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Background: There is growing evidence about the effect of bilateral superior
cervical sympathectomy on myocardial ischemia-reperfusion (I/R) injury. Studies have
increasingly found that the signal transducer and activator of transcription 3 (STAT3)
plays a protective role in myocardial I/R injury. However, the precise mechanism is
unknown. The present study explored the bilateral superior cervical sympathectomy’s
effect and potential mechanism in mice myocardial I/R injury.

Methods: The left heart I/R injury model was created by ligating the anterior descending
branch of the coronary artery for 30 min followed by reperfusion. Bilateral superior
cervical sympathectomy was performed before myocardial I/R injury. To evaluate the
effect of bilateral superior cervical sympathectomy on the myocardium, we examined the
myocardial infarct size and cardiac function. Then, myocardial apoptosis, inflammation,
and oxidative stress were detected on the myocardium. Furthermore, the expression of
STAT3 signal in myocardial tissue was measured by western blotting. To further examine
the cardioprotective effect of STAT3 after bilateral superior cervical sympathectomy, the
STAT3 inhibitor (static) was utilized to inhibit the phosphorylation of STAT3.

Results: The results showed that the myocardial I/R injury decreased and the cardiac
function recovered in the myocardial I/R injury after cervical sympathectomy. Meanwhile,
cervical sympathectomy reduced the myocardial distribution of the sympathetic marker
tyrosine hydroxylase (TH) and systemic sympathetic tone. And levels of oxidative
stress, inflammatory markers, and apoptosis were reduced in myocardial tissue. We
also found that the STAT3 signal was activated in myocardial tissue after cervical
sympathectomy. STAT3 inhibitor can partially reverse the myocardial protective effect
of cervical sympathectomy.

Conclusion: Bilateral superior cervical sympathectomy significantly alleviated
myocardial I/R injury in mice. And activation of the STAT3 signal may play an
essential role in this.

Keywords: superior cervical sympathectomy, STAT3, oxidative stress, apoptosis, inflammation, myocardial
ischemia-reperfusion injury
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INTRODUCTION

Acute myocardial infarction (AMI) is a common health problem
worldwide (1). The primary management strategy for AMI
is to restore coronary blood flow promptly, and the early
revascularization rate in patients with AMI increases year by
year (2). However, the return of blood flow through reperfusion
may inevitably result in additional damage to cardiomyocytes,
called ischemia reperfusion (I/R) injury (3). Many experimental
and clinical evidence shows that acute myocardial ischemia can
induce intense activation of sympathetic nervous system (SNS),
remaining elevated long-term and potentially irreversible (4, 5).
Activation of the sympathetic nervous system triggers subsequent
arrhythmias and leads to direct myocardial damage, including
affecting the extent of infarct size (6, 7). Reperfusion of ischemic
myocardium produces a large number of reactive oxygen species
reactive oxygen species (ROS). Previous studies have shown that
ROS stimulation of cardiac afferent vasopressor responses is
enhanced by vagotomy and abolished by sympathectomy (8).
It is worth considering that ROS-mediated damage is closely
related to sympathetic nerves. This study aimed to explore a new
pathway for alleviating myocardial I/R injury.

Several approaches have been developed that aim at the
local interference with the sympathetic innervation of the
heart, demonstrating that myocardial sympathetic denervation
alleviates the harmful progression of many cardiovascular
diseases. Cardiac sympathetic denervation (CSD) is a clinically
effective strategy to treat patients with malignant ventricular
arrhythmias (9, 10). In the rat model of myocardial infarction,
bilateral stellate ganglion resection effectively reduced left
ventricular remodeling and myocardial cell apoptosis and
improved cardiac function (11). In addition, studies have
demonstrated that left stellectomy increased survival of
the myocarditis rats while showing antiarrhythmic effects
with reduced inflammation (12). Similarly, inhibition of the
augmented cardiac sympathetic afferent reflex is beneficial for
preventing ventricular arrhythmias caused by AMI (13).

However, the effects and mechanism of ganglionectomy
on experimental myocardial I/R injury models are not fully
understood. All sympathetic nerves follow the blood vessels to
the target organs, a phenomenon is known as neurovascular
congruence. The Superior cervical ganglion (SCG) is located at
the bifurcation of the internal and external carotid arteries and
projects laterally along these arteries to the head and neck (14).
Webb et al. proposed in the clinical report that in the hyperacute
stage of human myocardial infarction, cardiovascular changes
have a great relationship with the infarction site, and anterior wall
infarction is mostly associated with sympathetic hyperactivity
(15). Part of the SCG nerve projects toward the anterior wall
of the heart, which overlaps with the vegetative region of the
left anterior descending artery (LAD). SCG plays a vital role
in different cardiovascular diseases (16, 17). In animal models,
previous studies have demonstrated that myocardial infarction
increases SCG neuronal activity by affecting ion channel opening
and the amplitude of action potential (18). Furthermore, in cell
studies, the co-culture of neonatal rat SCG neurons with neonatal
rat cardiomyocytes for 24 h induces Ca2+ processing and release

from cardiomyocytes and does not occur spontaneously in
neurons grown alone (19). SCG has a significant effect on the
physiological activity of the myocardium. To our best knowledge,
this is the first experimental study reporting on the impact of
bilateral SCG and related mechanisms in this I/R injury mice
model. The transcription factor, signal transducer and activator
of transcription 3 (STAT3) have been implicated in protecting the
heart from acute ischemic injury. The protein level and activation
status of STAT3 are dynamic, as is its subcellular distribution.
STAT3 has 14 highly conserved cysteine residues, nine of which
are reported to be sensitive to redox activity and are closely
related to the activation of tyrosine residue phosphorylation
(20–22).

