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Abstract. Cross-linking of actin filaments (F-actin) 
into bundles and networks was investigated with three 
different isoforms of the dumbbell-shaped c~-actinin 
homodimer under identical reaction conditions. These 
were isolated from chicken gizzard smooth muscle, 
Acanthamoeba, and Dictyostelium, respectively. Ex- 
amination in the electron microscope revealed that 
each isoform was able to cross-link F-actin into net- 
works. In addition, F-actin bundles were obtained with 
chicken gizzard and Acanthamoeba a-actinin, but not 
Dictyostelium u-actinin under conditions where actin 
by itself polymerized into disperse filaments. This 
F-actin bundle formation critically depended on the 
proper molar ratio of a-actinin to actin, and hence 
F-actin bundles immediately disappeared when free 
ct-actinin was withdrawn from the surrounding 
medium. The apparent dissociation constants (Kos) at 
half-saturation of the actin binding sites were 0.4 t~M 
at 22°C and 1.2/zM at 37°C for chicken gizzard, and 
2.7 ~M at 22°C for both Acanthamoeba and 
Dictyostelium c~-actinin. Chicken gizzard and Dic- 
tyostelium a-actinin predominantly cross-linked actin 
filaments in an antiparallel fashion, whereas Acan- 
thamoeba t~-actinin cross-linked actin filaments prefer- 

entially in a parallel fashion. The average molecular 
length of free ot-actinin was 37 nm for glycerol- 
sprayed/rotary metal-shadowed and 35 nm for 
negatively stained chicken gizzard; 46 and 44 nm, 
respectively, for Acanthamoeba; and 34 and 31 nm, 
respectively, for Dictyostelium c~-actinin. In negatively 
stained preparations we also evaluated the average mo- 
lecular length of ct-actinin when bound to actin fila- 
ments: 36 nm for chicken gizzard and 35 nm for 
Acanthamoeba ct-actinin, a molecular length roughly 
coinciding with the crossover repeat of the two- 
stranded F-actin helix (i.e, 36 nm), but only 28 nm 
for Dictyostelium o~-actinin. Furthermore, the minimal 
spacing between cross-linking c~-actinin molecules 
along actin filaments was close to 36 nm for both 
smooth muscle and Acanthamoeba o~-actinin, but only 
31 nm for Dictyostelium ot-actinin. This observation 
suggests that the molecular length of the a-actinin 
homodimer may determine its spacing along the actin 
filament, and hence F-actin bundle formation may re- 
quire "tight" (i.e., one molecule after the other) and 
"untwisted" (i.e., the long axis of the molecule being 
parallel to the actin filament axis) packing of a-actinin 
molecules along the actin filaments. 

I 
N 1964 ~-actinin was discovered as a protein extracted 
from striated muscle promoting contraction of actomyo- 
sin gels and increasing the viscosity of F-actin solutions 

in vitro (Ebashi et al., 1964). As more effective separation 
methods became available, its interaction with actin was 
more systematically investigated (Holmes et al., 1971; Goll 
et al., 1972). Accordingly, the largest increase in viscosity 
of a F-actin solution containing a given amount of ct-actinin 
was observed at 0°C. Under these conditions the viscosity 
reached a maximum at an ot-actinin to actin ratio yielding 
about one a-actinin dimer molecule bound per crossover re- 
peat (i.e., 36 nm) of the actin helix. A much higher o~-actinin 
to actin ratio was needed to yield the same amount of bound 
o~-actinin in solutions kept at 37°C. 

ot-Actinin is a homodimer composed of two polypeptides 
of ~100 kD each (Suzuki et al., 1976). Electron micro- 
graphs of shadowed ot-actinin have revealed a dumbbell- 

shaped molecule with the two subunits being oriented an- 
tiparallel in a side-by-side association thus having a central 
dyad axis of symmetry (e.g., Pollard et al., 1986). Each 
polypeptide has a highly conserved actin binding site located 
near the NH2-terminai of the polypeptide chain that on the 
molecule is located on the "knob-like" protrusion at the end 
of the rod (Mimura and Asano, 1987; Imamura et al., 1988; 
Blanchard et al., 1989). As a consequence, o~-actinin cross- 
links F-actin by binding with each end to an actin filament 
(podlubnaya et al., 1975). 

Over the past few years many more a-actin isoforms have 
been isolated and characterized (Feramisco and Burridge, 
1980; Burridge and Feramisco, 1981; Pollard, 1981; Con- 
deelis and Vahey, 1982; Duhaiman and Bamburg, 1984; 
Schleicher et al., 1984), and broadly cross-reacting antibod- 
ies have been raised (Lazarides and Burridge, 1975). The 
o~-actinin-actin interaction of most nonmuscle isoforms was 
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found to be Ca2÷-sensitive (Burridge and Feramisco, 1981; 
Pollard, 1981; Condeelis and Vahey, 1982; Duhaiman and 
Bamburg, 1984). Indeed, the primary structure of ct-actinin 
revealed some sequence homology with calmodulin and 
spectrin, in particular within its conserved Ca-'+-binding 
motives in the form of EF-hands (Baron et al., 1987; Noegel 
et al., 1987; Bianchard et al., 1989). 

Cross-linking of F-actin by ct-actinin results in actin fila- 
ment networks occasionally revealing near regularly spaced 
a-actinin cross-bridges along actin filaments (Podlubnaya et 
al., 1975; Jockusch and Isenberg, 1981). Furthermore, a-ac- 
tinin-induced actin filament bundling has been reported by 
several authors (Podlubnaya et al., 1975; Condeelis and Va- 
hey, 1982; Endo and Masaki, 1982; Burn et al., 1985). As 
yet, however, no consensus has been reached concerning the 
optimal conditions leading to F-actin bundle formation. 
Among the many conditions explored, low temperature (Endo 
and Masaki, 1982) and addition of specific lipids (Burn et 
al., 1985) have been reported to be essential for bundle for- 
mation. 

