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Abstract

Advancements in animal models and cell culture techniques have been invaluable in the elucidation of the molecular
mechanisms that regulate muscle atrophy. However, few studies have examined muscle atrophy in humans using modern
experimental techniques. The purpose of this study was to examine changes in global gene transcription during
immobilization-induced muscle atrophy in humans and then explore the effects of the most prominent transcriptional
alterations on protein expression and function. Healthy men and women (N = 24) were subjected to two weeks of unilateral
limb immobilization, with muscle biopsies obtained before, after 48 hours (48 H) and 14 days (14 D) of immobilization. Muscle
cross sectional area (,5%) and strength (10–20%) were significantly reduced in men and women (,5% and 10–20%,
respectively) after 14 D of immobilization. Micro-array analyses of total RNA extracted from biopsy samples at 48 H and 14 D
uncovered 575 and 3,128 probes, respectively, which were significantly altered during immobilization. As a group, genes
involved in mitochondrial bioenergetics and carbohydrate metabolism were predominant features at both 48 H and 14 D,
with genes involved in protein synthesis and degradation significantly down-regulated and up-regulated, respectively, at 14 D
of muscle atrophy. There was also a significant decrease in the protein content of mitochondrial cytochrome c oxidase, and the
enzyme activity of cytochrome c oxidase and citrate synthase after 14 D of immobilization. Furthermore, protein
ubiquitination was significantly increased at 48 H but not 14 D of immobilization. These results suggest that transcriptional
and post-transcriptional suppression of mitochondrial processes is sustained throughout 14 D of immobilization, while protein
ubiquitination plays an early but transient role in muscle atrophy following short-term immobilization in humans.

Citation: Abadi A, Glover EI, Isfort RJ, Raha S, Safdar A, et al. (2009) Limb Immobilization Induces a Coordinate Down-Regulation of Mitochondrial and Other
Metabolic Pathways in Men and Women. PLoS ONE 4(8): e6518. doi:10.1371/journal.pone.0006518

Editor: Rodolfo Aramayo, Texas A&M University, United States of America

Received January 14, 2009; Accepted May 21, 2009; Published August 5, 2009

Copyright: � 2009 Abadi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding for the current project was primarily from a grant-in aid from Proctor and Gamble to MAT and from NSERC (MAT). Dr. Tarnopolsky is partially
supported through an Endowed Chair from the Children’s Hospital Celebration and Michael DeGroote. E.I. Glover was supported by a Canadian Institutes of
Health Research Doctoral Research Award. A. Abadi is sponsored by a post-doctoral fellowship from Mr. Warren Lammert and Kathy Corkins. Infrastructure
support was provided from grants and donations from the Canadian Foundation for Innovation, Mr. Warren Lammert and Kathy Corkins, and Giant Tiger Stores.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: tarnopol@mcmaster.ca

Introduction

Skeletal muscle atrophy is associated with bed rest, corticoste-

roid use, denervation, chronic renal failure, limb immobilization,

neuromuscular disorders, sarcopenia of aging, and arthritis [1–8].

Irrespective of the underlying cause of atrophy, reduced muscle

activation/contractile activity (hypodynamia) is an invariant

feature. Recently, strong interest has focused on characterizing

the fundamental molecular mechanism(s) underlying muscle

atrophy and numerous cellular processes are known to coalesce

into the overall atrophy phenotype. These alterations include

decreased protein synthesis, increased protein degradation, and

suppression of bioenergetic pathways associated with mitochon-

drial function, and increased oxidative stress [9,10].

Upstream triggers that initiate atrophy are poorly understood

and may vary depending on the pathological context; however,

animal data suggests that disparate atrophic stimuli converge on

the activation of protein degradation, particularly the ubiquitin

(Ub)-26S proteasomal pathway [1,11–14]. Two novel Ub-protein

ligases, atrogin-1 (muscle atrophy F-box protein) and muscle ring-

finger protein (MuRF-1), are consistently up-regulated in murine

models of muscle atrophy, and are thought to ubiquitinate both

regulatory (e.g. calcineurin and MyoD) and structural (e.g. myosin

and troponin I) proteins, thus directing the specific degradation of

proteins during muscle atrophy [1,12,13,15–21]. While much

progress has been made towards delineating the underlying

functional alterations and signaling pathways that mediate muscle

atrophy in animal models, few studies have examined muscle

atrophy in humans. Early reports concerning protein turnover in

humans demonstrated that mixed muscle protein synthesis rates

decline during muscle atrophy while protein degradation rates

appear unchanged [22–25]. This was confirmed in a recent study
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in which the rate of myofibrillar protein synthesis decreased by

,50% following 10 d of unilateral limb suspension (ULS) in human

subjects [26]. These studies have emphasized the suppression of

protein synthesis during atrophy in human muscle, which contrasts

with studies in murine models that point primarily towards

increased protein degradation [12–14]. However, one recent study

found that myofibrillar protein degradation was increased in

humans as early as 72 h following ULS [27]. In addition, the

expression of atrogin-1 and MuRF-1 during muscle atrophy in

humans is contentious, with some studies showing increased

atrogin-1 and MuRF-1 mRNA, but not others [26,28–31].

Global micro-array analysis has emerged as a powerful

experimental tool to investigate multiple cellular pathways

simultaneously; however, the relatively large sample size cost

needed to reach the full potential of this technique has limited its

application to the study of human muscle atrophy. The purpose of

this study was to examine changes in global gene transcription

during immobilization-induced muscle atrophy in humans and

then explore the effects of the most prominent transcriptional

alterations on protein expression and function in a relatively large

cohort of men and women. Overall, the transcriptional suppres-

sion of bioenergetic and mitochondrial genes dominated the

immobilization-induced transcriptome and was evident as early as

48 hours (48 H) following immobilization. These transcriptional

changes were accompanied by declines in both the protein level

and enzymatic activity of several mitochondrial proteins following

14 days (14 D) of immobilization. In addition, atrogin-1 and

MuRF-1 mRNA was significantly up-regulated early during the

progression of muscle atrophy and protein ubiquitination was

increased following 48 H of immobilization but not 14 D. Lastly,

mTOR phosphorylation decreased significantly following 48 H of

immobilization but not 14 D.

Methods

This data was collected during an immobilization study where

the subject characteristics and design were described previously

[32]. Muscle sufficient for the gene microarray, RT-PCR, protein,

and enzyme activity measurements were available for a total of 12

men and 12 women.

Subjects
Recreationally active, non-smoking, healthy men (N = 12) and

women (N = 12) participated in the trial. Demographics included: age

(men = 20.561.7; women = 21.162.7 y), height (men = 178.465.4;

women = 164.365.5 cm), and body mass index (men = 24.363.5;

women = 22.862.2) (Table 1). All of the women were eumenorrheic

and ,50% were tested in each phase of the menstrual cycle. The

study was approved by McMaster University and the Research Ethics

Board of the Hamilton Health Sciences. The study was explained in

detail to all subjects and they provided written informed consent

before participation.