Furthermore, the transcription activation domain (TAD)
contains a second conserved phosphor-amino acid residue
at the C-terminal, phospho-serine (Ser727), which is critical
for maximum transcriptional activation of STAT3 (23).
Phosphorylation of STAT3 leads to its dimerization and
subsequent translocation into the nucleus to interact with
regulatory elements for gene expression (24, 25). Many studies
have reported the protective effect of phosphorylation of Tyr705
on myocardial I/R injury. Calycosin isoflavone-7-O-β-D-
glucoside (CG) is one of the main components of astragalus
membranaceus (AR) with anti-inflammatory and antioxidant
activities. It has been reported that CG preconditioning activates
JAK2/STAT3 signaling pathway by up-regulating the expression
of IL-10, which helps protect the myocardium from I/R
injury (26). It was also reported that IL-10 increases secreted
galectin-3 and osteopontin expression via phosphorylating
the Tyr705 residue of STAT3, which repairs the heart after
myocardial infarction (27). The protection conferred by STAT3
is related to the regulation of myocardial processes such as anti-
cardiomyocyte apoptosis anti-inflammatory and anti-oxidative
stress (20, 21).

In the current study, we tested the hypothesis that bilateral
SCG removal might be an effective strategy for the partial
denervating of the heart via lowering the expression of cardiac
sympathetic neurohormones and subsequently attenuating the
inflammatory response, oxidative stress, and apoptosis of
myocardial cells. Furthermore, we aimed to investigate that
bilateral superior cervical sympathectomy exerts cardioprotective
effects in myocardial I/R injury mice by activating the
STAT3 signaling.

MATERIALS AND METHODS

Animals
A total of 120 healthy specific pathogen-free (SPF) C57BL/6
wild-type (wt) mice at 8–10 weeks were purchased from
Guangdong Animal Center (Guangzhou, China). After 4–7 days
of quarantine, all mice were fed in the Laboratory Animal Center
with a regular diet and sterile filtered water every day under
the conditions of a 12/12 h light/dark cycle, with temperatures
ranging from 18 to 24◦C and 60–65% humidity. Adapt to the
feeding environment for at least 1 week before the formal
experiment. The study was approved by the Institutional Animal
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Care and Use Committee of Zhujiang Hospital of Southern
Medical University (Item no. LAEC-2020-099).

Myocardial Ischemia-Reperfusion in
Mice
Ischemia-reperfusion was induced on 11–13-week-old male
mice. Subcutaneous injection of buprenorphine (0.08 mg/kg) was
used for preoperative and postoperative analgesia. Mice were
anesthetized via intraperitoneal injection of 1% pentobarbital
sodium (40 mg/kg, i.p.) and fixed in the supine position. The
mice were intubated, and ventilator parameters were set as
respiratory rate 110 times/min, tidal volume 0.8 ml, airway peak
pressure 35–45 cmH2O (Havard). The fourth intercostal space
over the left chest of the mouse was exposed. The left anterior
descending coronary artery (LAD) was found and ligated with 8–
0 ophthalmic suture. Myocardial ischemia was confirmed when
the left anterior wall turned pale and the ECG showed ST-
segment elevation and high-amplitude T wave. After 30 min, the
ligature was loosened for 24h of reperfusion. Only the thorax and
pericardium were opened in the sham operation without ligating
the left anterior descending branch.

Cervical Sympathetic Ganglionectomy
Mice were anesthetized with 1.5% isoflurane and a vertical
incision was made in the neck. The glands and muscles
were obtusely separated by microscopic tweezers. Laterally to
the left sternocleidomastoid muscle has a pulsing common
carotid artery, which follows in cranial direction to find the
carotid bifurcation (internal and external carotid). The SCG is
located behind the carotid bifurcation. With preganglionic and
postganglionic branches, the SCG is located behind the carotid
artery bifurcation. The SCG was carefully separated from the
sympathetic nerve chain and the SCG tissue was collected. The
contralateral SCG was isolated in the same manner.

Animal and Experiment Experimental
Groups
120 mice were randomly separated into five equal groups
(n = 6): the Con group, the SCGx group, the IR group, the
SCGx + IR group and the Stattic group, the success rate of
the modeling was 80%. The number of successful models was
96. 24 mice were used for Evans blue-TTC double staining
without collecting heart and blood samples. 36 mice were used for
immunohistochemical experiments. 36 mice were used for PCR,
Western Blot and enzyme-linked immunosorbent assay (ELISA)
assay. In the CON group, only the ribs and pericardium were
opened without ligation, and SCG was separated but not broken.
In the SCGx group, bilateral ganglionectomy and only the ribs
and pericardium were opened without ligation. In the IR group,
LAD ligation was ligation for 30 min and reperfusion for 24h,
SCG was separated but not broken. In the SCGx + IR group,
bilateral ganglionectomy (SCGx) followed by LAD Ligation for
30 min and reperfusion for 24h. In order to avoid the acute
inflammatory reaction period, IRI surgery was performed under
pentobarbital and buprenorphine anesthesia 3 days later. In the
Stattic group, bilateral ganglionectomy (SCGx) followed by LAD

Ligation for 30 min and reperfusion for 24h, stattic (Selleck,
20 mg/kg, i.p.) was administered 40 min before ischemia. STAT3
inhibitor, stattic (Selleck, 20 mg/kg, i.p.), a small non-peptide
molecule that potently inhibits STAT3 activation and nuclear
translocation, was administered 40 min before ischemia in the
Stattic group (28). 24 h after surgery, blood samples were
collected from the retrobulbar venous plexus for ELISA test, and
heart tissue was carefully removed and stored at−80◦C.