Here we have compared several parameters under identi- 
cal experimental conditions for three c~-actinin isoforms, one 
isolated from chicken gizzard smooth muscle, one from 
Acanthamoeba, and one from Dictyostelium. Dissociation 
constants of all three isoforms have been evaluated by a 
centrifugation assay. In addition, we have systematically in- 
vestigated the conditions causing ct-actinin-induced F-actin 
bundling. The relative polarities of actin filaments cross- 
linked by c~-actinin have been determined by three-dimen- 
sional (3-D) reconstruction of the individual filaments. The 
molecular length of free and bound c~-actinin, and the lon- 
gitudinal spacing of the ct-actinin molecules bound along ac- 
tin filaments have been evaluated from both negatively stained 
and metal-shadowed electron micrographs. A model of actin 
bundle formation has been developed to explain the molecu- 
lar mechanism(s) underlying these results. 

Materials and Methods 

Materials 
All chemicals were of reagent grade. Adenosine 5'-triphosphate (ATP, 
disodium salt, grade I), phalloidin, and N,N'-p-phenylenedimaleimide (PDM) 
were from Sigma Chemical Co. (St. Louis, MO). Glutaraldehyde was pur- 
chased from Electron Microscopy Sciences (Fort Washington, PA). 
Dithiobis-(succinimidylpropionate) (DSP), I dimethyl-3,Y-dithiobispro- 
pionimidate (DTBP), dimethyl adipimidate (DMA), dimethyl suberimidate 
(DMS), and the BCA protein assay reagent were from Pierce Chemical Co. 
(Rockford, IL). N,N-Dimethylformamide (DMF) was from Fluka AG (Buchs, 
Switzerland), and Sephadex G-25 from Pharmacia (Uppsala, Sweden). 

Proteins 
Isolation of chicken gizzard smooth muscle, Acanthamoeba, and Dic- 
tyostelium ct-actinin have been described elsewhere (Feramisco and Bur- 
ridge, 1980; Pollard, 1981; Schleicher et al., 1984). To allow for an optimal 
comparison, as the last step of the protein preparation all three isoforms 
were concentrated to 2-19 mg/ml by 30% ammonium sulphate precipita- 
tion, followed by dialysis against 20 mM Tris-HCl, 20 mM NaCI, 1 mM 
EDTA, 0.05% (wt/vol) NAN3, pH 7.5. Protein concentrations were deter- 
mined by the BCA protein assay. Rabbit muscle actin was prepared accord- 
ing to Millonig et al. (1988) and was used at a concentration of 'x,l mg/ml. 

1. Abbreviation used in this paper: DSP, dithiobis-(succinimidylpropionate). 

Determination of the Apparent ot-Actinin-F-Actin 
Dissociation Constant (Kd) 
ct-Actinin and actin were mixed at the desired molar ratio in 200-#1 polycar- 
bonate centrifugation tubes and the volume adjusted to 40 pl with distilled 
water. To these mixtures 10 td of 5 x concentrated standard actin polymer- 
ization buffer was added to yield a final concentration of 2.5 mM imidazole, 
2 mM MgCI2, 150 mM KCI, 0.2 mM ATE pH 7.5, unless stated other- 
wise. These mixtures were incubated for l h at the indicated temperature 
(either 22 or 37°C) before centrifugation at 20,000 g for 15 rain. Pellet and 
supernatant were carefully separated, and the pellet was redissolved in 100 
/~l gel sample buffer while the supernatant was mixed with 50 #l of 2 x con- 
centrated gel sample buffer for SDS-PAGE. After SDS-PAGE and Coomas- 
sic blue staining, the relative amounts of protein in the different gel bands 
were quantitated by scanning them with a Camag TLC II scanner. 

Chemical Fixation of t~-Actinin-F-Actin Complexes 
Aliquots of actin and a-actinin were mixed to yield a final concentration 
of 0.5 mg/ml actin and from 0.015 to 1.2 mg/ml ,-actinin. A 50-td aliquot 
was polymerized by addition of 5 x concentrated polymerization buffer to 
yield a final concentration of 5 mM Na-borate, 2 mM MgCI2, 150 mM 
KCI, 0.2 mM ATE pH 8.5, by adjusting the final volume to 250 tzl with 
distilled water. After incubation for 1 h at room temperature, phalloidin (0.5 
mg/ml in distilled water) was added to reach a molar ratio of phalloidin to 
actin of 2:l. This mixture was incubated for another 30 rain at room temper- 
ature before it was fixed with glutaraldehyde added to a final concentration 
of 0.25%. Electron microscopy of unfixed samples revealed no significant 
differences in the morphology of the u-actinin-F-actin complex by the in- 
crease in pH or by the addition of phalloidin. 

To explore optimal fixation conditions for other cross-linking reagents, 
DSP, DTBP, DMA, and DMS were solubilized in DMF (i.e., at concentra- 
tions of 10-30 mg/ml) and added to the polymerized ot-actinin-actin mix- 
tures to yield a 10- to 100-fold molar excess over actin. After a 5-min incu- 
bation, the cross-linked material was either analyzed by SDS-PAGE or 
applied to a small (I-ml) column filled with 0.5 ml Sephadex G-25 
equilibrated with actin polymerization buffer. Actin filament bundles and 
networks remaining on top of the column were washed with I ml actin poly- 
merization buffer before being recovered in 50 ~1 polymerization buffer for 
electron microscopy (see below). 

Electron Microscopy 
5-/~1 aliquots of either fixed or unfixed a-actinin-F-actin incubation mix- 
tures, prepared as described above, were adsorbed to glow-discharged 
carbon-coated collodion films on copper grids for 1 rain. Some of the grids 
were washed with one to three drops of either distilled water or buffer. Ex- 
cess liquid was drained with filter paper, and the grids were negatively 
stained by sequentially placing them on three drops of 0.75 % uranyl formate 
for "~10 s each. Excess liquid was drained with filter paper and finally by 
suction with a capillary applied to the edge of the grid which was then per- 
mitted to air dry (Buhle et al., 1985). 