Experimental procedure
Subjects had a randomly assigned leg immobilized using a knee

brace (epX Knee Control Plus, Smith Orthopedics, Topeka, KS)

and were provided with walking crutches such that there was no

weight bearing on the immobilized leg. The study consisted of

three testing sessions termed; PRE (5 d before immobilization),

48 H (48 hours after immobilization) and 14 D (14 days after

immobilization). The subjects did not exercise for at least 3 d

before the first testing session or immobilization. All testing

sessions were identical and occurred in the morning following an

overnight fast, with consumption of a defined formula diet

(500 mL; BoostH, Novartis Medical Health, Inc., NY) 2 h prior

to the muscle biopsy. Testing included dual X-ray absorptiometry

(DEXA), magnetic resonance imaging (MRI), muscle strength,

muscle biopsy and blood sampling, with full details described

previously [32–36]. MRI was completed in a 1.5 Tesla scanner

with superconducting magnets (Symphony Quantum, Siemens,

Erlangen, Germany) to determine the cross-sectional area (CSA) of

the vastus muscles (vastus lateralis, vastus intermedius and vastus medialis)

and rectus femoris [32].

Muscle biopsies were obtained from the vastus lateralis muscle of

the immobilized leg under local anesthesia (2% lidocaine) with a

Table 1. Subject Characteristics.

Men (n = 12) Women (n = 12)

PRE 48 H 14 D PRE 48 H 14 D

Subject Characteristics

Age (y) 20.862.0 21.162.7

Height (cm) 177.967.7 164.365.5*

Body Mass (kg) 76.1611.0 76.8611.3 76.6611.8 61.869.1* 61.969.3* 61.669.5*

Lean Body Mass (kg) 62.067.6 61.867.7 62.068.0 44.865.3* 44.565.5* 44.665.5*

Hormones

Total Testosterone (nmolNl21) 14.162.4 14.063.1 14.164.1 0.860.3* 0.760.4* 0.760.2*

Estradiol (pmolNl21) 105623 103631 101630 1536186 1596153 115682

Cortisol (nmolNl21) 5986164 5016184 4666131 7326223 6566144*{ 6406240*{

Muscle Characteristics

CSA Total Quadriceps Femoris (cm2) 81.9612.0 N/A 76.9611.56{ 57.367.4* N/A 54.069.0*{

Concentric Slow Knee Ext. (Nm) 218636 204629 194628{ 146634* 129631* 115629*{

Isometric Knee Strength (Nm) 253636 248637 232633 159640* 139641* 123642*{

Notes: CSA = cross sectional area. Cortisol was analyzed using men n = 11 and women n = 9, and total testosterone was analyzed using women n = 11. Values are means 6 SD.
*indicates a difference between women and men with a p value ,0.05.
{indicates a change over time with a p value of ,0.05.
doi:10.1371/journal.pone.0006518.t001
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modified Bergström biopsy needle with manual suction. Incisions

were made at randomly chosen proximal, distal or mid (15 cm

proximal to lateral joint space) sites of the vastus lateralis separated

by ,3 cm. There were 7 d between biopsies from PRE to 48 H

and 12 d from 48 H to 14 D. Each sample was immediately

dissected of fat and connective tissue. Samples were divided into

three separate pieces, placed into RNAase free tubes, plunged into

liquid nitrogen, and stored at 280uC. If there was sufficient

muscle tissue remaining after the three primary allocations, we

embedded the muscle in optimal cutting temperature medium and

plunged it in to N-methylbutane chilled in liquid nitrogen for

histological fiber analysis using ATPase staining as previously

described by our group [32]. Muscle strength testing was

conducted at each session using a dynamometer (Biodex-System

3, Biodex Medical Systems Inc., New York) to evaluate the relative

changes in maximal force generating capacity over the time course

of immobilization.

RNA extraction
Total RNA was extracted from muscle using TRIzolH Reagent

(Invitrogen Canada) following the manufacturer’s instructions.

The concentration and purity of the RNA was spectrophotomet-

rically determined by measuring the absorbance at 260 (OD260)

and 280 (OD280) with an OD260/OD280 ratio of ,1.8 indicating

high quality RNA. The integrity of RNA samples were assessed by

RNA agarose-formaldehyde gel electrophoresis and evaluating the

ratio of 28S to 18S rRNA bands.

Gene Expression Analysis
Global changes in gene expression were examined using the HG

U133 plus gene micro-array (Affymetrix, Santa Clara, CA)

containing 54,675 human probe sequences. The background

correction, normalization and derivation of expression measures

were based on the Affymetrix signal (MAS 5.0 algorithm). Data

quality and outliers were checked using exploratory statistical

tools, such as summary statistics, pair plots, and Principal

Component Analysis. The micro-array data discussed in this

publication have been deposited in NCBI’s Gene Expression

Omnibus [37] and are accessible through GEO Series accession

number GSE14901 (http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc = GSE14901).

Gene filtering was performed using standard multiple testing

procedures and clustering, based on packages available in

Bioconductor (www.bioconductor.org). First, expression of genes

at 48 H and 14 D after immobilization was compared to baseline

(PRE) using standard paired t-tests to define the early and late

transcriptional response to immobilization, respectively. For each

of these sets, we choose ‘‘significantly’’ differentially expressed

genes based on a false discovery rate (FDR) q-value ,0.05. 576

genes and 3,128 genes had significantly altered expression levels

(FDR q-value ,0.05) at 48 H and 14 D, respectively (Table 2). To

ascertain which transcriptional changes were specifically associat-

ed with muscle atrophy, a trend test (using simple linear regression

of Log2 expression versus change in cross sectional area (CSA)) was

conducted as the criterion for differentially expressed genes. Only

239 genes were found to have an FDR q-value ,0.05, in the

analysis of atrophy-associated genes.

