


x′=x(1)

δq +
∂W(x′,x)

∂c′
A


x′=x(1)

δcA (29)
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can be positive, or not, where δq = q′
− q(1)

= q′
− 1 ≤ 0 and δcA = c′

A − c(1)
A = c′

A ≥ 0

in such a way that at least one of these terms differs from zero. It is clear that the partial

derivatives become

∂W(x′,x)

∂q′


x′=x(1)

= G(1) + k, (30)

∂W(x′,x)

∂c′
A


x′=x(1)

= −1. (31)

The second term in (29) is always negative (−1 × δcA < 0). Thus W(x′,x(1)) can be

postitive only if G(1) + k is negative (since δq < 0), which is the condition for the

invasion of a mutant (if δcA = 0 then q′ < 1 spreads). The sign of G(1) + k depends on

the parameters and the type of the model. Depending on the model type we have two cases:

G(1) + k =


[β(N) − β(N − 1)]/N + k, for model (I),

β(N)/N − β(N − 1) + k, for model (II).
(32)

Considering model (I) it is clear that β(N) − β(N − 1) < 0, thus (32) can be negative.

However, if N is large enough and/or the total cost k is high enough, then G(1) + k > 0

so W(x′,x(1)) < 0 and thus x(1) is resistant against the invasion of mixed strategies. The

situation is a bit different for model (II). Again, β(N)/N − β(N − 1) is negative, but this

value is smaller than in the previous case, thus G(1) + k can easily remain negative if N is

large and β(N − 1) > k.

Because of the symmetry in the model, the condition for the invasion at x(0) is

qualitatively the same as at the point x(1). Here if G(0) − k > 0, then a mixed strategy

mutant can spread, which is more probable in model (II), as before. However, we must

admit a mathematical nuance at this point. The trade-off function (2) has a zero-or-infinite

derivative at cA = 0, or 1, for α ≠ 1. That is, if mutation steps are uniformly small, when

parametrised by cA, they become non-uniform when re-parametrised by cB. From a

biological point of view, the natural assumption is that mutations are uniformly small

in cA in the vicinity of cA = 0 and uniformly small in cB in the vicinity of cB = 0. Thus cB,

the cost of the mutant B strategy must be the basic variable at x(0).

Further progress after the initial invasion in the direction of decreasing q is very different

for α < 1 and for α > 1. So let us assume that invasion is possible. Then a new mutant x′

spreads and fixates in the population. Clearly q′ < 1 and c′
A ≥ 0 in this new resident state.

To study the invasion of the next mutant x′′ we can follow the same analysis as before.

However, the partial derivative of the fitness difference as a function of c′′
A is

∂W(x′′,x′)

∂c′′
A


x′′=x′

=


−q′

+ (1 − q′)O((c′
A)α−1), for α > 1,

1 − 2q′, for α = 1,

−q′
+ (1 − q′)/O((c′

A)α−1), for α < 1

(33)

(cf. (14)). If α < 1 then this derivative is a large positive quantity for very small cA.

Therefore c′′
A > 0 easily spreads, and the invasion process continues to the inner singular
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point. Recall that the cost optimum for a given q is internal for α < 1. Consequently, the

“best” direction for a small mutation follows the direction of the curve cextr
A (q). That is, we

have an essentially one-dimensional dynamics along this curve; direction is determined by

the sign of −q′
≈ −1, thus invasion of c′′

A > 0 is not supported and invasion events stop in

xm where qm < qm−1, cm
A = cm−1

A = 0. Because the cost optimum is always at one of the end

points of the cA scale, if the pure strategy is invaded, then evolution proceeds along the edge

cA = 0 of the strategy space. Direction of this one-dimensional strategy is determined by

the sign of G(q) + k, as the cost strategy does not change; a rest point is reached when this

variable becomes zero. As G(1
2) = 0, the rest point xm is reached at q > 1

2 , i.e., before the

cost optimum switches to the other extreme.

Convergence and branching of the singular point x∗

The question is the x∗
= {q∗,c∗

A} singular point’s convergence stability and the conditions

of branching. The convergence of a singular point means that in its neighborhood,

evolution leads the system towards this singular point (Geritz et al., 1997). However, when

close to it, branching gives rise to two different phenotypes in the evolutionary optimum.

This is the state where coexistence of different types or DL is observed. Following Leimar

(2005) and Leimar (2009), to study convergence we have to find out whether the Jacobian

matrix J = H + Q of the selection gradient is positive or negative definite, where

Hi,j =
∂2W(x′,x)

∂x′

i∂x′

j


x′=x

(34)

Qi,j =
∂2W(x′,x)

∂x′

i∂xj


x′=x

, (35)

and xi denotes the coordinates of the x vector. If J is negative definite, then x is strongly

convergence stable. That is, this state is convergence stable independently of the

characteristics of covariance among the mutations in x1 and x2. Further, if H is positive

definite or indefinite, then the singular point is a branching point (Leimar, 2009).

