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Background. Renal damage caused by drug toxicity is becoming increasingly common in the clinic. Preventing and treating kidney
damage caused by drug toxicity are essential to maintain patient health and reduce the social and economic burden. In this study,
we performed a meta-analysis to assess the nephroprotective effect of mesenchymal stem cells (MSCs) in the treatment of kidney
disease induced by toxicants. Methods. The Cochrane Library, Embase, ISI Web of Science, and PubMed databases were searched
up to December 31, 2019, to identify studies and extract data to assess the efficacy of MSCs treatment of kidney disease induced by
toxicants using Cochrane Review Manager Version 5.3. A total of 27 studies were eligible and selected for this meta-analysis.
Results. The results showed that a difference in serum creatinine levels between the MSC treatment group and control group was
observed for 2, 4, 5, 6-8, 10-15, 28-30, and ≥42 days (2 days: WMD= −0:88, 95% CI: -1.34, -0.42, P = 0:0002; 4 days: WMD= −
0:74, 95% CI: -0.95, -0.54, P < 0:00001; 5 days: WMD= −0:46, 95% CI: -0.67, -0.25, P < 0:0001; 6-8 days: WMD= −0:55, 95%
CI: -0.84, -0.26, P = 0:0002; 10-15 days: WMD= −0:37, 95% CI: -0.53, -0.20, P < 0:0001; 28-30 days: WMD= −0:53, 95% CI:
-1.04, -0.02, P = 0:04; ≥42 days: WMD= −0:22, 95% CI: -0.39, -0.06, P = 0:007). Furthermore, a difference in blood urea
nitrogen levels between the MSC treatment group and control group was observed for 2-3, 4-5, 6-8, and ≥28 days. The results
also indicate that MSC treatment alleviated inflammatory cells, necrotic tubules, regenerative tubules, and renal interstitial
fibrosis in kidney disease induced by toxicants. Conclusion. MSCs may be a promising therapeutic agent for kidney disease
induced by toxicants.

1. Introduction

Kidney injury occurs during acute kidney injury (AKI) and
chronic kidney disease (CKD), and it is a common condition
associated with the morbidity and mortality of patients. A
total of 80% of patients who survive an AKI episode
completely recover kidney function, and recovered AKI
patients present an almost 9-fold increase in risk for CKD
development [1]. Toxicant-induced kidney injury is one of
the most common causes of kidney disease, causing substan-
tial morbidity and hampering drug development [2]. At
present, renal damage caused by drug toxicity is becoming
increasingly common in the clinic. Preventing and treating
kidney damage caused by drug toxicity is essential to main-
tain patient health and reduce the social and economic
burden.

Mesenchymal stem cells (MSCs), which are multipotent
mesenchymal cells present in various tissues, have multiline-
age differentiation ability under appropriate conditions and
are easy to obtain. They are a promising therapeutic option
for some diseases because of their unique property of releas-
ing some important bioactive factors [3–5]. Drug toxicity can
induce renal tubular epithelial cell damage or death and can
lead to renal interstitial inflammation, which eventually
develops into renal interstitial fibrosis and renal loss. Previ-
ous studies have shown that MSCs can play a protective role
against injury of renal tubular epithelial cells and prevent
renal interstitial fibrosis [6–10]. Before clinical application,
animal experiments in vivo are generally required to confirm
the effectiveness of MSCs. Furthermore, there are few clinical
trials of MSCs on kidney disease induced by toxicants. There-
fore, in this study, we performed a meta-analysis to assess the
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nephroprotective effect of MSCs in the treatment of kidney
disease induced by toxicants in animals.

2. Materials and Methods

2.1. Search Strategy. We searched databases (Cochrane
Library, Embase, ISI Web of Science, and PubMed) up to
Dec 31, 2019, using the following search terms: (mesenchy-
mal stem cells OR MSC OR MSCs OR multipotent stromal
cells OR mesenchymal stromal cells OR mesenchymal pro-
genitor cells OR stem cells) AND (gentamicin OR aristo-
lochic acid OR cisplatin OR adriamycin OR cadmium
chloride OR methotrexate OR rifampicin OR glycerol OR
streptozocin) AND (kidney injury OR renal failure OR kid-
ney disease). The search was confined to English-language
literature. An additional search was conducted among the
eligible manual references of the cited articles.

2.2. Inclusion and Exclusion Criteria. Our meta-analysis
included studies analyzing the efficacy of MSC treatment in
mice or rats with kidney disease. The following studies were
excluded from the analysis: (1) letters, case reports, reviews,
clinical studies, editorials, meta-analysis, and systematic
reviews; (2) studies lacking the targeted indicators or number
of case or control groups and were conducted in humans; (3)
studies of kidney disease that was not induced by toxicants;
and (4) studies with therapeutic regimen for kidney disease
that included other agents with undefined effects.

2.3. Outcome Measures. We filtered the following outcomes
associated with the efficacy of MSC treatment from the
recruited studies: serum creatinine (Scr), blood urea nitrogen
(BUN), urinary albumin excretion (UAE), malondialdehyde
(MDA), L-glutathione (GSH), superoxide dismutase (SOD),
and renal pathology. In addition, we conducted a mutual
consensus when met with disagreements.