Public resources as well as commercially available tools were used

to annotate the expressed genes, including Netaffx (http://www.

affymetrix.com/index.affx) and GeneCards (Weizmann Institute of

Science & Crown Human Genome Center, URL: http://bioinfo.weizmann.

ac.il). For those uncharacterized transcriptional probes or ESTs,

BLAST searches against NCBI non-redundant databases were

conducted. Gene Ontology (http://www.geneontology.org) was

coupled to comprehensive literature research to organize genes into

18 broad functional groups which include; mitochondria (oxidative

phosphorylation, tricarboxylic acid cycle, fatty acid metabolism,

regulatory, transport, and metabolism), carbohydrate metabolism,

metabolic (referring to non-bioenergetic metabolic pathways),

signaling and transcription factors, oxidative stress, redox, chaper-

ones, metallothioneins, secreted factors, biosynthesis, RNA synthesis

and maturation, protein synthesis, DNA regulation (including repair

enzymes and chromatin organization factors), protein degradation,

cytoskeleton, extracellular matrix, cell surface (receptors, markers,

channels and transporters), and organelle (referring to non-

mitochondrial organelles and including vesicle trafficking, Golgi

apparatus, endoplasmic reticulum, lysosomes). Once genes were

organized into functional categories, x2 analyses were conducted in

which the actual number of up- and down-regulated genes within

each functional category was compared to the expected number of

up- and down-regulated genes. The expected number of up- and

down-regulated genes was calculated by dividing the total number of

genes within each category by the total number of up- and down-

regulated genes, respectively. Functional categories with P#0.05

were considered to be significantly over- or under-represented

during immobilization.

In addition, genes that had an FDR q-value ,0.05 were

processed using the hierarchical clustering method (HOPACH)

[38] to find groups of similarly expressed genes across arrays and

examine the ordered distance matrices returned by this clustering

algorithm. In the analysis of late transcriptional changes following

immobilization (PRE versus 14 D), genes with an FDR q-value

,0.05 were ranked by FDR and only the top 1000 genes were

considered in the HOPACH cluster analysis. The gene content of

clusters varied considerably making an assessment of gene cluster

and function relationships not immediately obvious. To examine

the relationship between gene clustering and gene function,

clusters were grouped directionally (i.e. up-regulated clusters and

down-regulated clusters were separated) and the distribution of

genes within a given functional category across clusters were

examined using x2 analyses. Thus the actual gene content of

individual clusters within each functional category was compared

to the expected number of genes within said cluster and category.

The expected gene content of a cluster within a category was

Table 2. Summary of micro-array analyses.

Analysis Up-regulated genes Down-regulated genes Total Unknown

Early (48 H) genes 243 332 575 26%

Late (14 D) genes 1,514 1,614 3128 30%

Atrophy-associated genes 86 153 239 26%

Notes: Listed are the number of probes in each micro-array analysis which were significantly (FDR q-value ,0.05) altered by immobilization in human muscle.
doi:10.1371/journal.pone.0006518.t002
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calculated as the product of the total number of genes within the

cluster and the proportion of genes within that functional category

(i.e. total number of up-/down-regulated genes within the category

divided by the total number of up-/down-regulated genes).

Functional categories in which genes were unevenly distributed

over clusters (P#0.05) were considered to show significant

clustering along functional lines. Note that because some clusters

contained very few genes within a given functional category, only

functional categories that contained a total number of genes (N)

greater than the total number of clusters (NC) plus 2 (i.e. N.NC

+2) were considered for partitioning analysis (x2).

qRT-PCR. 1 mg of RNA, DNase treated (DNA-freeTM,

Ambion Inc, Austin TX) was converted to cDNA using the 1st

Strand cDNA Synthesis Kit for RT-PCR (AMV) (Roche Applied

Science, Laval PQ). Briefly, the reaction volume of 20 mL for RT

contained: 1x reaction buffer, 5 mM MgCl2, 1 mM dNTP

mixture, 3.2 mg of random primer p(dN)6, 50 U of RNase

inhibitor, 0.8 mL of AMV reverse transcriptase, and 1 mg of

DNA-free RNA. RT was performed in a thermal cycler (Applied

Biosystems, Foster City, CA): 25uC for 10 min, 42uC for 60 min,

99uC for 5 min, and 4uC for 5 min. All RNA samples were

converted to cDNA together to minimize technical variability.

Negative controls (no RNA or no reverse transcriptase enzyme)

were run simultaneously with samples to control for RNA and

genomic DNA contamination.

The primers for real-time PCR were designed using Primer3

software (http://frodo.wi.mit.edu/, Whitehead Institute for Bio-

medical Research) and their thermodynamic specificity was

determined using BLAST sequence alignments (NCBI) and Oligo

analyzer software (Integrated DNA Technologies, Coralville IA).

Real-time PCR was performed using an iCyclerH real-time PCR

system (Bio-Rad Laboratories, CA) using SYBRH Green 1

chemistry (iQ SYBRH Green Supermix, Bio-Rad Laboratories,

CA) according to the manufacturer’s instructions. Briefly, the

reaction volume of 25 mL for PCR contained: 1x iQ SYBRH
Green Supermix, forward and reverse primers, 10 ng cDNA

template. The application was performed for 1 cycle (50uC for

2 min, 95uC 10 for min) followed by 40 cycles (95uC for 15 s,

60uC for 60 s) and the b2-microglobulin signal was used as a

housekeeping gene to normalize CT values. All samples were run

in duplicate simultaneously with RNA- and RT-negative controls.

In addition, the melting point dissociation curve generated by the

instrument was also used to confirm the specificity of the amplified

product.

Protein content
The level of phospho-mTOR, mTOR, Ub, CS, COX subunit

II (mitochondrial encoded) and COX subunit IV (nuclear

encoded) were quantified using Western blotting, as previously

reported by our group [39]. Briefly, 10 mg of 600 g muscle

homogenate was separated using 7–12.5% PAGE. Phospho-

mTOR, mTOR (rabbit monoclonal, Cell Signaling, Danvers,

MA), Ub (rabbit polyclonal, Biomol, Plymouth Meeting, PA), CS

(rabbit polyclonal, a kind gift from Dr. Brian Robinson, Hospital

for Sick Children, Toronto ON), COX subunit II, and COX

subunit IV (mouse monoclonal, Mitosciences, Eugene OR)

antibodies were used to probe proteins transferred onto PVDF

or nitrocellulose membranes, which were then developed and

quantified using the ImageJ software package (NIH, Bethesda,

MA, USA).

Enzyme analysis
We measured the maximal rate of enzyme activity for citrate

synthase (CS) and cytochrome c oxidase (COX) using a Cary BIO

300 spectrophotometer (Varian Canada, Toronto) at 30uC, as

previously described by our group [39]. Briefly, CS activity was

measured by adding 10 mL of supernatant to a medium containing

50 mM Tris-HCl buffer +5 mM EDTA at pH 8.1 with 0.1%

Triton X-100, 0.1 mM dithionitrobenzoic acid (DTNB) and

0.1 mM acetyl CoA, The enzyme reaction was started with

addition of 0.5 mM oxaloacetate. Absorbance was recorded at

412 nm for 3 min. All of the samples were analyzed in duplicate

and expressed as nmol/min/mg protein. COX activity was

determined as previously described by our group [39,40] with

minor modifications. Stock cytochrome c (oxidized) was reduced

with sodium ascorbate in 10 mM phosphate buffer at pH 7.0.