For glycerol spraying, a dilute solution of et-actinin (i.e., 0.5-1/zM) was 
mixed with glycerol to a final concentration of 33 %. A 50-/~1 aliquot of this 
mixture was sprayed onto freshly cleaved mica which was then placed en 
face on the rotary table of a freeze-etch apparatus (BA 511 M; Balzers AE, 
FL-9496 Balzers, Fiirstentum, Liechtenstein) and dried in vacuo at room 
lemperature for at least 1 h. Finally, the dried samples were rotary-shadowed 
with platinum-carbon at an elevation angle of ~5 ° (Fowler and Aebi, 1983). 

All specimens were examined in a Philips EM 300 electron microscope 
operated at 80 kV. Micrographs were recorded on Kodak SOA63 electron 
image film at nominal magnifications of either 10,000x or 55,000x. 
Magnification calibration was performed according to Wrigley (1968) using 
negatively stained catalase crystals. 

Determination of Actin ~lament Polarity 
Actin filament polarity was determined by 3-dimensional (3-D) reconstruc- 
tion of individual actin filament stretches within t~-actinin cross-linked fila- 
ment pairs. For this purpose, two near parallel stretches within a pair of ac- 
tin filaments cross-linked by at least two ot-actinin molecules were digitized 
relative to the same coordinate system, and each digitized filament stretch 
saved as an individual file. Then a 150-200-nm-long filament segment was 
first straightened using the cross-correlation function of the filament com- 
puted with a suitable reference. To achieve this, two patches along the ilia- 
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ment were aligned and averaged to provide a reference that was insensitive 
to the filament curvature. A peak search algorithm marked the highest 
correlation peaks approximately centered on the filament axis. Finally, a 
smooth spline function was fitted through the peak positions, and the image 
was reinterpolated along lines running perpendicular to the spline (Engel 
and Reichelt, 1989). The consecutive steps ultimately leading to a 3-D 
reconstruction of a 3-6 cross-over-repeat long straightened filament stretch 
have been described in detail elsewhere (Aebi et al., 1986). From the 3-D 
reconstruction an "axial projection" was computed by summing 20 equidis- 
tant sections spanning one actin subunit, i.e., 5.5 nm. The vorticity of the 
axial projection was used to evaluate the polarity of the actin filament rela- 
tive to the coordinate system it was initially digitized. Accordingly, a illa- 
ment pair revealing axial projections with the same vorticities meant that 
the two filaments had the same polarity, i.e., were parallel, whereas axial 
projections with opposite vorticities meant that the two filaments within a 
pair had opposite polarity, i.e., were antiparallel. 

Measurement of Molecular Lengths 
The length of the different dumbbell-shaped ot-actinin isoforrns was mea- 
sured by projecting micrographs recorded at 55,000x nominal magnifica- 
tion to a final magnification of 550,000x (negatively stained specimens) or 
275,000x (rotary-shadowed specimens). At least 60-100 measurements 
were included in each histogram to calculate mean length values. The length 
of a-actinin molecules cross-linking two adjacent actin filaments in a "near 
perpendicular ~ orientation (i.e., ~ladder-like ~ configurations) was measured 
from the midline of one filament to that of the other one along the ct-actinin 
molecule. Care was taken to include all molecules of a given area in the 
statistics. In rotary-shadowed specimens in particular, the shorter molecules 
were often more difficult to be discerned and would have biased the corre- 
sponding histogram when left out. 

Results 

Evaluation of the Apparent ct-Actinin-F-Actin K~ by a 
Centrifugation Assay 
ot-Actinin-F-actin interactions were investigated with three 
different a-actinin isoforms, one extracted from chicken giz- 
zard smooth muscle (Feramisco and Burridge, 1980), one 
from Acanthamoeba (Pollard, 1981), and one from Dic- 
tyostelium (Schleicher et al., 1984). To quantitate the amount 
of ot-actinin bound to F-actin, a centrifugation assay was set 
up allowing for the separation of o~-actinin-F-actin complexes 
from unbound protein (see Materials and Methods). Chick- 
en gizzard ot-actinin-actin mixtures were polymerized both 
at room temperature (22°C) and at 37°C, whereas Acan- 
thamoeba and Dictyostelium ot-actinin-actin mixtures were 
evaluated at room temperature only. Under the centrifuga- 
tion conditions used (i.e., 20,000 g for 15 min) no significant 
amounts of either ot-actinin or F-actin alone did pellet (Fig. 
1 a). However, F-actin together with increasing amounts of 
ot-actinin could be sedimented upon increasing the ct-actinin 
to actin ratio in the polymerization mixture (Fig. 1 b). 

As revealed in Fig. 2, the results of each experiment were 
expressed as the molar ratio of pelleted (i.e., bound) ot-ac- 
tinin to total actin and plotted versus the molar amount of 
a-actinin remaining in the supernatant (i.e., free). Within 
the experimentally tested ranges (ot-actinin, 0.02-1.9 mg/ml; 
actin, 0.05-0.8 mg/ml), the results were the same for either 
the amount of ct-actinin being varied with a fixed amount of 
actin or vice versa. All of the resulting binding curves were 
sigmoidal in shape with a near linear part in the middle and 
saturating near 0.07 (mol/mol), corresponding to one oL-ac- 
tinin dimer per 14 actin monomers (i.e., seven actin mole- 
cules per ot-actinin binding site). The apparent KdS were es- 
timated at half-saturation of the actin binding sites to be 0.4 

#M at 22°C and 1.2 #M at 37°C for chicken gizzard c~-ac- 
tinin, and 2.7/~M at 22°C for both Acanthamoeba and Dic- 
tyostelium ot-actinin (see Table I). 

Conditions for F-Actin Bundle and Network Formation 

To investigate ot-actinin-F-actin complexes by electron mi- 
croscopy, different amounts of ot-actinin and actin were 
mixed under polymerizing conditions (i.e., 2 mM MgCI2 
and 150 mM KCI), and negatively stained for electron mi- 
croscopy. As illustrated in Fig. 3 a, with unwashed samples 
compact F-actin bundles were revealed with both chicken 
gizzard and Acanthamoeba o~-actinin. In contrast, when the 
samples were washed with polymerization buffer or distilled 
water before negative staining, no F-actin bundles were ob- 
served, but F-actin networks were instead (Fig. 3 b). Con- 
trary to earlier findings (Condeelis and Vahey, 1982), in our 
hands, Dictyostelium oz-actinin was unable to bundle actin 
filaments at low (e.g., 2 mM) MgC12 concentrations, ir- 
respective of whether or not the samples were washed with 
polymerization buffer before negative staining (see below). 