It is easy to see that H1,1 = Q1,2 = Q2,1 = Q2,2 = 0 in our model, consequently the J

matrix becomes
Q1,1 H1,2

H2,1 H2,2


. (36)

We have seen that if β(i) is symmetrical then {q∗,c∗
A} = {

1
2 , k

α√2
} becomes a singular point.

Then the J matrix becomes:Δw(q∗) −2

−2
α − 1

c∗
A

, (37)
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where Δw(q∗) is

Δw(q∗) =
∂[wA(q,cA) − wB(q,cA)]

∂q


q=q∗,cA=c∗A

. (38)

After the derivation we get

Δw(q∗) =

N−1
i=0


N − 1

i


q∗i−1(1 − q∗)N−2−ii − (N − 1)q∗


Δb(i). (39)

Using q∗
= 1/2, the symmetry of β(i) and Eq. (22) we get

Δw(1/2) =
1

2N−3

N−1
i=0


N − 1

i


iΔb(i). (40)

Since β(i) = β(N − i), it is easy to see that Δw(1/2) < 0 for both models.

The {q∗,c∗
A} = {

1
2 , k

α√2
} point is convergence stable (eigenvalues of (37) are negative) if

Δw(1/2) +
α − 1

c∗
A

< 0

Δw(1/2)
α − 1

c∗
A

− 4 > 0. (41)

Since Δw(1/2) < 0, the second criterion can be true only if α < 1. However, in this case,

the first criterion will always be true. So the conditions for the singular point’s convergence

stability will be

Δw(1/2)
21/α(α − 1)

4
> k. (42)

We note here that Δw(1/2) is greater for model (I) than for model (II) at the same β(i),

thus the above criterion can be satisfied with a smaller α (stronger trade-off) in model (I)

than in model (II). Similarly, Δw(1/2) is greater if the maximal value of β(i) is smaller,

that is, branching needs stronger trade-off if the benefit to cost ratio of the collective task is

smaller.

We can also get the H matrix using the formerly shown calculations: 0 −2

−2
α − 1

c∗
A

, (43)

It is easy to show that H is indefinite, therefore the singular point will always be a branching

point. Obviously, the indefiniteness is related to the fact that the cost is minimal at the

corners {1,0} and {0,k} but maximal at {1,k} and {0,0}.

To summarize: the {q∗,c∗
A} = {

1
2 , k

α√2
} singular point can only be convergence stable

if α < 1, which is fulfilled if condition (42) is true. In this case the singular point is a
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branching point too. If α ≥ 1, both J and H will be indefinite. In this case, the convergence

of the singular point depends on the covariance matrix of the mutants (Leimar, 2009).

INDIVIDUAL-BASED SIMULATIONS
Our individual-based numerical models were designed to be as similar to their analytical

counterparts as possible; they differ only in being somewhat closer to natural systems.

We present our methods and results using one arbitrary but illustrative parameter set

concerning the size of the groups, the population and the benefit function, but we note

here that the presented results are robust against variation of the parameters.

As in the analytic models, each individual is characterised by the strategy pair x = {q,cA}.

In each round, N = 7 individuals were sampled randomly from the well-mixed population

of 1000 individuals to face the collective task. In each generation, 1000 such groups were

selected, so that individual fitnesses were updated on average 7 times in each generation.

The group’s success in solving the task depended on the ratio of members choosing each

subtask in a way that the maximal benefit was achieved when this ratio was closest to 1. The

actual benefit of the group was defined by the function β(i) =
30

σ
√

2π
e
−

(i−µ)2

(2σ)2 with σ = 5,

µ = 3.5 and i denoting the number of group members playing one strategy. Varying σ , the

behaviour of the models changes in a not monotonous, but still only quantitative manner,

therefore we could use an arbitrary value for this parameter. The benefit defined by the

above function was shared between group members as defined in the analytical models (I)

and (II). In each case, payoffs were added to the group members’ fitness, and at the end

fitness was divided by the number of games an individual participated in. Those who did

not participate continued to have zero fitness. After the 1000 fitness updates, 100 bouts of

reproduction took place; we compared the fitnesses of two randomly selected individuals,

and the offspring of the one with the higher fitness replaced the other. Every offspring

inherited its parents’ traits, but with probability 0.1, mutations occured in both traits of the

offspring. The mutant trait values followed a uniform distribution around the parents’ trait

values, so they became q′
∈ [q − ϵ,q + ϵ] and c′

A ∈ [ α


cα
A − ϵ, α


cα

A + ϵ] with ϵ = 0.005 (and

with the obvious limitations that 0 ≤ q′
≤ 1 and 0 ≤ c′

A ≤ k).