10 mL of a 600 g supernatant was added to 970 ml of 50 mM

phosphate buffer at 7.4. The reaction was initiated with 20 mL of

reduced cytochrome c and monitored at 550 nm for 3 min. The

protein content of the 600 g supernatant fraction was determined

according to Lowry et al [41]. All of the samples were analyzed in

duplicate and the COX activity was expressed as nmol of

cytochrome c oxidized/min/mg total protein using a molar

extinction coefficient of 18.9 mM21cm21. The intra-assay coeffi-

cient of variance for the enzyme activity assays was less than 10%.

Statistical Analysis for non-micro-array studies
An independent t-test was applied to assess significant sex-

specific demographic differences. A two-way (gender and time)

analysis of variance (ANOVA) with mixed design was performed

to test for significant differences in muscle strength and muscle

CSA using a computerized statistical package (Statistica V5.1,

Statsoft, Tulsa, OK). Unpaired Student t-tests were used to test for

differences between groups in all other dependent variables

(Statistica 5.0, Statsoft, Tulsa, OK). Linear regression analysis

was used to correlate the mRNA transcript abundance levels

between the gene micro-array and the qRT-PCR analyses.

Statistical significance was established at P#0.05. Data are

presented as the means 6 standard deviation (SD).

Results

Muscle strength and CSA of quadriceps
Both men and women showed significant decreases in absolute

peak torque (Nm) following 14 D (men, 6.364.4%, P,0.001;

women, 23.066.1%, P,0.01), with women showing greater

strength loss as compared to men (P,0.05) (Table 1). Men and

women showed significant and nearly identical decreases in total

muscle CSA after 14 D of immobilization (men = 5.361.4%;

women = 6.261.5%, P,0.05), with men showing a larger CSA of

total quadriceps femoris (P,0.001) compared to women at all

times (Table 1). In addition, men (N = 8) and women (N = 6)

showed significant (P,0.05) decreases in type-I muscle fiber CSA

following 14 D of immobilization, but only women showed a

significant (P,0.05) decrease in type-IIa fiber CSA, and no

significant changes in type-IIx fiber CSA were detected in either

sex.

Global gene array analysis
Total RNA was obtained from 24 subjects at three time points

(N = non-pooled 72 samples) and examined using gene micro-

arrays (Affymetrix HG U133plus). Simple two-time point

comparisons in Log2 expression between PRE versus 48 H, and

PRE versus 14 D were conducted to define the early and late

transcriptional response to immobilization, respectively. In

addition, an analysis was conducted to examine probes whose

signal alteration was significantly associated with muscle atrophy.

To this end, a linear regression of change in Log2 expression

Metabolism and Immobilization
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versus change in muscle CSA was used in a trend test to identify

atrophy-associated genes. Table 2 describes the micro-array

analyses and Table S1 contains the full list of significantly (FDR

q-value ,0.05) of altered probes. The genes corresponding to

these probes were organized into functional categories, and the

number of up-regulated and down-regulated genes within each

functional category was then compared to determine whether

categories were generally up- or down-regulated during muscle

atrophy (Figure 1 and S1). Importantly, all transcriptome changes

were identical in both men and women, and an analysis of

transcriptional alterations that were associated with strength

decline did not yield any significantly altered probes.

The salient feature of all the bioinformatic analyses was the

transcriptional suppression of genes involved in cellular bioener-

getics. Gene categories representing carbohydrate metabolism and

mitochondrial function; including oxidative phosphorylation, b-

oxidation, and mitochondrial regulation; were consistently down-

regulated (Figures 1 and S1). 73% of all mRNA species that

showed significant transcriptional changes by 48 H were also

significantly altered at 14 D. Only 155 probes were altered by

48 H but not at 14 D (Table S2). Thus, many of the mRNA

changes were initiated by 48 H progressed through to 14 D of

immobilization. Of note, functional categories representing

protein synthesis and protein degradation were only significantly

altered by 14 D of immobilization (down- and up-regulated,

respectively). Other functional groups were also significantly up-

regulated or down-regulated in specific analyses but only the

bioenergetics gene category was significantly down-regulated in all

micro-array analyses (Figures 1 and S1). These findings suggest

that the transcriptional suppression of bioenergetics is initiated

early during the progression of immobilization-induced muscle

atrophy and maintained for the duration of the immobilization

period, while transcriptional activation of protein degradation and

the suppression of protein synthesis occur later (14 D) (Figures 1).

To further explore patterns in the immobilization-induced

transcriptome, probes were organized into clusters (HOPACH)

according to commonalities in their transcriptional profiles. To

examine the relationship between gene clusters and gene function,

the distribution of HOPACH clusters into functional categories

was evaluated. Typically genes that were significantly enriched

within individual clusters partitioned unevenly across different

functional categories (Figure S2, S3 and S4). Thus gene categories

corresponding to components of bioenergetics, mitochondria, and

the cytoskeleton segregated into separate clusters in all micro-array

analyses, while protein synthesis and protein degradation segre-

gated into separate clusters only at 14 D (Figure S2, S3 and S4).

This robust relationship between gene clusters and gene functions

indicates a coordinate regulation of cellular pathways at the

transcriptional level. Interestingly, PGC-1a, the master regulator

of mitochondrial biogenesis, was down-regulated at both 48 H and

14 D along with dozens of downstream PGC-1a targets,

particularly at 14 D (Table S1, Figure 1).

Surprisingly, genes involved in protein degradation as a group

were not a prominent feature of the transcriptional profile of

immobilization-induced muscle atrophy despite their putatively

essential role in muscle atrophy in animal models [15–17]. Protein

degradation genes, as a category, were only significantly up-

regulated following 14 D of immobilization (Figure 1B). An

examination of the genes contained within this category revealed a

mix of Ub-conjugases, Ub-peptidases, 26S proteasome subunits,

non-Ub proteases, and SUMOlating genes (Table S1). Impor-

tantly, atrogin-1 and MuRF-1, two Ub-conjugating enzymes that

appear to have a crucial role in muscle atrophy [1,13–17], were

not among the genes in this category in any of the micro-array

analyses. This suggests that protein degradation, as a category, is

not a major aspect of the transcriptional program of human

muscle atrophy and is only transcriptionally up-regulated during

later stages of immobilization-induced atrophy.

Validation of micro-array results using RT-PCR, western
blotting and functional assays

In order to validate and extend the relationship between the

atrophic transcriptome and functional alterations associated with

atrophy, several different experimental approaches were applied.