For chicken gizzard ot-actinin the conditions for F-actin 
bundle and network formation were more systematically ex- 
plored. Accordingly, actin filament networks were only ob- 
served for molar ratios of ot-actinin to actin below 1:60. Actin 
filament networks mixed with a few small but compact F-ac- 
tin bundles were found for molar ratios ranging between 1:60 
and 1:20. For molar ratios >~h20 predominantly compact 
F-actin bundles were found. This result documents the criti- 
cal concentration dependence of the ot-actinin-F-actin inter- 
action, and it explains the observed sensitivity to washing 
steps (see above) that, by removing unbound ot-actinin, shifts 
the equilibrium towards disintegration of the bundles. In 
time course experiments compact F-actin bundles appeared 
in <15 min after mixing o~-actinin and actin at room tempera- 
ture, provided protein ratios and concentrations were favora- 
ble for bundle formation (see above). 

Electron Microscopy of Chemically Cross-linked 
a-Actinin-F-Actin Complexes 

To stabilize ct-actinin-F-actin bundles and networks for elec- 
tron microscopy, several chemical fixation protocols were 
explored. To this end, chicken gizzard ot-actinin-F-actin 
mixtures were incubated with cross-linking reagents and 
their efficiency assayed by SDS-PAGE. Accordingly, high 
molecular weight ot-actinin-actin complexes were observed 
with DSP, PDM, and glutaraldehyde. For additional stabili- 
zation of the actin filaments, phalloidin (Cooper, 1987) was 
added to most preparations after polymerization was com- 
plete and before one of the covalent cross-linking reagents 
(see above) was added. Unbound protein and excess fixative 
were removed from the reaction mixture by "sieving" the 
rather large actin filament bundles and networks on a small 
Sephadex G-25 column. The cross-linked actin-a-actinin 
aggregates did not significantly enter the column and could 
therefore be recovered from the top of the column. Examina- 
tion in the electron microscope revealed DSP as the fixative 
yielding the best stabilized and preserved o~-actinin-F-actin 
bundles and networks when applied with a 100-fold molar 
excess over actin. Fig. 3 c reveals DSP-fixed and column- 
cleaned smooth muscle o~-actinin-F-actin bundles. Most of 
them "open up" at their ends to yield ladder-like ct-actinin-F- 
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Figure 1. SDS-PAGE (8.5% gels) analysis of supernatants and pellets of a-actinin-F-actin mixtures. Kjs were determined by separation 
of bound from unbound ct-actinin by centrifugation (for 15 min at 20,000 g) followed by quantitative gel analysis of supernatants (odd 
numbered lanes) and pellets (even numbered lanes). (a) Controls, 0.7 mg/ml actin (lanes I and 2), and 0.5 mg/ml chicken gizzard ot-actinin 
(lanes 3 and 4). (b) Each sample contained either 0.7 (lanes 1-4), or 0.5 mg/ml actin (lanes 5-14) and, in addition, 0.025 (lanes 1 and 
2), 0.05 (lanes 3 and 4), 0.1 (lanes 5 and 6), 0.2 (lanes 7and 8), 0.3 (lanes 9 and 10), 0.4 (lanes 11 and 12), and 0.5 mg/ml (lanes 13 
and 14) chicken gizzard smooth muscle a-actinin. Each fraction was diluted 1:2 with sample buffer before a 10-#1 aliquot was used for 
SDS-PAGE. Gel standards (Std): myosin, 200 kD; ~-galactosidase, 116.25 kD; phosphorylase b, 97.4 kD; BSA, 66.2 kD; ovalbumin, 
42.7 kD. 

actin complexes with the cross-linking c~-actinin molecules 
being oriented near perpendicularly along the actin filaments. 
In contrast, bundles of  unfixed ct-actinin-F-actin prepara- 
tions (Fig. 3 a) do not open up at their ends, thereby conceal- 
ing the geometrical arrangement of  the a-actinin molecules 
relative to the actin filaments. Occasionally, ladder-like con- 
figurations are observed with unfixed samples if the a-acti-  
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Figure 2. Quantitative evaluation of the binding of c~-actinin to 
F-actin. The amount of a-actinin bound to F-actin was determined 
by scanning the Coomassie blue-stained slab gels. The binding is 
expressed as the molar ratio of ~x-actinin dimer sedimented during 
centrifugation to total actin. In all cases, actin was polymerized in 
the presence of ct-actinin. The sigmoidal binding curves saturate 
near 0.7 (mol/mol). Symbols: (1) chicken gizzard c~-actinin at 
22°C; (2) chicken gizzard ot-actinin at 37°C; (3) Acanthamoeba 
c~-actinin at 22°C; (4) Dictyostelium ct-actinin at 22°C. 

nin to actin ratio drops below the critical ratio for bundle 
formation (i.e., ~<1:20). As illustrated in Fig. 3 d, if the 
cross-linking step was omitted only few and disperse actin 
filaments with hardly any a-actinin molecules bound to them 
were recovered from the top of the column. In this case the 
actin bundles dissolved upon removing unbound c~-actinin in 
the column cleaning step. 

Higher magnification views of opened up, cross-linked 
and column-cleaned chicken gizzard c~-actinin-F-actin bun- 
dles revealed a more detailed view of the ladder-like com- 
plexes with near perpendicularly oriented ct-actinin mole- 
cules (Fig. 4 a). Accordingly, adjacent near parallel actin 
filaments were cross-linked at more or less regular intervals 
by ct-actinin molecules arranged like the "rungs" of a ladder. 
Substitution of Mg 2+ by Ca 2÷ did not alter the morphology, 
however as illustrated in Fig. 4 b, increasing the MgCI2 
concentration to 10 mM resulted in tighter packing of the ac- 
tin filaments within the bundles and fewer opened up ends. 