Branching
For testing the predictions of model (I) and (II) regarding the branching points, we de-

signed simulations to map the parameter space. We ran 20 repeats for each parameter-set

and looked for the frequency of evolutionary branching. At the beginning of a repeat the

whole population was uniform with q0 = (1 − q0) = 0.5 and c0 = α


kα − cα
0 =

k
α√2

to make

sure that the trait values were in the singular point x∗
= {

1
2 , k

α√2
}. In each simulation, we

followed the population for a previously estimated time, enough for branching in most

cases: 1.5 × 105 or 105 generations in model (I) and (II), respectively.

At the end of the simulations there were three types of results: (1) the population was

nearly uniform, evolving to x(0) or x(1), (2) branching occurred, half of the population

became specialized in subtask A, and the other half in subtask B, and (3) the population
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Figure 3 Frequency of branching at different k and α values in model (I) (A) and (II) (B). The solid
curves are the predicted border lines, above which branching never occurs in the related analytical
models. The darkness of the points denotes the number of branching events out of 20 at a given parameter
combination with the darkest colour denoting 20 and the lightest denoting 0 branching events.

was still distributed around the original states, probably meaning that there was not

enough time for branching.

After mapping a huge part of the parameter space we concluded that the simulated

results (Fig. 3) match the three most important predictions of the analysis; furthermore,

they reveal a new charachteristic of the stochastic model. First, when branching occured,

it happened in or very close to the singular point (Fig. 4B). Second, the frequency of
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Figure 4 The effect of the initial trait values on branching in model (I). Plot A. shows the intial
parameter combinations with k = 0.25 and α = 0.15. Darker points denote events, where branching
did not occur, and lighter points denote branching events. Plot B. shows two runs of g × 104 generations,
those denoted by squares on plot A. with respective colours.

branching followed qualitatively the analytically calculated curves (42) in both models.

Third, in model (I) specialisation occured in a much narrower area of the parameter space

than in model (II), as predicted in (40). We also have a fourth observation, that is, in model

(II), above the predicted border line, the closer α is to 1, i.e., the weaker the trade-off is, the

more branching occurs, probably as a result of the strong negative frequency dependent

selection. Furthermore, while the invasion analysis is valid only in the close neighborhood

of the singular point, or close to the x(0), x(1) points, the numerical simulations show that
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local analysis successfully forecasts global behaviour. On the other hand, branching can

occur above the critical α values as well, although with significantly smaller frequency than

below the critical α (Fig. 3B), because the x∗ singular point remains a branching point

for every α. Thus if the selection and the stochasticity of the system allows x to move into

the vicinity of x∗, occasional branching can occur. Naturally this depends on the initial

conditions as well.

Finally, to see how much the benefit function counts in determining the branching

behaviour, we designed some simulations with different asymmetrical benefit functions

using parameter sets where branching was typical before. During these simulations we

have seen that small asymmetries result in specialisation, as before, with subpopulation

sizes resembling the amount of asymmetry, but large asymmetries result in homogeneous

populations with only one pure strategy. The latter is probably a result of stochasticity and

the singular point being too close to the unstable fixpoints x∗u or x∗∗
u .

Initial values and convergence

After testing the existence of the predicted singular point x∗
= {

1
2 , k

α√2
}, we studied the

effect of the initial population trait values, {q0,c0}, on branching in model (I). As we

have shown in ‘Invasion of a pure strategy by a mixed one’, the x(0),x(1) end points can

be stable against the invasion of mutants. Using the Gaussian benefit function defined

above with not too small (>0.001) k values it is easy to see that [β(1) − β(0)]/N − k < 0

and [β(N − 1) − β(N)]/N + k > 0. Thus, there are additional singular points, x∗
u and

x∗∗
u , as assumed above. We pointed out that the x∗

= 1/2 singular point and the x(0),x(1)

end points are convergence stable points, while x∗
u and x∗∗

u singular points are not. These

additional singular points separate the phase-space and make the dynamics converging

either to x∗ or to one of the two end points.

To test these predictions, we ran simulations from 11 × 11 different starting points

using the formerly tested parameter set (k = 0.25, α = 0.15) that enabled branching.

The results (Fig. 4) show us that the x(0),x(1) end points are indeed convergence

stable such as the singular point x∗, and that there are unstable points separating the

dynamics. Although our numerically estimated results do not exactly match the predicted

x∗
u = {q = 0.0154,cα

A = 0.168} and x∗∗
u = {q = 0.984,cα

A = 0.644} points, they are quite

close. We note here that in model (II) in cases when x(0),x(1) endpoints are unstable, there

can be other singular points apart from x∗. These additional singular points do not modify

our general result, that is the behaviour of x∗ and can be observed only at very specific

parameters.