First, the mRNA level of selected genes was quantified using real

time RT-PCR (qRT-PCR) (Figure S5). Significant changes in

mRNA species encoding selected genes including PGC-1a, ATP

synthase d subunit, succinate dehydrogenase, hexokinase 2, and

heme oxygenase-1 corroborated the results of the micro-array

analyses (Figure S5). mRNA measurements using qRT-PCR were

highly correlated (r2 = 0.996) with measurements obtained using

gene micro-arrays over a large range of differential gene

expression (20%–400%) (see Figure S5, inset frame). This indicates

that the micro-array analyses provided highly sensitive and

accurate, directional and quantitative measurements of changes

in specific mRNA species.

Next, changes in mRNA abundance were evaluated at the

protein level although limited sample prohibited the comprehen-

sive evaluation of many of the transcriptional alterations. Thus a

select group of proteins were examined to represent the primary

theme that emerged regarding mitochondrial dysfunction (Table

S1, Figures 1 and S5). The protein level of CS, an enzyme of the

tricarboxylic acid (TCA) cycle usually taken to indicate total

mitochondrial mass was not significantly reduced during the

course of this study (Figure 2). The protein level of the electron

transport chain (ETC) protein, COX subunit II (mitochondrial

DNA encoded), was significantly decreased following 14 D of

immobilization (P,0.01), while COX subunit IV (nuclear DNA-

encoded) appeared to be similarly reduced but not significantly

(Figure 2). Importantly, the maximal enzyme activity of both CS

(P,0.005) and COX (P,0.01) decreased significantly by 14 D of

immobilization (Figure 3). The extent of the decrease in COX

subunit II protein corresponded closely to the decline in COX

enzyme activity (both decreased by 18%). Thus, transcriptional

down-regulation of several components of the TCA cycle and

ETC by 14 D of immobilization is closely mirrored at the level of

enzymatic function and is consistent with a general attenuation of

mitochondrial bioenergetic function.

Due to the importance ascribed to atrogin-1 and MuRF-1 in

muscle atrophy, the mRNA levels of these genes were targetted

using qRT-PCR in spite of them not being identified as significantly

changed by the micro-array bioinformatics approach. Figure 4A

shows that the mRNA of both atrogin-1 and MuRF-1 increased

(,60%) significantly (P,0.05) following 48 H of immobilization.

Although the mRNA of both these genes appeared elevated

following 14 D of immobilization relative to pre-immobilization

measures, this difference was not significant. To assess the

implications of these findings at a functional level, overall protein

ubiquitination was measured using Western blotting. To this end,

muscle lysates were probed with an anti-Ub antibody and, as shown

in Figure 4B, Ub-positive proteins were distributed over a large

range of molecular weights with the most Ub dense signal appearing

above 250 kDa. Individual lanes were divided into two groups

(proteins weighing more or less than 250 kDa) and the Ub signal

from each group was quantified using densitometry. A moderate

(.20%), but significant (P,0.001) increase in the ubiquitination of

high MW proteins was detected at 48 H following immobilization

but not at 14 D (Figure 4B). No significant differences in the extent
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Figure 1. Early (A) and late (B) transcriptional changes during immobilization-induced muscle atrophy. (A) Two-time point
comparisons of Log2 probe signal between the PRE and 48 H time points were conducted and significant differences were assessed using standard
paired T-Tests. Genes with FDR q-value ,0.05 were considered to be significantly altered. Genes were then organized along functional lines and the
number of genes in each category was plotted. x2 analyses comparing actual versus expected number of genes within each category (as detailed in
the Materials and Methods) were conducted to determine whether gene categories were significantly (P#0.05) up- or down-regulated at the early
(48 H) time-point following immobilization. (B) Two-time point comparisons between PRE and 14 D probe signals were conducted as in (A) to
identify gene categories that were up- or down-regulated as part of the late (14 D) transcriptional response to immobilization. Red bars are down-
regulated genes whereas green bars are up-regulated genes. Arrowheads indicate gene categories that were significantly up- or down-regulated.
Gene categories representing fatty acid and carbohydrate metabolism, and mitochondrial function, including oxidative phosphorylation, b-oxidation,
and mitochondrial regulation, were significantly down-regulated at both 48 H and 14 D of immobilization. In addition, the gene category
representing mRNA synthesis and maturation (e.g. splicing, polyadenelation, 59 cap binding proteins) was significantly up-regulated at both 48 H and
14 D. The gene category representing metallothioneins was up-regulated at 48 H but not 14 D, while gene categories representing proteases and
DNA regulation (e.g. repair enzymes and chromatin remodeling proteins) were up-regulated at 14 D but not 48 H. Lastly, the gene category
representing protein synthesis was down-regulated at 14 D but not at 48 H. ECM: extracellular matrix; Prot. Degradation: protein degradation; DNA.
Reg.: DNA regulatory factors; RNA Synth.: RNA synthesis and maturation; Ox. Stress: oxidative stress; Carb. Metabolism: carbohydrate metabolism.
doi:10.1371/journal.pone.0006518.g001
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of ubiquitination of lower molecular weight proteins (,250 kDa)

were detected at any time-point (Figure 4B). The co-temporal

elevation of both MuRF-1 and atrogin-1 mRNA, and protein

ubiquitination at 48 H supports some role for these atrogenes in the

early stages of immobilization-induced muscle atrophy in humans;

however our data does not support a quantitatively or coordinately

robust induction of this program in short-term human immobili-

zation induced muscle atrophy (Figure 4).

Signaling pathways in immobilization-induced muscle
atrophy

The major transcriptional theme to emerge from micro-array

analysis of immobilized human muscle was a dramatic down-

regulation of every aspect of mitochondrial structure and function.

The mTOR signaling molecule has been shown to regulate

mitochondrial biogenesis [42]. To examine the potential role of

mTOR in human immobilization-induced muscle atrophy both

the levels of total cellular mTOR and phospho-mTOR were

measured and no significant change in the former was detected

(not shown). However, the ratio of phospho-mTOR to total

mTOR was significantly (P,0.05) reduced (by 20%) following

48 H but not 14 D of immobilization (Figure 5).

Discussion

The global micro-array analysis conducted here represents an

important step in defining the temporal pattern of the immobili-

zation-induced atrophic transcriptome in human muscle. The most

striking feature to emerge from the micro-array analyses is the

dramatic over-representation of genes involved in metabolism and

cell bioenergetics, particularly mitochondrial genes, within down-

regulated transcripts (Figures 1 and S1). This pattern was observed

as early as 48 H following immobilization and progressed through

the duration of immobilization (14 D). In addition, genes that fall

into the category of RNA synthesis and maturation were

significantly up-regulated at both 48 H and 14 D (Figure 1), while

genes that participate in protein synthesis were down-regulated at

the later time-point (14 D) and genes that function in protein

degradation were up-regulated at this time-point (Figure 1B). The

transcriptional down-regulation of bioenergetic pathways is in

general agreement with similar studies of muscle atrophy in murine

models; however, genes involved in protein degradation were more

prominent in the atrophic transcriptome of murine models,

particularly in denervation based studies [16,43,44], Interestingly,

an analysis of transcriptional changes that are specifically associated

Figure 2. Changes in mitochondrial protein during immobilization-induced muscle atrophy. The protein level of the mitochondrial
proteins citrate synthase (CS), cytochrome c oxidase (COX) subunits II and IV were determined by western blotting as detailed in the Materials and
Methods. Protein levels were normalized to actin. Only COX II protein was significantly (P#0.05) reduced following 14 D of immobilization (asterisk).
doi:10.1371/journal.pone.0006518.g002
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with the observed decline in muscle strength during immobilization

did not yield any statistically significant genes (FDR q-value ,0.05).