2.4. Quality Assessment. Two investigators independently
evaluated the methodological quality using the Cochrane
Handbook for Interventions. We assessed the following sec-
tions of every investigation: selection bias, attrition bias, per-
formance bias, detection bias, reporting bias, and other bias.
Each item was classified as unclear, high risk, or low risk.

2.5. Statistical Analysis. Review Manager Version 5.3 was
applied to explore whether MSC treatment achieved a good
efficacy in kidney disease induced by toxicants, and STATA
12.0 was used to test the publication bias. Heterogeneity of
variation among individual studies was quantified and
described using I2. The fixed effects model was used if the P
value of the heterogeneity test was ≥ 0.1. Otherwise, the ran-
dom effects model was applied to pool the outcomes. In addi-
tion, to compute continuous variables, we analyzed weighted
mean differences (WMDs) for the mean values. We also cal-
culated 95% confidence intervals (95% CI) for the included
studies using the Mantel-Haenszel (M-H) method. Addition-
ally, we evaluated the publication bias using Begg’s rank

Potentially relevant studies retrieved for
more detailed evaluation: 34

7 studies excluded:
(i) Did not provide the detailed

data for case or control group: 3
(ii) Therapeutic regimen for kidney 

disease including other agents
: 4

Studies included in the meta-analysis: 27

751 articles were excluded:
(i) Letters/case

reports/reviews/clinical
studies/editorials/meta-analysis/
systematic reviews: 237

(ii) Preliminary results not on MSC
or kidney disease: 341

(ii) Kidney disease not induced by
toxicant: 173

Articles retrieved for review from
PubMed, Embase, ISI Web of Science,
and Cochrane Library: 785

Figure 1: Flow diagram of the selection process.
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Figure 2: Continued.
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correlation test as well as Egger’s linear regression method
among the studies. A P value < 0.05 was considered of
statistical significance.

3. Results

3.1. Search Results. The databases mentioned above were
searched, and only studies in mice or rats that evaluated the
therapeutic efficacy of MSC treatment on kidney disease
induced by toxicants were selected. Twenty-seven studies
[11–37] were eligible and selected for this meta-analysis,
and a flowchart of inclusion of studies is presented in
Figure 1. Study characteristics are shown in Table 1.

3.2. Quality Assessment of Included Studies. The methodolog-
ical quality of the selected studies was considered acceptable
because most study domains were ranked as unclear risk or
low risk of bias. Unclear risk of bias was mostly detected in
performance and selection bias. Low risk of bias mostly
occurred in detection, reporting, and attrition bias. Figure 2
shows a summary of the risk of biases of the selected studies.

3.3. Scr. A total of 27 studies [11–37] were selected to assess
the effect of MSCs on Scr, and the results show that a differ-
ence between the MSC treatment and control groups was
observed for 2, 4, 5, 6-8, 10-15, 28-30 days, and ≥42 days (2
days:WMD= −0:88, 95% CI: -1.34, -0.42, P = 0:0002; 4 days:
WMD= −0:74, 95% CI: -0.95, -0.54, P < 0:00001; 5 days:
WMD= −0:46, 95% CI: -0.67, -0.25, P < 0:0001; 6-8 days:
WMD= −0:55, 95% CI: -0.84, -0.26, P = 0:0002; 10-15 days:
WMD= −0:37, 95% CI: -0.53, -0.20, P < 0:0001; 28-30 days:
WMD= −0:53, 95% CI: -1.04, -0.02, P = 0:04; ≥42 days:
WMD= −0:22, 95% CI: -0.39, -0.06, P = 0:007; Figure 3
and Table 2). However, no difference was observed between
the MSC treatment and control groups for 3 days (3 days:

WMD= −0:09, 95% CI: -0.25, -0.06, P = 0:24; Figure 3 and
Table 2).

3.4. BUN. A total of 18 studies [11–15, 17–19, 21, 22, 24, 26–
29, 32–34, 36, 37] were selected to assess the effect of MSCs
on BUN, and the results indicate that the difference between
the MSC treatment and control groups was observed for 2-3,
4-5, 6-8, and ≥28 days (2-3 days: WMD= −25:08, 95% CI:
-37.49, -12.67, P < 0:0001; 4-5 days: WMD= −45:71, 95%
CI: -59.36, -32.05, P < 0:00001; 6-8 days: WMD= −57:55,
95% CI: -99.19, -15.91, P = 0:007; ≥28 days: WMD= −23:39
, 95% CI: -36.39, -10.40, P = 0:0004; Figure 4 and Table 2).
However, no difference was observed between the MSC treat-
ment and control groups for 13-15 days (WMD= −13:40,
95% CI: -32.34, 5.54, P = 0:17; Figure 4 and Table 2).

3.5. Urinary Albumin Excretion. Three studies [22, 26, 27]
were selected in the meta-analysis for the assessment of
MSCs on UAE. The results show that the MSC group had a
lower UAE than the control group (WMD= −22:66, 95%
CI: -26.41, -18.90, P < 0:00001; Table 2).