Echocardiography
Echocardiographic monitoring was carried out before surgery
and at the end of the experiment before the tissue was
harvested. M-mode echocardiography was obtained using a
small-animal ultrasound probe (model Veno2100) on the long
axis of the parastolic left ventricle. LVIDs (left ventricular
internal dimension systole) and LVIDD (left ventricular internal
diastolic diameter) were recorded. Mice were anesthetized
with 1.5% isoflurane, and the heart rate, respiration rate,
and electrocardiogram were monitored. Myocardial contractility
was assessed by the ejection fraction (EF) and fractional
shortening (FS). All parameters were averaged over five cardiac
cycles for analysis.

Enzyme-Linked Immunosorbent Assay
The blood samples (1 ml) were collected from the retrobulbar
venous plexus. The serum creatine kinase (CK-MB) and lactate
dehydrogenase (LDH) levels were measured according to kits
instructions (enzyme-linked immunosorbent assay (ELISA),
Nanjing Jiancheng Bioengineering Institute, Jiangsu, China).
According to the manufacturer’s instructions, the plasma’s NE
(norepinephrine) levels were measured by ELISA assay kits
(MEIMIAN, China).

Evans Blue-Triphenyltetrazolium
Chloride Double Staining Methods
Mice were anesthetized with 1% pentobarbital sodium after 24 h
of reperfusion. The LAD was blocked again, and Evens blue dye
(2% w/v, Sigma-Aldrich) was injected into the ascending aorta to
identify area-at-risk (AAR) and non-ischemic normal areas. The
hearts were then frozen and sliced into 1 mm thick pieces. Slices
were stained by a 2% (w/v) triphenyltetrazolium chloride (TTC;
Sigma Aldrich) for 15–20 min at 37◦C to identify ischemic tissue
and infarction area. The hearts were immersed in a 4% aqueous
solution of formaldehyde for 24 h. The infarct size was digitally
measured using ImageJ analysis software (Image J,Version 1.47,
National Institutes of Health, Bethesda,MD, United States). The
infarct area was expressed as a percentage of the AAR.

Hematoxylin–Eosin Staining
Mice hearts were paraffin-embedded and cut into 4 µm slices.
The sections were stained with hematoxylin for 3 min, washed
with tap water, stained with eosin for the 30 s, and dehydrated
in graded ethanol. Five fields were randomly selected to observe
the morphological characteristics of infracted tissues under the
light microscope.
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Immunohistochemical Staining
The infarct border area of the heart was selected. Myocardium
embedded in paraffin was sliced into 5 µm slices, followed
by dehydration in graded alcohol and deparaffinization in
dimethylbenzene. To achieve adequate antigen retrieval, the
sections were immersed in a citric acid buffer solution and were
repeatedly heated in a microwave oven 3 times (7 min/time). The
sections were incubated in 3% H2O2 for 10 min to block the
endogenous peroxidase and added with goat serum in drops for
30 min to block non-specific antigens. The TH antibody (1:500
diluted in PBS, Abcam) was added and incubated overnight in
a refrigerator at 4◦C. The next day, added dropwise with the
secondary antibody and added with a streptavidin-peroxidase
solution for 10 min. Finally, diaminobenzidine (DAB) was
used to develop color and hematoxylin was used to reverse
stain the nucleus.

TdT-Mediated dUTP-Biotin Nick
End-Labeling Staining
After 4% paraformaldehyde was perfused from the aorta,
myocardial tissue (the border risk area) was soaked in 4%
paraformaldehyde solution for 24 h. Dehydrated with 20%
sucrose, embedded the tissue with OCT, then the myocardium
was cut into 8 µm thick at a cryostat. Cell apoptosis was detected
by the TdT-mediated dUTP-biotin nick end-labeling (TUNEL)
kit (KEYGEN, Nanjing, China). PBS was used as negative control
instead of a primary antibody. Finally, stain the nucleus and
sealed pieces with 4-6-diamino-2-phenylindole (DAPI)(Abcam).
Five views were randomly selected to calculate TUNEL positive
nucleus under the fluorescence microscope. The apoptosis rate
was expressed as the percentage of apoptotic nucleus relative to
the total number of DAPI-stain nucleus.

Detection of Malondialdehyde Content
and Superoxide Dismutase Activity
In total, 20 mg of cardiac tissue was weighed and added to PBS
(PH7.4), which was quickly ground into 10% tissue homogenate
in the mortar. The supernatant was centrifuged and collected
to detect changes in superoxide dismutase (SOD) (Nanjing
Jiancheng, A001-1-1) and malondialdehyde (MDA) (Nanjing
Jiancheng, A003-1-1) levels. The absorbance of each index was
measured using a microplate reader.