Acanthamoeba c¢-actinin-F-actin mixtures cross-linked by 
DSP and washed on a Sephadex G-25 column revealed actin 
bundles (Fig. 5 b) similar to those induced by chicken gizzard 
a-actinin (Fig. 5 a). However, already with 2 mM MgC12 
the packing of the filaments within the bundles appeared 
somewhat tighter, and ladder-like cx-actinin-F-actin com- 
plexes were more difficult to depict. 

In contrast, no actin filament bundles were found in prepa- 
rations containing Dictyostelium a-actinin under otherwise 
identical conditions both with and without DSP-cross-link- 
ing. As documented in Fig. 5 c, only actin filament networks 
sporadically cross-linked by ot-actinin were observed despite 
the presence of 0.1 mM EGTA in the incubation mixtures to 
keep the Ca 2+ ions below the concentration known to inter- 
fere with the Dictyostelium c~-actinin-actin interaction (Con- 
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Table L Characteristics of Chicken Gizzard Smooth Muscle, Acanthamoeba, and Dictyostelium t~-Actinin lsoforms 

Chicken gizzard Acanthamoeba Dictyostelium 
Parameters ot-actinin a-actinin u-actinin 

Molecular length, free 
(rotary metal shadowed) 

Molecular length, free 
(negatively stained) 

Molecular length, bound 
to actin filaments 
(negatively stained) 

Most frequent longitudinal 
spacings along actin 
filaments 
(negatively stained) 

Ka 

Orientation of  cross-linked 
actin filaments 

Induces actin filament 
bundling 

36.8 + 3.1 nm 4517 + 6.1 nm 34.3 ± 4.5 nm 

34.8 + 2.8 nm 44.1 + 2.9 nm 31.4 + 3.4 nm 

36.1 + 3.0 nm 35.0 + 3.2 nm 28.1 _ 4.3 nm 

35-37 nm 35-37 nm 31-37 nm 
0.4 #M* 2.7 ttM* 2.7 ~tM* 
1.2 #M* 

Antiparallel Parallel Antiparallel 
(9/11)§ (12/15)§ (7/10).~ 

Yes Yes No 

For all experiments, o~-actinin and actin were mixed at the desired molar ratio before polymerization was induced by the addition of salt (see Materials and 
Methods). 
* Kos evaluated at 22°C. 

Kas evaluated at 37°C. 
§ Number of filament pairs showing the indicated polarity versus total number of filament pairs measured. 

deelis and Vahey, 1982). Occasionally, c~-actinin molecules 
could be depicted that cross-linked two adjacent actin fila- 
ments over a short stretch in a ladder-like configuration. 

Relative Polarities of Actin Filaments Cross-linked 
by a-Actinin 

To learn more about the ot-actinin-F-actin interaction, we 
evaluated the relative polarities of actin filaments cross- 
linked by a-actinin molecules. Rather than determining actin 
filament polarity by myosin S-l decoration (compare with 
Isenberg et al., 1980), we chose a more direct approach in- 
volving 3-D reconstruction of individual actin filament 
stretches within c~-actinin cross-linked filament pairs. Ac- 
cordingly, the handedness, and hence polarity, of the actin 
filaments could unequivocally be deduced from the vorticity 
of the axial projections computed from their 3-D reconstruc- 
tions (see Materials and Methods). As illustrated in Fig. 6 
(insets), depending on the relative orientation of the fila- 
ments, their axial projections exhibited either the same or 
opposite vorticities (see Materials and Methods). We there- 
fore used this method to evaluate the relative polarities of 
actin filaments both in ladder-like a-actinin-F-actin com- 
plexes, as well as in F-actin networks cross-linked by t~-ac- 
tinin molecules for each of the three c~-actinin isoforms. 
Loose networks were obtained by lowering the a-actinin to 
actin molar ratio below that required for bundle formation 
(i.e., below a ratio for which less than one ct-actinin mole- 
cule per 200 actin molecules was effectively bound to the 
filaments; see Discussion). For electron microscopy, sam- 
ples were stabilized by phalloidin and cross-linked by DSP 
as described in Materials and Methods, followed by washing 
on a Sephadex G-25 column, and negatively stained with 
uranyl formate (Fig. 6). Care was taken to only choose fila- 
ment pairs for reconstruction which were crosslinked by at 
least two a-actinin molecules (Fig. 6, arrows). Actin ilia- 

ments cross-linked with chicken gizzard a-actinin revealed 
nine pairs with antiparallel and two pairs with parallel fila- 
ment orientation, meaning that antiparallel cross-linking 
predominated. No significant difference was noticed between 
the relative orientation of adjacent actin filaments in bundles 
versus that in networks. With Dictyostelium ct-actinin too, a 
preference for antiparallel cross-linking of adjacent actin 
filaments was observed, i.e., seven pairs out of 10 were 
antiparallel. In contrast, actin filaments cross-linked with 
Acanthamoeba t~-actinin revealed 12 pairs out of 15 to be 
parallel, thus suggesting a preference for parallel cross- 
linking. 