This suggests that the decline in muscle strength is not mediated by

changes in gene transcription within muscle itself, but may be

mediated post-transcriptionally or by neuronal and/or hormonal

adaptations to immobilization. Further work is needed to elucidate

the underlying mechanisms that regulate changes in muscle

strength following short-term immobilization, particularly, given

the fact that women lost similar muscle mass and had an identical

transcriptome response as compared to men, but had nearly twice

the strength loss (Table 1) [32].

Bioenergetics and metabolism
Virtually all facets of mitochondrial function including, oxidative

phosphorylation, TCA cycle, fatty acid metabolism, mitochondrial

transcription and translation, and solute and protein transport, were

coordinately down-regulated (,30% by 14 D, Table S1) at the

transcriptional level by immobilization. These transcriptional

changes were initiated very early during (48 H) the course of the

transcriptional response to immobilization, indicating that mito-

chondrial bioenergetic pathways are rapidly targeted for transcrip-

tional down-regulation following immobilization.

To examine the impact of the transcriptional suppression of

mitochondrial genes, the protein levels and enzymatic activities of

a subset of mitochondrial bioenergetic proteins were measured.

Specifically, micro-array analysis revealed that CS mRNA was

significantly down-regulated (,20%) at 14 D and in association

with atrophy (Table S1), and this was confirmed by qRT-PCR

(PRE vs. 14 D) (Figure S5). Although CS protein expression was

reduced over the course of immobilization, this reduction was not

statistically significant (Figure 2). Similarly COX subunit IV

(nuclear encoded) mRNA was significantly decreased (,20%) at

14 D (micro-array and qRT-PCR, Table S1 and Figure S5), COX

subunit IV protein levels were reduced at 14 D but not

significantly (Figure 2). However, the enzyme activity of both CS

and COX was significantly decreased by 14 D of immobilization

(Figure 3). The concordance between mRNA and enzyme activity

measures but not protein levels is likely a reflection of the higher

variability of Western blotting compared to qRT-PCR and

enzyme activity assays. In addition, COX subunit II (mitochon-

drial encoded) protein levels were significantly decreased (,20%)

following 14 D of immobilization indicating that the suppression

of mitochondrial regulatory components (e.g. transcription/

translation pathways) results in a detectable reduction in the

expression of the COX subunit II mitochondrial protein.

Although other studies have reported decreases in the

transcriptional and enzyme activity levels of specific components

of muscle bioenergetic/mitochondrial systems after 1–6 weeks of

unloading [45–48], few studies have examined global transcrip-

tional patterns during muscle atrophy in humans [28,30,31], and

only one has reported the large-scale suppression of mitochondrial

genes during immobilization in humans [30]. However, only a

small cohort (N = 4) was utilized and RNA samples were pooled

from different subjects undergoing different periods of immobili-

zation (4–11 d). Interestingly, the other study examined global

transcriptional changes in humans following spinal cord injury and

showed marked changes in the mRNA of protein degradation

pathways [28]. This suggests that different transcriptional patterns

are induced following denervation (spinal cord injury) and

immobilization (casting/bracing).

This is the first report to show that the transcriptional down-

regulation of mitochondrial genes comprises the predominant

transcriptional feature of the atrophic transcriptome produced

during short-term immobilization in humans. In addition, the

large cohort used in this study enabled us to map out both early

and late transcriptional patterns in human muscle during

immobilization. The down-regulation of mitochondrial genes

commenced as early as 48 H following immobilization. This

pattern persisted over 14 D of immobilization and 73% of all

significantly altered probes at 48 H were also altered at 14 D.

Furthermore, this is the first study to demonstrate that the

transcriptional suppression of mitochondrial genes is associated

with reduced expression of mitochondrial proteins and decreased

mitochondrial enzyme activity.

The evidence surrounding the involvement of mitochondrial

dysfunction in muscle atrophy (induced by immobilization or

denervation in animal models) has primarily focused on the

contribution of mitochondrial dysfunction to increased oxidative

stress and the induction of apoptosis [30,49–51]. Results presented

here indicate that mitochondria may participate in the atrophic

response through their bioenergetic function. Direct support for

this proposition comes from the observation that over-expression

of PGC-1a in mouse skeletal muscle confers marked resistance to

muscle atrophy following hindlimb unweighting [52,53]. At

present it is unclear how mitochondrial bioenergetics regulates

muscle atrophy; however, alterations in mitochondrial bioener-

getics are likely to influence other cellular pathways that are

regulated by mitochondria, such as apoptosis, oxidative stress, and

calcium signaling along with other ATP-dependent processes.

Figure 3. Changes in mitochondrial enzyme activity during
immobilization-induced muscle atrophy. The enzyme activity of CS
and COX was determined spectrophotometrically as detailed in the
Materials and Methods. The enzymatic activity of both CS and COX were
significantly (P#0.05) reduced following 14 D of immobilization (asterisk).
doi:10.1371/journal.pone.0006518.g003
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Protein Synthesis and Degradation
Both protein synthesis and protein degradation are altered to

varying degrees and at different time-points during human muscle

atrophy. While animal studies have emphasized the importance of

muscle protein degradation during muscle atrophy [1,11,13–17],

the relative contribution of these processes to human muscle

atrophy remains unclear. Early studies into the mechanism of

muscle atrophy in humans concluded that the loss of muscle mass

during bed rest was primarily due to the suppression of protein

synthesis as muscle protein degradation was found not to change

[23–25,54]. Furthermore, the rate of myofibrillar protein synthesis

was ,50% lower in human muscle biopsy samples taken after 10

and 21 d of cast immobilization [26]. One study to date has

measured the interstitial 3-methylhistidine (3-MH) concentration

during immobilization-induced muscle atrophy in humans and

demonstrated increased concentrations, presumably reflective of

accelerated myofibrillar protein degradation at 72 h following

ULS [27].