Real-Time Polymerase Chain Reaction
Measurements
The real-time polymerase chain reaction was performed to
detect the expression levels of IL6, IL-1β, TNF-α and IL-10
by Bio-Rad CFX96 (Bio-Rad, Hercules, CA, United States)
according to the manufacturer’s instructions. We used AG
RNAex Pro Reagent to extract RNA from myocardial tissue.
5 × Evo M-MLVRT Master Mix was used for cDNA synthesis,
and 2X SYBR R© Green Pro Taq HS Premix was used for primer
amplification (Accurate biology, China). The amplification
reaction conditions were 37◦C for 15 min, 85◦C for 5 s, and 4◦C
for infinity. Relative gene expression was calculated using the
2-11CT method. The primer sequences used in this study are

shown below. Sense GCAACTGTTCCTGAACTCAACT
and anti-sense ATCTTTTGGGGTCCGTCAACT
for IL-1β, sense GCTCTTACTGACTGGCATGAG
and anti-sense CGCAGCTCTAGGAGCATGTG for
IL-10; sense CGAGTGACAAGCCTGTAGCC and
anti-sense GGTGAGGAGCACGTAGTCG for TNF-
α, sense TAGTCCTTCCTACCCCAATTTCC and
anti-sense TTGGTCCTTAGCCACTCCTTC for IL-6,
sense GGTTGTCTCCTGCGACTTCA and anti-sense
TGGTCCAGGGTTTCTTACTCC for GAPDH.

Western Blotting Assay
The cryopreserved myocardial tissue was treated by RIPA lysis
buffer containing protease and phosphatase inhibitors for protein
extraction. 20 µg protein samples were loaded on 10% SDS-
PAGE gels, transferred to PVDF membranes, and blocked in 5%
skim milk powder for 1.5 h. PVDF membranes were incubated
with anti-STAT3 (Abcam, ab68153), anti-p-STAT3 (Abcam,
ab76315), anti-Bcl-2 (CST, 3498S), anti-Bax (CST, 14796S), anti-
TH (Abcam, ab137869), anti-GAPDH (Proteintech, 6004-1-2 g),
and anti-IL-10 (R&D, AF519-SP) at 4◦C overnight. After washing
with Tris-buffered Saline with 0.05% Tween-20 (TBST), the
membranes were incubated with secondary antibody for 1 h,
followed by rinsing again with TBST. Immunoreactive bands
were exposed using the enhanced chemiluminescence (ECL)
reagent in a dark room. The relative expression of the protein was
analyzed using ImageJ analysis software.

Data Analysis
The data are expressed as the mean ± standard deviation
(SD). Statistical analysis was performed with SPSS20.0 statistical
software. Data distribution was assessed by Shapiro–Wilk test
for normality, and equal variance was assessed by the Brown-
Forsythe test. Analysis of variance followed by Bonferroni test
(normally distributed data set). If the normality or equal variance
test fails, Kruskal–Wallis rank univariate analysis of variance
(ANOVA) is used, followed by Dunn’s multiple comparison
test. It was performed with an unpaired t-test when comparing
two different groups. Statistical significance was the analysis of
variance p < 0.05.

RESULTS

Sympathetic Denervation Improved
Cardiac Function and Reduced Infarct
Size in Ischemia-Reperfusion Injury Mice
Twele-week-old C57/BL6J mice were randomly assigned to the
control and SCGx groups before ligation of the left anterior
descending branch. To verify that the removed structure indeed
contained the ganglionic sympathetic neurons, we performed
immunofluorescent staining with an antibody directed against
TH (Supplementary Figure 2). The treated mice were then
randomly divided into the control and I/R groups. As shown in
Figures 1A–C, cardiac function was impaired after myocardial
reperfusion injury, manifested as decreased LVEF and LVFS

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 April 2022 | Volume 9 | Article 807298

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-807298 March 28, 2022 Time: 19:16 # 5

Li et al. Bilateral Superior Cervical Sympathectomy

(P < 0.001 vs. CON). Removal of bilateral superior cervical
sympathetic nerves significantly improved cardiac function in I/R
injury mice, as evidenced by increased left ventricular ejection
fraction and the rate of short-axis shortening (P < 0.001 vs.
I/R). However, bilateral superior cervical sympathectomy did not
affect LVEF and LVFS in normal mice (Supplementary Figure 1).
Furthermore, in the case of the same risk area, larger infarct
size was observed in heart tissues of normal mice undergoing
I/R injury, but the size was decreased in mice with pre-bilateral
superior cervical sympathectomy experiencing myocardial I/R
injury. The infarct area of the SCGx + IR group decreased
significantly compared with the I/R group (P < 0.01 vs. I/R,
Figures 1D,E). Moreover, the enzyme-linked immunosorbent
assay (ELISA) was used to determine the serum levels of cardiac
injury markers CK-MB and LDH (Figures 1F,G). We found that
mice undergoing I/R injury presented elevated CK-MB and LDH
relative to sham-operated mice (P < 0.01 vs. CON). Pretreatment
of sympathetic denervation, I/R-injured mice showed reduced
serum CK-MB and LDH levels (P < 0.01 vs. I/R).