Molecular Length of the Different a-Actinin lsoforms 

In was obviously neither the dissociation constant nor the 
relative polarities of cross-linked actin filaments which were 
responsible for the difference in F-actin bundling potential 
of chicken gizzard and Acanthamoeba a-actinin compared 
with that ofDictyostelium u-actinin. We therefore measured 
the length of free c~-actinin molecules after glycerol spray- 
ing/rotary metal shadowing (Fig. 7, a-c). Mean lengths of 
36.8 ___ 3.1 nm for chicken gizzard, 45.7 + 6.1 nm for Acan- 
thamoeba, and 34.3 + 4.5 nm for Dictyostelium c~-actinin 
were obtained (Table I). With negatively stained prepara- 
tions both the lengths of free ct-actinin molecules (Fig. 7, 
d-f), as well as those of molecules bound to actin filaments 
(Fig. 7, g-i) were evaluated. The resulting histograms are 
presented in Fig. 8, a-c (solid lines, free molecules; dotted 
lines, bound molecules). Accordingly, the mean length of 
free chicken gizzard a-actinin was 34.8 + 2.8 nm, while that 
of the bound molecules amounted to 36.1 + 3.0 nm (Fig. 8 a 
and Table I), a statistically insignificant difference. In con- 
trast, the mean length of free Acanthamoeba ct-actinin was 
44.1 + 2.9 nm, whereas that of the bound molecules was 
significantly shorter, i.e., 35.0 + 3.2 nm (Fig. 8 b and Table 
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Figure 3. Stabilization of ct-actinin-F-actin bundles by DSP fixation. (a) Bundles (unfixed) in an undiluted chicken gizzard c~-actinin (0.32 
mg/ml)-actin (0.5 mg/ml) mixture. (b) Same sample as in a, but in this case the free c~-actinin pool was diluted by sequentially washing 
the grid on two drops of actin polymerization buffer followed by one drop of water before negative staining. As a consequence, the bundles 
opened up into networks. (c) Bundles polymerized in an t~-actinin-actin mixture of similar composition as that in a, DSP fixed, and column 
cleaned. The bundles are essentially free of unbound proteins. (d) Only a few actin filaments could be recovered from the top of the cleaning 
column when DSP fixation was omitted but the sample otherwise prepared and treated as in c. All samples were negatively stained with 
0.75 % uranyl formate. Bar, 500 nm. 

I). Finally, the mean length of free Dictyostelium ct-actinin 
molecules was 31.4 + 3.4 nm, and that of bound molecules 
28.1 + 4.3 nm (Fig. 8 c and Table I). 

Longitudinal Spacing of the ot-Actinin Molecules along 
Actin Filaments 
We-also measured the longitudinal (or axial) spacings be- 
tween adjacent ot-actinin molecules within ladder-like ~-ac- 
tinin-F-actin complexes in negatively stained preparations, 
e.g., as shown in Figs. 4 a and 7, g-i. Only distances were 
included in the histograms which were ~< 72 nm (i.e., shorter 
than two times the length of an ~-actinin molecule). As 
documented in Fig. 8, d and e for both chicken gizzard and 
Acanthamoeba ot-actinin molecules a distinct peak of lon- 
gitudinal spacings between 35 and 37 nm was revealed. In 

contrast, Dictyostelium c~-actinin gave a different, much 
broader peak between 31 and 37 nm (Fig. 8 f ) .  The lower 
limits of these peaks, i.e., 35 nm for smooth muscle and 
Acanthamoeba c~-actinin, and 31 nm for Dictyostelium t~-ac- 
tinin, roughly coincided with the mean length of the bound 
molecules for all three ct-actinin isoforms (see the mean 
lengths + SD marks drawn into the histograms represent- 
ing the longitudinal spacings in Fig. 8, d-f). Accordingly, 
<25% of the measured longitudinal spacings were smaller 
than the mean length of the respective bound c~-actinin mole- 
cules (24.7 % for chicken gizzard, 8.7 % for Acanthamoeba, 
and 17.0% for Dictyostelium oz-actinin). The longitudinal 
spacings of  the two isoforms exhibiting significant F-actin 
bundling potential (i.e., chicken gizzard and Acanthamoeba 
ot-actinin) repeated roughly symmetrically relative to the 
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Figure 4. DSP-fixed and column-cleaned chicken gizzard t~-actinin-F-actin (molar ratio 1:2.8) bundles formed with different Mg 2+ con- 
centrations, (a) With 2 mM MgCI2, predominantly ladder-like complexes form in which the ot-actinin molecules are arranged like the 
rungs of a ladder. (b) Increasing the Mg 2. concentration to 10 mM reveals increasingly more compact bundles. Samples have been nega- 
tively stained with 0.75% uranyl formate. Bar, 100 nm. 

Figure 5. DSP-fixed and column-cleaned u-actinin-F-actin complexes cross-linked with different ct-actinin isoforms. (a) Chicken gizzard 
(~x-actinin to actin molar ratio, 1:2.8) and (b) Acanthamoeba (tx-actinin to actin molar ratio, 1:2.3) ~x-actinin yield similar looking actin 
filament bundles. (c) Actin filament networks are formed with the much shorter Dictyostelium t~-actinin (a-actinin to actin molar ratio, 
1:1.7) under otherwise identical induction conditions. Samples have been negatively stained with 0.75% uranyl formate. Bar, 500 nm. 
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Figure 6. Determination of the relative polarity of adjacent actin 
filaments within a-actinin-F-actin bundles and networks. A pair of 
near parallel actin filaments cross-linked by several Dictyostelium 
a-actinin molecules (arrows) is shown. The two axial projections 
(insets) reveal opposite polarities of the two actin filaments within 
a pair (arrowheads).- Samples have been negatively stained with 
0.75% uranyl formate. Bar, 100 nm. 

crossover distances of the F-actin helix (i.e., 35.8 nm), where- 
as those of Dictyostelium ct-actinin did not. 

Discussion 

Apparent ot-Actinin-F-Actin Dissociation Constants 

The apparent K~s of all three o~-actinin isoforms studied are 
temperature dependent, with lower temperature resulting in 
tighter binding. At room temperature the K~ of chicken giz- 
zard o~-actinin is almost seven times lower than that measured 
for the two protozoan c~-actinin isoforms. As a comparison, 
the binding affinity (i.e., at 22°C) of chicken gizzard a-ac- 
tinin for actin is about half that of adducin, for example, 
which, in turn is considered a high affinity actin binding pro- 
tein (Mische et al., 1987). 

No matter how high an excess of c~-actinin was added to 
a given amount of actin, saturation of the binding reaction 
always occurred at a molar ratio of 1 a-actinin dimer per 
13-14 actin monomers, i.e., amounting to '~1 o~-actinin mol- 
ecule per F-actin helical repeat (35.7 nm). This value agrees 
quite well with that deduced from direct measurement of the 
average minimal longitudinal spacing of ot-actinin molecules 
bound along actin filaments in ladder-like configurations 
(Table I, and see below), as well as with published data 
(Holmes et al., 1971; Goll et al., 1972). We also added 
chicken gizzard o~-actinin to preformed actin filaments and 
incubated the mixture for 1 h at 22°C. In this case, a Ks of 

1.5/xM was revealed (data not shown), compared with 0.4 
/~M with copolymerization (Table I). While we have no ex- 
planation for this difference, it is consistent with a lower vis- 
cosity observed upon addition of a given amount of (x-actinin 
to preformed actin filaments relative to that obtained upon 
polymerization of actin in the presence of the same amount 
of ot-actinin under otherwise identical conditions (Goll et al., 
1972). 