Results using micro-array analysis obtained here support a role

for decreased protein synthesis in the later stages of human

immobilization-induced muscle atrophy as genes encoding

ribosomal subunits, translation initiation and elongation factors,

and tRNA synthesizing enzymes were significantly down-regulated

in the late (14 D) time-point of immobilization (Table S1,

Figure 1B). Similarly, the micro-array analyses presented here

indicate that protein degradation, as a functional category, is

significantly up-regulated at a later (14 D) stage of immobilization-

induced atrophy. This gene category is primarily comprised of

components of the Ub-26S proteasome pathway, including Ub-

conjugases, Ub-peptidases, subunits of the 26S proteasome, and

SUMO-lating enzymes (Table S1). Surprisingly, neither atrogin-1

nor MuRF-1 were significantly altered in of the any micro-array

analysis conducted despite being represented on the HU 133+
gene chips (Affymetrix). By contrast, atrogin-1 and MuRF-1

mRNAs were found to increase significantly at 48 H but not 14 D

post-immobilization using qRT-PCR (Figure 4A). This discrep-

Figure 4. Transcriptional status of atrogin-1 and MuRF-1 and global protein ubiquitination during immobilization-induced muscle
atrophy. (A) The mRNA level of both atrogin-1 and MuRF-1 was determined using qRT-PCR and significant (P#0.05) increases in both genes were
detected following 48 H of immobilization but not at 14 D. (B) Overall protein ubiquitination was examined using Western blotting and numerous
ubiquitin-positive protein bands were detected (left). The most ubiquitin-dense proteins were greater than 250 kDa in MW. Thus lanes were divided
into high MW (.250 kDa) and low MW (,250 kDa) sections and quantified using densitometry. A significant (P#0.05) increase in protein
ubiquitination of high MW proteins was detected following 48 H of immobilization (right, asterisk) but not 14 D. No significant changes in low
molecular weight (,250 kDa) protein ubiquitination were detected at any time-point.
doi:10.1371/journal.pone.0006518.g004
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ancy might be attributed to the high variance in the mRNA levels

of these genes, which precluded their achieving statistical

significance in the micro-array analyses. Importantly, a recent

study indicated that increases in the mRNA levels of atrogin-1 and

MuRF-1 was not accompanied by increased protein levels of these

genes during denervation-induced muscle atrophy in humans [28].

That protein ubiquitination does play some role in the early phases

of human muscle atrophy during immobilization is supported by

the finding of a significant increase (,20%) in the level of

ubiquitination of high MW proteins (.250 kDa) at 48 H but not

at 14 D (Figure 4B). While the specific identity of these

ubiquitinated high MW proteins was not determined, MuRF-1

has previously been shown to participate in the ubiquitination of

large cytoskeletal elements, including myosin heavy chain [12,19],

which are likely candidates for the high MW ubiquitinated

proteins observed here. However, we were unable to detect

atrogin-1 and MuRF protein using commercial antibodies

(Abcam) and limited quantities of sample precluded direct

measurements of Ub-proteasome activity. Thus, further work is

needed before the increased protein ubiquitination observed here

is attributed to MuRF-1 and/or atrogin-1 as well as to precisely

define the role of proteasomal pathways in human immobilization-

induced muscle atrophy.

Signaling factors
A large number of signaling molecules and transcription factors

were transcriptionally altered in all the micro-array analyses

conducted (Table S1). However, categorical analysis of such

factors is not useful because unlike components of metabolic

pathways (e.g. oxidative phosphorylation), regulatory factors have

highly context specific functions. In addition, the transcriptional

regulation of such factors may nominally impact their functional

status as other modes of regulation such as protein stability,

phosphorylation status, binding partners, and sub-cellular locali-

zation can be more important determinants of functional activity.

While the transcriptional status of such regulatory proteins cannot

be used to ascertain their functional status, important clues can still

be derived from the transcriptional status of down-stream

functional genes. In particular, cluster analysis indicated that

mitochondrial and bioenergetic genes cluster together which

suggests that they are transcriptionally co-regulated. The results

presented here indicate that PGC-1a mRNA is significantly down-

regulated during both the early and late phases of immobilization-

induced muscle atrophy (Table S1, Figure S5). In muscle, PGC-1a
functions as a transcriptional co-activator that controls the

expression of a large number of mitochondrial and metabolic

genes [55–57]. Decreased PGC-1a mRNA along with the

suppression of mitochondrial and metabolic genes may denote

decreased PGC-1a activity during immobilization [57]. Although

total PGC-1a protein content was not significantly altered by

immobilization (not shown), PGC-1a protein level alone does not

represent its functional status since phosphorylation, acetylation,

and localization determine overall PGC-1a activity [52,58].

Several cell signaling pathways have been implicated in muscle

remodeling and mitochondrial biogenesis including Akt, NF-kB,

and Ca2+-mediated signaling; however, the Akt signaling pathway

is the best characterized regulator of both muscle hypertrophy and

atrophy [59-69]. In the context of muscle atrophy, lower Akt

activity decreases the activation of mammalian target of

rapamycin (mTOR), leading to decreased protein synthesis and

ribosomal biogenesis, as well as decreased mitochondrial biogen-

esis and function, as mTOR has been shown to regulate

mitochondrial gene expression through the regulation of YY1/

PGC-1a complex formation [42,59,60,70–73]. In addition, lower

Akt activity initiates signaling pathways that culminate in the

induction of both atrogin-1 and MuRF-1 [14,73,74]. Phosphor-

ylation of components of the Akt pathway was recently shown to

decrease following 48 h of immobilization in humans [31].

Another study, however, failed to detect any significant changes

in the phosphorylation of Akt, mTOR, p70S6K, eEF2, eIF4E, and

TSC2 in men following 10 and 21 d of ULS [26]. Our

examination found that while the ratio of phospho-Akt:Akt was

not significantly altered following 48 H and 14 D of immobiliza-

tion (not shown), the ratio of phospho-mTOR:mTOR decreased

significantly following 48 H of immobilization but not 14 D of

immobilization (Figure 5). Together, these findings suggest that

signaling through mTOR may decline transiently during the early

response of human muscle to immobilization and may contribute

to decreased mitochondrial gene expression, possibly through

interactions with PGC-1a [42].