Removal of Bilateral Superior Cervical
Ganglion Effectively Reduces
Sympathetic Innervation of the Anterior
Myocardial Wall
Studies have shown that the imbalance of cardiac autonomic
nerve, that is, decreased vagal activity and excessive sympathetic
activity, is related to the pathogenesis of myocardial I/R injury
(29, 30). Activation of the sympathetic nervous system is a crucial
initiator of subsequent inflammatory responses and is associated
with the extent of myocardial infarction. SNS activation is related
to the release of monocytes macrophages, the expression of
various cytokines and the generation of B cell antibodies (31–
34). To determine the effect of local cardiac denervation on
cardiac nerve germination and sympathetic overactivation, we
performed immunohistochemical staining of the left ventricle,
where TH is a rate-limiting enzyme in catecholamine and
synthesis sympathetic marker (Figure 2A). We also measured
serum norepinephrine, a neurohormone that can reflect SNS
activity. We then used TH staining to detect sympathetic endings
on the anterior wall of the left ventricle (the ischemic area).
Bilateral SCGx significantly reduced the number of Th+ neurons
in the anterior myocardial wall of normal mice (P < 0.01 vs. CON
Figure 2B). Cardiac NE overflow is often used as an indirect
measure of sympathetic activity. However, the serum NE level
did not decrease (Figure 2E). Studies have shown that disruption
of norepinephrine in infarct and periinfarct myocardium is
accompanied by an abnormal increase in plasma norepinephrine
(35, 36). We hypothesized that systemic sympathetic excitability
could be compensated by local sympathetic denervation in the
myocardium. In our study, serum NE levels and Th+ neurons
were significantly increased in the I/R group. Interestingly, unlike
normal mice, pre-bilateral superior cervical sympathectomy can
reduce the increase of local and systemic myocardial sympathetic
excitability after I/R injury, as evidenced by decreased NE level
of serum and TH levels of the myocardial border zone in the
SCGx + IR group (P < 0.01 vs. IR Figures 2B,E). Moreover,

western blotting was used to detect TH protein in the border zone
of the myocardium, and the results were consistent with the above
(Figures 2C,D).

Sympathetic Denervation Inhibited
Apoptosis and Oxidative Stress in
Myocardial Ischemia-Reperfusion Mice
Apoptosis is the critical event of myocardial I/R injury. Recent
studies have demonstrated that in areas where necrotic cells are
not present to any significant amount, a good correlation is found
between the TUNEL test and other more sophisticated methods
(37). As shown in Figures 3A,B, we performed TUNEL staining
and found I/R induced prominent apoptosis in normal mice heart
tissues (P < 0.001 vs. CON). SCG removal led to a significant
decrease of these apoptotic cells (P < 0.01 vs. I/R). Pro-apoptotic
protein Bax can form a heterodimer with anti-apoptotic protein
Bcl-2 and inhibit Bcl-2. It was found that the ratio of Bax to
Bcl-2 protein was the key factor to determine the intensity of
apoptosis inhibition (38). The expression levels of Bax and Bcl-
2 in heart tissue were detected by Western blot (Figures 3C–E).
The results indicated that the protein expression of Bcl-2 was
remarkably declined in the I/R group than those in the control
group (P < 0.001 vs. CON), while Bax was significantly increased
in the I/R group than those in the control group (P < 0.001
vs. CON). Moreover, the expression of the Bcl-2 protein was
remarkably increased, while the expression of Bax protein was
significantly decreased in the SCGx + IR group (P < 0.01 vs.
IR). These results suggested that sympathetic denervation had an
anti-apoptosis effect on myocardial cells in I/R injury mice.

The change of SOD activity in tissues can indirectly reflect
the ability to scavenge oxygen free radicals. The content of
MDA can indirectly reflect the degree of lipid peroxidation
and the degree of cell damage. Myocardial I/R injury induced
significant oxidative stress (as evidenced by increased MDA level
and decreased SOD level) in mice, but it was significantly reduced
in mice subjected to sympathectomy. As shown in Figures 3F,G,
the MDA content declined (P < 0.001), the SOD activity was
greatly enhanced in the SCGx + IR group (P < 0.01 vs. I/R).

Attenuated
Ischemia-Reperfusion-Induced
Myocardial Injury and Inflammatory Cell
Infiltration Upon Sympathetic
Denervation
As shown in Figure 4A, the myocardial cells were evenly
stained. The cardiac fibers were observed to arrange neatly.
The cells are well-arranged and morphology integral in the
control group. In heart tissues of mice undergoing I/R injury, the
myocardial cells were chaotic, with uneven cytoplasm staining,
accompanied by vacuoles, myocardial rupture, and inflammatory
cell infiltration. These symptoms were relieved in the sympathetic
denervation model mice.

As expected, myocardial I/R injury induced a prominent and
long-lasting myocardial infiltration of inflammatory cells. We
sought to determine whether the myocardial protective effect
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FIGURE 1 | Sympathetic denervation improves cardiac function in mice with myocardial I/R. (A–C) Representative M-mode echocardiography images. LVEF, left
ventricular ejection fraction. LVFS, left ventricular fractional shortening. (D) Representative photographs of Evans blue and 2,3,5-triphenyltetrazolium chloride
double-stained heart sections. (E) Quantitative analysis of the proportion of myocardial infarction area. (F,G) Detection of creatine kinase-MB (CK-MB) and lactate
dehydrogenase (LDH) in mice serum. n = 6, 0.001 < **P < 0.01 and ***P < 0.001 compared with the I/R group. 0.001 < ##P < 0.01 and ###P < 0.001 compared
with the CON group.

of the sympathetic denervation is related to the regulation of
inflammation. In the case of sympathetic innervation, Real-time
PCR results demonstrated that the expression levels of IL-1β, IL-
6 and TNF-α mRNA were significantly increased in the I/R group
compared with those in the CON group. However, the IL-1β, IL-
6 and TNF-α mRNA levels in the SCGx + IR group were greatly
relieved with sympathetic denervation. Compared with the IR
group, the IL-10 level was significantly elevated in the SCGx + IR
group (Figures 4B–E). Both IL-10 and IL-6 induce activation
of STAT3, but IL-6 induces proliferation and the production of
inflammatory cytokines that promote tumor growth and is also
considered to be a strong driver of many chronic inflammatory
diseases (39). IL-10 binding to IL-10R activates the JAK/STAT3
cascade, where phosphorylated STAT3 homodimers translocate

to the nucleus within seconds to activate the expression of target
genes (40). IL-10 signaling induces a solid anti-inflammatory
response (41).