Inspection in the electron microscope revealed that at satu- 
ration, for all three isoforms, a significant number of a-ac- 
tinin molecules were only bound to one actin filament, i.e., 
one actin binding site per molecule was vacant. This might 
have been one of the reasons for the large scatter of values 
at saturation which, in turn, prevented accurate Scatchard 
analysis of the data. 

Previously, a Kd of 26/~M was reported for Acanthamoe- 
ba c~-actinin (Sato et al., 1987), a value roughly 10 times 
larger than that measured by us (i.e., 2.7 txM; Table I). How- 
ever, in that investigation only 1.6 tiM a-actinin was tested 
as the highest concentration for the binding assay, a value 
well below saturation for the actin concentrations (5-180 
tiM) used. According to our binding curve (Fig. 2), at least 
5 #M Acanthamoeba c~-actinin would have to be used with 
an actin concentration of 5 #M to reach saturation. Kds are 
difficult to extrapolate if saturation is not accurately deter- 
mined and, as a consequence, large errors may result (Light, 
1984). To circumvent this problem, we have used up to 9.6 
t~M Acanthamoeba c~-actinin with an actin concentration of 
1 /zM, an amount well above saturation. 

According to our measurements (Table I), Acanthamoeba 
tx-actinin, which bundles F-actin, and Dictyostelium cz-ac- 
tinin, which does not, have practically the same Kj. This 
finding argues against a primary involvement of the o~-acti- 
nin-F-actin dissociation constant in defining the F-actin bun- 
dling potential. 

ot-Actinin-induced F-Actin Bundling 

Actin filament bundles formed within minutes both with 
chicken gizzard and Acanthamoeba c¢-actinin-actin mix- 
tures, provided buffer conditions were adequate for actin po- 
lymerization, and a critical ~-actinin to actin molar ratio 
(,~1:20 for chicken gizzard c~-actinin at 22°C) was exceeded. 
The minimal amount of c~-actinin which is effectively bound 
at the critical molar ratio mentioned above can be evaluated 
from the measurements presented in Fig. 2 and amounts to 
one c~-actinin molecule per "~200 actin monomers. The ex- 
act amount of actin-bound c~-actinin critically depends on the 
amount of free a-actinin, meaning that bundles disintegrate 
within seconds upon removing, or diluting out, the free c~-ac- 
tinin, as, for example, happens during routine washing of 
unfixed samples when prepared for electron microscopy. 
This behavior, in turn, may explain the fact that some investi- 
gators have apparently failed to detect c~-actinin-induced 
F-actin bundles under conditions that should actually have 
been favorable for bundle formation (Jockusch and Isenberg, 
1981; Endo and Masaki, 1982). Furthermore, the fact that 
actin bundles are more resistant to dissociation at lower tem- 
perature may have been the reason that Endo and Masaki 
(1982) only observed bundle formation at 0°C for both rabbit 
striated muscle and chicken gizzard smooth muscle a-ac- 
tinin-F-actin mixtures. 
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Figure 7. Electron micrographs of glycerol-sprayed/rotary metal-shadowed (a-c), and of negatively stained free (a-f) and F-actin-bound 
(g-i) ot-actinin molecules. (a, d, and g) Chicken gizzard, (b, e, and h) Acanthamoeba, (c,f, and i) Dictyostelium ot-actinin. Bar, 100 nm. 
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Figure 8. Histograms representing the distributions of molecular lengths and minimal longitudinal spacings along actin filaments of the 
different ot-actinin isoforms. (a-c) Molecular lengths of free (solid lines) and F-actin-bound (dotted lines) ot-actinin molecules. (d-f) Mini- 
mal longitudinal spacings of ot-actinin molecules bound along actin filaments. The mean length and standard deviation of the bound t~-actinin 
molecules (see Table I) are marked in the three histograms (d-f). (a and d) Chicken gizzard; (b and e) Acanthamoeba; and (c and f )  
Dictyostelium t~-actinin. 
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Contrary to what has been reported by Condeelis and Va- 
hey (1982), the Dictyostelium ct-actinin used by us, which we 
are confident was intact since morphologically its interaction 
with F-actin was indistinguishable from that of the other two 
isoforms (see above paragraph on Apparent c~-Actinin-F-Ac- 
tin Dissociation Constants), was unable to induce significant 
F-actin bundle formation under experimental conditions 
where bundles readily formed with the other two u-actinin 
isoforms. Most likely, this discrepancy is due to subtle differ- 
ences in the respective bundling assays used. 

Relative Orientation of Actin Filaments Cross-linked 
by a-Actinin 

We used the vorticity of axial projections computed from 
filament 3-D reconstructions as a criterion to evaluate the 
relative orientations of cross-linked actin filaments both 
within ladder-like c~-actinin-F-actin bundles as well as in 
F-actin networks. While the relative polarities were different 
for different c~-actinin isoforms, in no case were they random 
but revealed a clear trend for each isoform, i.e., antiparallel 
for smooth muscle and Dictyostelium c~-actinin, and parallel 
for Acanthamoeba ~-actinin (Table I). Our polarity analysis, 
however, has not yielded a correlation between the F-actin 
bundling potential of a particular c~-actinin isoform and the 
relative polarity of the actin filaments cross-linked by this 
isoform. 