In summary, the micro-array analyses presented here represent

the most comprehensive evaluation of transcriptional changes

during immobilization-induced muscle atrophy in humans. Our

results highlight the importance of mitochondrial down-regulation,

decreased mTOR phosphorylation, and increased protein ubiqui-

tination during the early phases of the muscular response to

immobilization in humans. The transcriptional profile during later

phases of immobilization also show the coordinate down-

regulation of every bioenergetic pathway, but are also marked

by a reduction in protein synthesis pathways and an increase in

some components of proteolytic systems. Much remains unclear

with regard to the signaling mechanisms that precipitate the

atrophic transcriptome in humans. Future work aimed at

uncovering these mechanisms, beginning with an examination of

the subcellular localization, post-translational modifications, and

protein interactions of PGC-1a during muscle atrophy, could

produce novel therapeutic strategies to combat pervasive patho-

Figure 5. Changes in mTOR phosphorylation during immobi-
lization-induced muscle atrophy. The protein level of phospho-
mTOR was measured in muscle samples undergoing immobilization-
induced muscle atrophy using Western blotting. Blots were then
stripped and re-probed for total mTOR. Protein levels were normalized
to tubulin. No significant differences in total mTOR protein levels were
detected at any time-points (not shown), however the ratio of phospho-
mTOR to mTOR decreased significantly (P#0.05) at the 48 H time-point
(asterisk) indicating decreased mTOR protein phosphorylation during
the early phase of immobilization-induced muscle atrophy.
doi:10.1371/journal.pone.0006518.g005
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logical conditions associated with muscle atrophy in patients. In

addition, future experiments focused on evaluating cellular

proteasomal pathways by directly measuring the activity of Ub-

proteasome, calpains, and caspases are vital to understanding the

role of these systems in human muscle atrophy following

immobilization.

Supporting Information

Figure S1 Transcriptional changes associated with atrophy

following immobilization. Simple linear regression trend tests of

Log2 probe signal versus change in CSA were conducted to define

transcriptional changes specifically associated with muscle atro-

phy. As in Figure 1, genes with an FDR q-value ,0.05 were

considered to be significantly associated with atrophy. Genes were

then organized along functional lines and the number of genes in

each category was plotted. X2 analyses were conducted on gene

categories as in Figure 1 to determine whether gene categories

were significantly (P#0.05) up- or down-regulated in association

with atrophy. Red bars are down-regulated genes whereas green

bars are up-regulated genes. Arrowheads indicate gene categories

that were significantly up- or down-regulated. Gene categories

representing cellular bioenergetics, including fatty acid and

carbohydrate metabolism and in particular mitochondrial func-

tion, were significantly down-regulated. Gene categories repre-

senting cytoskeletal components and regulators, oxidative stress,

and metallothioneins were significantly up-regulated in association

with atrophy. Significant alterations in the former two categories

were unique to the analysis of atrophy-associated genes and were

not significantly altered (as categories) in either the early (48H) or

late (14D) analyses.

Found at: doi:10.1371/journal.pone.0006518.s001 (0.01 MB

PDF)

Figure S2 Cluster analysis of transcriptionally altered genes

during the early (48H) phase of muscle atrophy. Genes whose

transcription was significantly altered (FDR q-value ,0.05) in two-

time point comparisons early (48H) during the progression of

immobilization-induced muscle atrophy were ordered into hier-

archical clusters using HOPACH. HOPACH analysis produced 5

clusters, two of which (E1-1 and E1-2) represented up-regulated

genes (A) and the remaining three (E2-1, E2-2, and E2-3)

represented down-regulated genes (B). To determine the relation-

ship between gene clusters and gene function, the distribution of

genes (gene number) across the up-regulated and down-regulated

clusters was plotted within each functional category. X2 analysis

was employed to expose significant deviations between the actual

number of genes within individual clusters in each functional

category and the expected number of genes therein (detailed in the

Materials and Methods). Asterisk indicates significant differences

(P#0.05) between the observed and expected partitioning of genes

within clusters and functional categories.

Found at: doi:10.1371/journal.pone.0006518.s002 (0.02 MB

PDF)

Figure S3 Cluster analysis of transcriptionally altered genes

during the late (14D) phase of muscle atrophy. Genes whose

transcription was significantly altered (FDR q-value ,0.05) in two-

time point comparisons proximally (14D) during the progression of

immobilization-induced muscle atrophy were ordered into hierar-

chical clusters using HOPACH. HOPACH analysis produced 11

clusters, six of which (L3-0, L4-1, L4-2, L4-3, L4-4, L4-5 and L4-6)

represented up-regulated genes (A) and the remaining five (L1-0, L2-

1, L2-2, L2-5, and L2-6) represented down-regulated genes (B). To

determine the relationship between gene clusters and gene function,

the distribution of genes (gene number) across the up-regulated and

down-regulated clusters was plotted within each functional category.

X2 analysis was employed to expose significant deviations between

the actual number of genes within individual clusters in each

functional category and the expected number of genes therein

(detailed in the Materials and Methods). Asterisk indicates significant

differences (P#0.05) between the observed and expected partition-

ing of genes within clusters and functional categories.

Found at: doi:10.1371/journal.pone.0006518.s003 (0.02 MB

PDF)

Figure S4 Cluster analysis of atrophy-associated genes altered

genes during immobilization-induced muscle atrophy. Genes whose

transcription was significantly altered (FDR q-value ,0.05) in trend

tests of atrophy-associated genes (Log2 versus change in CSA)

during immobilization-induced muscle atrophy were ordered into

hierarchical clusters using HOPACH. HOPACH analysis produced

6 clusters, two of which (A1 and A2) represented up-regulated genes

(A) and the remaining four (A3, A4, A5, and A6) represented down-

regulated genes (B). To determine the relationship between gene

clusters and gene function, the distribution of genes (gene number)

across the up-regulated and down-regulated clusters was plotted

within each functional category. X2 analysis was employed to

expose significant deviations between the actual number of genes

within individual clusters in each functional category and the

expected number of genes therein (detailed in the Materials and

Methods). Asterisk indicates significant differences (P#0.05)

between the observed and expected partitioning of genes within

clusters and functional categories.

Found at: doi:10.1371/journal.pone.0006518.s004 (0.02 MB

PDF)

Figure S5 Quantitative real-time RT-PCR of selected genes at

48H (A) and 14D (B). The mRNA level of indicated genes was

determined using quantitative real-time RT-PCR analyses (open

bars) and compared directly to results from gene micro-array

analyses (filled bars). Results obtained using both measures are

plotted in the inset panels and the correlation coefficient was

determined using linear regression. The high degree of correlation

(R = 0.99) between mRNA measures obtained using two indepen-

dent techniques (micro-array and RT-PCR) indicates the high

accuracy of the micro-array analyses.

Found at: doi:10.1371/journal.pone.0006518.s005 (0.02 MB

PDF)

Table S1 Complete list of significantly altered genes from all

analyses, organized by gene category.

Found at: doi:10.1371/journal.pone.0006518.s006 (1.05 MB

XLS)

Table S2 Genes altered by 48H but not following 14D of

immobilization.

Found at: doi:10.1371/journal.pone.0006518.s007 (0.04 MB

XLS)
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