Sympathetic Denervation Activates the
Signal Transducer and Activator of
Transcription 3 Signal in Mice With
Myocardial Ischemia-Reperfusion Injury
Tyrosine phosphorylation at Tyr705 of latent STAT3 is regulated
by H2O2 (31, 42). As shown in Figure 5, in the case of
sympathetic innervation, western blotting showed that anti-
inflammatory factor IL-10 and p-STAT3 levels were significantly
increased after I/R injury at 24 h (P < 0.01 vs. CON).
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FIGURE 2 | Sympathetic denervation reduces the sympathetic excitability of myocardium. (A,B) Quantification of intramyocardial sympathetic nerve by
immunohistochemistry staining with an antibody directed against TH. Arrows indicate the immunostaining neurons. scale bar: 100 µm. (n = 6) (C,D) The expression
of TH protein in heart tissue was examined using western blotting analyses. (n = 6) (E) Detection of Norepinephrine (NE) in mice serum. n = 6, 0.001 < **P < 0.01,
and ***P < 0.001 compared with the I/R group. #P < 0.05, 0.001, ##P < 0.01, and ###P < 0.001 compared with the CON group.

Interestingly, with sympathetic denervation, I/R injury mice
with SCG removal further increased relative IL-10 and p-STAT3
levels compared with those in I/R (P < 0.05, Figure 5).
The Removal of SCG pretreatment significantly increased the
protein expression levels of IL-10 and STAT3 in myocardial
I/R injury mice. STAT3-mediated cardiac protection is achieved
at least in part by enhancing the transcriptional activity
of STAT3 by phosphorylation of Tyr705. The above results
indicated that the protective effect of sympathetic denervation
on myocardial I/R in mice might be related to the activation of
the STAT3 signal.

Stattic Could Partially Blunt the
Protective Effect of Sympathetic
Denervation on the Myocardial
Ischemia-Reperfusion Injury
The STAT3-specific inhibitor, stattic, significantly reduced
p-STAT3 in myocardial tissues (P < 0.001 vs. SCGx + IR,
Figure 6A). As shown in Figure 6B, the size of myocardial
infarction in the stattic group was significantly higher than that
in the SCGx + IR group. Figure 6C exhibited that cardiac

function was impaired compared with the SCGx + IR group
after inhibiting myocardial STAT3 phosphorylation, manifested
as decreased LVEF and LVFS. Except for that, inhibition of STAT3
phosphorylation elevated the apoptosis rate of the myocardium.
Western blotting demonstrated that the protein expression of
Bcl-2 was remarkably decreased, while Bax was significantly
increased in the stattic group (P < 0.001 vs. SCGx + IR,
Figure 6D). A similar pattern was observed in the number
of myocardial apoptotic cells. Stattic preconditioning resulted
in a significant increase in the numbers of TUNEL-positive
nucleus (P < 0.01 vs. SCGx + IR Figure 6E). As shown in
Figure 6F, we detected the level of CK-MB, suggesting that
it was significantly increased in the Stattic group (P < 0.001
vs. SCGx + IR, Figure 6F). We also measured the levels of
inflammatory factors in the myocardium, and the results showed
that anti-inflammatory factors decreased and pro-inflammatory
factors increased in the Stattic group. (P < 0.01 vs. SCGx + IR,
Figure 6G). The protective effect of SCG removal on the
myocardial ischemia-reperfusion injury was partially blunted
by the STAT3 inhibitor Stattic, as evidenced by decreased
levels of the anti-apoptotic protein Bcl-2, increased number of
apoptotic cells and the levels of cardiac injury markers enhanced
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FIGURE 3 | The level of apoptotic cells and oxidative stress decreased upon sympathetic denervation. (A) Cell apoptosis was detected via TUNEL. scale bar:
50 µm. (B) Percentage of TUNEL positive nuclei in each group. (C–E) The expression of Bcl-2 and Bax in heart tissue. (F,G) Detection of SOD and MDA in heart
tissue. n = 6, 0.001 < **P < 0.01 and ***P < 0.001 compared with the I/R group. ###P < 0.001 compared with the CON group.

inflammatory response. In summary, these data suggest that
sympathetic denervation activates the STAT3 signal to protect the
myocardial ischemia-reperfusion injury.