DISCUSSION
We have highlighted how the social division of labour can lead to specialisation in a

socially connected population. Our results not only tell us that such a mechanism can

work, they also reveal the key contributing factors, such as the strength of the trade-off,

the cost-benefit ratio, the type of the benefit sharing, and the difficulty of invading the

state where every individual resolves to the same one of the two subtasks. Although most
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of these constraints of specialisation have been described by others (Wolf et al., 2007;

Gavrilets, 2010; Goldsby et al., 2012; Rueffler, Hermisson & Wagner, 2012; Nakahashi &

Feldman, 2014), we believe that the social division of labour is an important new context.

In this paper, we constructed a model framework for the emergence of consistent,

heritable behavioural variation via social division of labour. We have shown analytically

that if population members frequently face a collective task consisting of costly subtasks,

where subtask efficiencies and the probability of choosing one of the subtasks are

(genetically or culturally) heritable traits and group benefit is a function of subtask

frequency, then a weak trade-off between subtask efficiencies (α < 1) can drive the

population into specialisation. The specialised population members thus have optimal

fitness, as DL enables them to get the highest benefit with the lowest cost, this way

maintaining diversity. This occurs more easily if benefit sharing is based on the quality

of contribution; that is, if those who represent a scarcer strategy, get a higher share (model

II). We emphasize here that according to the general theoretical results (Leimar, 2009)

branching is not impossible even if the trade-off function is concave (α > 1, trade-off

is strong), but then branching depends on the covariance of mutations in q and c traits.

We also verified our results and extended them by numerical simulations, where more

realistic conditions, such as a finite population and stochastic events were met. We

show that branching is possible in the individual based model even if the singular point

x∗ is not convergent stable. We note here that although it would be biologically more

appropriate to consider traits to be determined by many independent genes, the possibility

of hybridization would complicate the outcome considerably. (There is no other difference

between the two kinds of modelling, see (Taylor & Day, 1997)).

We have seen that one of the biggest hindrance of branching is the population being

in the locally stable state of performing only one of the subtasks, that is, the invasion of

the newly emerging strategy. Slightly different mutant mixed strategies cannot invade a

population like this. However, in natural systems, mutations are not the only cause of

behavioural change, since behaviour is shaped by environmental factors too. Our models

do not include developmental plasticity, adaptations of a lifetime, environmental effects

or learning but it is important not to forget about all these processes enabling behavioural

shifts.

Our model describes two different types of social organisation differentiated by the

way of benefit sharing. In social species, sharing a benefit collectively acquired is not rare:

social spiders share a common web and their food captured together (Grinsted et al., 2013);

several Hymenoptera species’ queens share the nest/hive founded together (Duarte et al.,

2011), and lions or chimpanzees share their prey hunted together (Packer, Scheel & Pusey,

1990; Newton-Fisher, 2014). However, we have little knowledge of a sharing system where

the members’ proportions are in relation to their specific value to the group. There is only

one species where both empirical and experimental evidence shows that the sharing system

often resembles that of model (II), and that species is us: humans (Leuven, Oosterbeek

& Van Ophem, 2004; Kanngiesser & Warneken, 2012). Obviously, this is not the only

reason why we find far more examples of social DL in human social systems than we find
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elsewhere, but it is still in concordance with the fact that DL is more easily performed. That

is, both invasion of a mixed strategy and branching appeared more easily in model (II) than

in model (I). Parallel to this observation we can also see that task specialisation without

sexual DL is also much more frequent in human societies than elsewhere. Our hypothesis

is that the system of an inherited, life-long task specialisation could easily contribute to the

appearance of different behavioural syndromes, especially in humans.

In the literature there are several hypotheses about the emergence of personality and

behavioural syndromes, in some aspects similar to our idea, and we are convinced that

these process are not mutually exclusive. On the contrary, they are probably working

together. One significant idea is social or individual niche specialisation (Bergmüller &

Taborsky, 2010; Montiglio, Ferrari & Réale, 2013), which says that each individual occupies

a niche, and the more diverse a social system is, the more and more specific social niches

the society can maintain. At first sight, these two ideas, social niches and social DL, seem

similar, but the basic situation is quite different: social niches are needed for weakening

social conflict, i.e., conflict of interest, while social DL is needed for situations with mutual

interest.

Our work has emphasised that not only conflicts, but cooperation can also lead to

personality diversification. We find this idea to fit well with a history of human evolution

where a positive feedback loop of social DL and behavioural and skill differentiation could

have contributed to the current diversity of human personalities.
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