The Length of the a-Actinin Molecule Determines Its 
F-Actin Bundling Potential 

Most of the published length values of c~-actinin molecules 
have been measured from either quick-frozen/deep-etched 
material (Pollard et al., 1986), or glycerol-sprayed/rotary 
metal-shadowed preparations (Condeelis and Vahey, 1982; 
Condeelis et al., 1984; Wallraff et ai., 1986). Only Dic- 
tyostelium c~-actinin has been systematically evaluated from 
negatively stained material (Condeelis and Vahey, 1982). 
For chicken gizzard and Acanthamoeba c~-actinin our mea- 
surements of glycerol-sprayed and rotary metal-shadowed 

molecules are within one standard deviation of the published 
values. However, for Dictyostelium a-actinin our mean 
length significantly differs from that published by Condeelis 
and Vahey (1982) on the one hand, and from that by Wallraff 
et al. (1986) on the other. Condeelis and Vahey (1982) got 
38.0 + 4.9 nm, compared with 31.4 + 3.4 nm measured by 
us on negatively stained preparations. An even larger dif- 
ference exists for glycerol-sprayed/rotary metal-shadowed 
preparations, for which we have measured a mean length of 
34.3 + 4.5 nm compared with 55.7 nm obtained by Wallraff 
et al. (1986). In view of these apparent discrepancies, it is 
important to note that in our case all three ~-actinin isoforms 
were prepared in exactly the same way for electron micros- 
copy, thus allowing for a rigorous comparison. Therefore, 
we feel that while the mean lengths we have determined for 
the different c~-actinin isoforms may not necessarily repre- 
sent their absolute values, the relative length differences are 
likely to be significant since they are based upon common 
preparation and evaluation protocols. 

We have found that the mean length of both Acanthamoeba 
as well as Dictyostelium a-actinin significantly shortens 
upon binding to actin filaments. This shortening is most 
prominent with Acanthamoeba (i.e., from 44.1 to 35.0 nm), 
less obvious with Dictyostelium (i.e., from 31.4 to 28.1 nm), 
and practically absent with chicken gizzard (i.e., from 34.8 
to 36.1 nm) a-actinin. Accordingly, the two u-actinin iso- 
forms with F-actin bundling potential (i.e., chicken gizzard 
and Acanthamoeba) assume a molecular length similar to the 
F-actin helical repeat (i.e., 35.8 nm) upon binding to actin 
filaments. Among the possible explanations for these length 
changes occurring between free and bound c~-actinin mole- 
cules are: Ca) an "elastiC' rod or head domain, (b) the ability 
of the two rod domains within the homodimer to "glide" by 
some amount relative to each other, or (c) a conformational 
change taking place within the "knob-like" NH2-terminal 
actin-binding domain. In fact, a shortening of Dictyostelium 
c~-actinin upon binding of certain monoclonal antibodies to 
the molecule has also been reported (Wallraff et al., 1986). 
It will be interesting to see, whether spectrin and dystrophin, 

i 

| A  

C_ T 

C_ ,- 

! II Ill 
Figure 9. "Dynamic" model of u-actinin-F-actin bundles which allows "switching" between "tight" bundles (1) and "loose" bundles f i l l ) .  
In tight bundles all ct-actinin molecules are oriented with their long axis parallel to the actin filament axis. In loose bundles all a-actinin 
moleculeshave switched from a parallel to a perpendicular orientation relative to the actin filaments, probably via obliquely oriented inter- 
mediates (H). 
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which, together with c~-actinin, comprise the spectrin super- 
family (Byers et al., 1989), are elastic too and may change 
their length upon interaction with actin filaments. 

We also measured the minimal longitudinal spacings be- 
tween a-actinin molecules bound along the length of actin 
filaments within ladder-like a-actinin-F-actin complexes. 
With all three isoforms, the majority of longitudinal spacings 
was always larger than the respective mean molecular length 
of the bound a-actinin isoform under investigation (see mean 
length marks in Fig. 8, d-f). For the two a-actinin isoforms 
having F-actin bundling potential (i.e., chicken gizzard and 
Acanthamoeba a-actinin) the minimal significant longitudi- 
nal spacing (Fig. 8, d and e) roughly coincided with the 
length of the molecule, and hence with the F-actin helical re- 
peat (i.e., 35.8 nm), suggesting that the length of the bound 
c~-actinin molecule determines its minimal longitudinal spac- 
ing along the actin filaments. This length constraint, in turn, 
ensures that all the a-actinin molecules within tight t~-ac- 
tinin-F-actin bundles, as they form in solution with saturat- 
ing o~-actinin to actin molar ratios, are oriented with their 
long axis parallel to the actin filament axes (Fig. 9 I) rather 
than twisting around the filaments. In this configuration, 
tight bundles may be converted into loose bundles (i.e., by 
lowering the surrounding pool of free ot-actinin) where the 
oe-actinin molecules "switch" from a parallel to a near per- 
pendicular orientation (Fig. 9 I11), probably via obliquely 
oriented intermediates (Fig. 9 H). As illustrated schemati- 
cally in Fig. 9, the different ot-actinin-F-actin configurations 
of this dynamic process may be "trapped" by chemical fixa- 
tion. In this model, the much shorter Dictyostelium a-acti- 
nin, and hence the concomitant shorter longitudinal spacing 
along the actin filaments, perturbs F-actin bundling. 

The biological significance of actin filament bundle forma- 
tion by ot-actinin remains elusive. However, a significant 
evolutionary pressure must have conserved the length of the 
a-actinin molecule when bound to actin filaments, as a pro- 
tozoan ot-actinin (Acanthamoeba) has the same molecular 
length than a vertebrate a-actinin (chicken gizzard) which, 
in addition, coincides with the length of the F-actin helical 
repeat. Therefore, it is likely that ot-actinin has an important 
role in focal contact as well as in stress fiber formation and, 
indeed, most of the ct-actinin in nonmuscle cells accumulates 
there (Lazarides and Burridge, 1975). 
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Note Added in Proof. According to Demma et al. (Demma, M., V. Warren, 
R. Hock, S. Dharmawardhane, and J. Condeelis 1990. Isolation of an 
abundant 50,000-dalton actin filament bundling protein from Dictyostelium 
amoeba. J. Biol. Chem. 265:2286-2291), the only two actin binding pro- 
teins of  all those described so far in Dictyostelium ameba that bundle actin 
filaments in vitro are a 30- and a 50-kD protein, implying that Dictyostelium 
a-actinin, in agreement with our finding, does not bundle actin filaments 
in vitro. 
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