DISCUSSION

Sympathetic nervous system plays a vital role in the occurrence
and development of myocardial I/R injury (7). It plays an

essential role in regulating various physiological functions such
as cardiovascular, metabolism, inflammation and immunity
(43, 44). Previous studies have shown that activation of
the sympathetic nervous system is a pivotal contributor
to inflammatory reactions and associated with the extent
of infarct size. The primary neurotransmitters in the SNS
are norepinephrine (NE), adenosine triphosphate (ATP) and
neuropeptide Y (NPY) (34). Local sympathetic nerves mainly
secrete NE in peripheral organs, involved in the direct regulation
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FIGURE 4 | Effect of sympathetic denervation on relative expression levels of inflammatory cytokines and pathological changes in heart tissue of myocardial I/R
mice. (A) H-E staining. scale bar: 100 µm (B–E) Determination of inflammation-related mRNAs by PCR in total RNA prepared from myocardium. interleukin-10
(IL-10) and interleukin-6 (IL-6), Interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α). n = 6, 0.001 < **P < 0.01 and ***P < 0.001 compared with the I/R group.
#P < 0.05 and ###P < 0.001 compared with the CON group.

of immune cells expressing adrenergic receptors (45). Studies
have reported that NE rapidly induces IL-10 secretion from
innate cells in response to multiple toll-like receptor (TLR)
signals, and this effect is mediated by β2 adrenergic receptor
(ADRB2) (46). When myocardial I/R injury occurs, the intense
inflammatory response is accompanied by NE-mediated anti-
inflammatory mechanism. Compared with the CON group, the
I/R group showed higher sympathetic excitability and detected
increased IL-10 levels in our study. This can be considered
a passive increase of anti-inflammatory factors in response
to oxidative stress, insufficient to counteract the cascade of
inflammatory factors.

Except that, sympathetic denervation reduces sympathetic
activity, changes the balance in ANS, and results in a relative
increase in parasympathetic activity. This results in increased
production and release of acetylcholine (ACh). Studies have
demonstrated that acetylcholine regulates cytokine production
by binding to nicotinic acetylcholine receptors (nAChRs) (47).
A7nAChR mainly mediates autologous/paracrine ACh to up-
regulate IL-10 production (48). The binding of IL-10 to IL-
10 receptor (IL-10R) leads to forms high-affinity JAKs site
in the cytoplasm, which induces phosphorylation of STAT3
(49). JAKs, a family of receptor-associated cytosolic protein
tyrosine kinases, rapidly transfer extracellular signals into the

cell, thereby modulating gene expression (50). JAK consists of
the JAK homology (JH)1 domain and the JH2 domain, and
its downstream signaling molecules include STAT3, PI3K/Akt,
Ras, etc. (51). The JH1 domain is responsible for the catalytic
activity of JAKs (50). Previous studies have confirmed that
activating the PI3K/AKT signaling pathway can reduce ROS
levels in myocardial cells and inhibit cardiomyocyte autophagy
in animal myocardial ischemia-reperfusion injury models,
contributing to improving cardiac function (52, 53). In addition,
activation of Ras signaling in cardiomyocytes is associated
with the progression of pathogenic cardiac hypertrophy and
subsequent heart failure (54). The activated JAKs can be
combined with the Src homology 2 (SH2) domain of STAT
(55). The classical signaling pathway JAK/STAT is widely
recognized as an essential cardiovascular protective factor (56).
Studies have demonstrated that STAT3 signal activation alleviates
myocardial ischemic injury (57). However, it remains unclear
whether the cardioprotective effect of sympathetic denervation
in IR injured myocardium is related to the activation of
the STAT3 signal.

Many of the protective effects of STAT3 can be attributed
to the induction of anti-inflammatory and survival genes (58).
STAT3, a key effector of IL-10, is widely considered an essential
cardiovascular protective factor (58), playing a protective
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FIGURE 5 | Sympathetic denervation activates the p-STAT3 signal in mice with myocardial I/R injury. The expression of IL-10 and p-STAT3 in heart tissue. n = 6,
*P < 0.05 and 0.001 < **P < 0.01 compared with the I/R group. 0.001 < ##P < 0.01 compared with the CON group.

role in chronic myocardial remodeling after ischemic injury
and immune-mediated myocarditis (59). Cardiac sympathetic
activity increased within 1 h after the onset of myocardial
infarction and was maintained for more than 1 week (60).
IL-10 expression was first detected in animal models at
5 h after myocardial ischemia-reperfusion (61). Changes in
sympathetic excitability would be preceded the production
of IL-10 in the myocardial I/R model. In this study, the
SCG was removed by surgery before the myocardial I/R
injury, which results in local sympathetic denervation in the
myocardium. Sympathetic excitability was decreased in the
SCGx + I/R group compared with the I/R group, as evidenced by
decreased myocardial TH level and serum NE, accompanied by
elevated levels of the anti-inflammatory factor IL-10. Moreover,
injury/oxidative stress would be the switch for activation of
this pathway, and the SCG group is not significant for further
activation of the pathway.

It is well known that increased sympathetic tone in mice
with myocardial infarction occurs locally in the myocardium
and throughout the body (62, 63), which is attributed to
regional changes in sympathetic innervation of the heart
following myocardial infarction. Studies have reported extensive
denervation of the left ventricle (LV) below the infarct,
while the myocardial boundary’s cardiac base shows significant
hyperinnervation (64). Except for that, Neural activity stimulated
the expression of the catecholamine synthesis rate-limiting
enzyme TH and catecholamine production to a greater
degree than NE reuptake. This may explain why myocardial
infarction elevates TH to levels higher than in control
animals (65). In AOGEN transgenic rats, an animal model

lacking post-infarction sympathetic hyperactivity, myocardial I/R
injury-induced increases in rat TH and NE transporter (NET)
genes and proteins were not observed (66). This demonstrated
that increased neural activity stimulates the expression of these
proteins and the genes that code for them. Therefore, the changes
in TH protein and NE levels can be used as indicators to measure
the changes in sympathetic excitability.

Laboratory and clinical studies have proved that inhibition
of systemic or local sympathetic excitability improves cardiac
function in the ischemic myocardium, reducing ventricular
remodeling, arrhythmias, and inflammatory responses (11,
17, 67, 68). But most of these methods are targeted at stellate
ganglion. SCG plays a dominant role in the innervation of
the anterior wall of the myocardium could be particularly
critical for myocardial injury caused by left anterior descending
branch obstruction. Unilateral or bilateral excision of part
of the sympathetic chain is controversial. Previous studies
have shown that both sides of SCGx contribute equally to
the sympathetic innervation of the anterior wall (17, 69). In
Yorkshire pigs, it has been demonstrated that the afferent
signal of post-myocardial infarction transduced resulted in
bilateral stellate nerve changes, and both sides of cardiac
sympathetic neuron responses equally to myocardial infarction
(70). In a clinical trial, bilateral sympathectomy was more
beneficial than unilateral sympathectomy in patients with
ventricular tachyarrhythmia (VT) storm (71). We selected
bilateral superior cervical sympathectomy to construct an
animal model with reduced sympathetic excitability in the
heart. In our study, the SCGx + I/R group showed lower
sympathetic excitability, cardiomyocyte apoptosis, and
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FIGURE 6 | Stattic partially attenuated the protective effect of sympathetic denervation on the myocardial ischemia-reperfusion injury. (A) The expression of p-STAT3
protein was significantly inhibited by stattic (20mg/kg, ip). (B) Representative photographs of Evans blue and 2,3,5-triphenyltetrazolium chloride double-stained heart
sections. (C) Representative M-mode echocardiography images. left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS). (D) The
expression of Bcl-2 protein was decreased after p-STAT3 protein was inhibited, and Bax protein was increased. (E) Representative fluorescent images and
percentage of TUNEL positive nuclei in each group. (F) Quantitative analysis of the proportion of myocardial infarction area. Detection of creatine kinase-MB (CK-MB)
in mice serum. (G) Determination of inflammation-related mRNAs by PCR in total RNA prepared from the myocardium. interleukin-10 (IL-10) and interleukin-6 (IL-6),
Interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α). n = 6, 0.001 < **P < 0.01 and ***P < 0.001 compared with the SCGx + IR group.
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FIGURE 7 | Schematic showing the mechanistic role of the STAT3 signal in myocardial ischemia-reperfusion injury after bilateral superior cervical sympathectomy.
SCG, superior cervical ganglion; SNS, sympathetic nervous system; I/R, ischemia-reperfusion; TH, tyrosine hydroxylase; p-STAT3, The transcription factor, signal
transducer and activator of transcription 3; IL-10, Interleukin 10; SOD/MDA, superoxide dismutase/malondialdehyde; and Bax/Bcl-2, Bcl-2 Associated X
protein/B-cell lymphoma 2.

oxidative stress levels than the I/R group. Interestingly,
STAT3 phosphorylation was accompanied in the SCGx + I/R
group. This effect was partially attenuated by intraperitoneal
administration of STAT3 phosphorylation inhibitors. We
considered that the protective effect of sympathetic denervation
on the myocardium is related to the activation of STAT3
signal after injury, and this effect is caused by decreased
sympathetic excitability.

Our study also has several limitations. In our study, the stattic
was used to specifically inhibit Tyr705 phosphorylation of STAT3,
but we did not use stattic as a separate control group. Many
studies have shown that the toxicity of stattic is related to its
plasma drug concentration. 100 µM stattic treatment for induced
STAT3 and tubulin degradation confirming that high stattic
concentration could trigger toxic effects independent of STAT3
action (72). However, in vivo experiments of mice, studies have
shown that low concentrations of stattic did not cause additional
toxicity (73). Similarly, Das et al. have demonstrated that stattic
with 20mg/kg (i.p.) did not affect cardiac shortening fractions in
normal mice (74).

Signal transducer and activator of transcription 3
transcriptional activity is regulated by phosphorylation of
two separated residues. But in our study, we only explored the
Tyr705 phosphorylation site. STAT3 has 14 highly conserved
cysteine residues, nine of which are reported to be sensitive to

redox activity and are closely related to the activation of tyrosine
residue phosphorylation (Tyr705) (20–22). On the other hand,
the function of Ser727 phosphorylation remains controversial,
phosphorylation of Ser727 has been reported to have both
activating and inhibitory effects on STAT3 transcriptional
activity (75, 76). More recently, it has been demonstrated that
phosphorylation of Tyr705 is absolutely required for STAT3-
mediated ESCs self-renewal, whereas phosphorylation of Ser727
is dispensable, serving mainly to promote proliferation and
multi-directional differentiation (77).

The currently available data indicate that a complex
network of signaling mechanisms is involved in STAT3
regulation, involves both genomic effects and mitochondrial
effects, much more await exploration. It is necessary to
discuss further the relationship between the change of TH
level and protective myocardium injury after decreased
sympathetic excitability.

CONCLUSION

These data favor the notion that bilateral superior cervical
sympathectomy may be considered a new therapeutic strategy
for treating myocardial I/R injury. The present study provides
evidence that removal of SCG pretreatment may contribute to
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the protection of myocardium against I/R injury by activation
of STAT3 signaling via down-regulating sympathetic excitability,
which is achieved by reducing the level of oxidative stress,
alleviating apoptosis and decreasing the level of inflammatory
reaction (Figure 7). This study sheds new light on the molecular
mechanisms whereby sympathetic denervation may ameliorate
the myocardial I/R injury.
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