3.6. Oxidative Stress. Four studies [17, 19, 23, 27] were
selected for the assessment of MDA, four [17, 19, 23, 27]
for GSH, and three [11, 17, 23] for SOD. The results indicate
that a difference between the MSC treatment and control
groups was observed for MDA, GSH, and SOD (MDA:
WMD= −17:21, 95% CI: -20.38, -14.04, P < 0:00001; GSH:
WMD= 4:62, 95% CI: 2.74, 6.50, P < 0:00001; SOD: WMD
= 5:42, 95% CI: 2.92, 7.93, P < 0:0001; Table 2).

3.7. Assessment of Renal Pathology. Four studies [17, 24, 27,
35] for inflammatory cells, two studies [17, 27] for necrotic
tubules, two studies [17, 27] for regenerative tubules, and
three studies [17, 27, 35] for renal interstitial fibrosis were
included in this meta-analysis. The results indicate that the
difference in inflammatory cells, necrotic tubules,

Random sequence generation (selection bias)

Allocation concealment (selection bias)

Blinding of participants and personnel (performance bias)

Blinding of outcome assessment (detection bias)

Other bias

Selective reporting (reporting bias)

Incomplete outcome data (attrition bias)

100%75%50%25%0%

Low risk of bias

Unclear risk of bias

High risk of bias

(b)

Figure 2: (a) Aggregate Risk of bias graph for each experimental animal studies; “?”: Unclear risk; “+”: Low risk. (b) Risk of bias summary.
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MSC Control
Mean SD Total Mean SD Total WeightStudy or subgroup

Mean difference
IV, random, 95% CI
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IV, random, 95% CI

1.1.1 2-day
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–0.91 [–1.42, –0.40]
–0.55 [–0.84, –0.26]
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Figure 3: Effect of MSC on Scr.
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regenerative tubules, and renal interstitial fibrosis between
the MSC treatment and control groups was significant
(inflammatory cells: WMD= −2:66, 95% CI: -3.83, -1.49, P
< 0:00001; necrotic tubules: WMD= −2:58, 95% CI: -4.75,
-0.40, P = 0:02; regenerative tubules: WMD= 6:00, 95% CI:
3.45, 8.55, P < 0:00001; renal interstitial fibrosis: WMD= −
5:82, 95% CI: -7.41, -4.23, P < 0:00001; Table 2).

3.8. Publication Bias. Publication bias was tested in this meta-
analysis, and a funnel plot generated using STATA 12.0 for
the primary outcome. Begg’s test and Egger’s test results sug-
gest that publication bias was present (P ≤ 0:01 and P ≤ 0:01,
respectively; Figure 5).

4. Discussion

We reviewed all the selected studies and evaluated the Scr,
BUN, UAE, oxidative stress, and renal pathology results to
assess the nephroprotective effect of MSCs in the treatment
of kidney disease induced by toxicants. We found that MSC
treatment reduced Scr levels at 2, 4, 5, 6-8, 10-15, 28-30,
and ≥42 days and reduced BUN levels at 2-3, 4-5, 6-8, and
≥28 days. We also found that the MSC group had a lower
UAE than the control group. It has been previously shown
that MSC treatment reduces the levels of Scr, BUN, and pro-
teinuria in lupus nephritis in mice [38]. Chen et al. [39]

found that MSC ameliorates ischemia/reperfusion injury-
induced acute kidney injury in rats and reduces Scr levels.
Xiu et al. [40] found that MSC transplantation significantly
reduces the concentration of BUN and Scr, prevents tissue
injury, and reduces mortality after lipopolysaccharide-
induced acute kidney injury. Clinical trials also supported
that MSC injection decreases rejection after transplantation.
Tan et al. [41] found that the therapy with MSCs achieve bet-
ter renal function and lower incidence of acute rejection at 1
year compared with the anti-IL-2 receptor antibody induc-
tion. Vanikar et al. [42] demonstrated that infusion of MSCs
as well as hematopoietic stem cells eases immunosuppression
in living donor renal transplantation. Our previous meta-
analysis also found that MSCs reduce Scr levels, BUN levels,
and proteinuria, as well as alleviate renal damage in animal
models of AKI [43]. Lower proteinuria was also found in
patients with SLE after MSC therapy [44].

The MSC treatment group had a higher level of GSH,
SOD, and a lower level of MDA when compared with the
control group. El-Metwaly et al. [45] found that MSCs
increase GSH levels and reduce MDA levels in lung tissue
of rats subjected to acute lung injury. Li et al. [46] reported
that MSCs can restore the levels of GSH and MDA in rats
with chronic alcoholism, and its effects on repairing sciatic
nerve were obvious. Liu et al. [47] reported that MSCs
significantly increase the activity of glutathione (GSH) and

Table 2: Meta-analysis of the efficacy of MSC in therapy of renal injury induced by toxicant.

Indicators Time point
Studies Q test Model OR/WMD P
Number P value selected (95% CI)

Scr

2 days 3 0.001 Random -0.88 (-1.34, -0.42) 0.0002

3 days 4 0.0004 Random -0.09 (-0.25, 0.06) 0.24

4 days 6 0.0002 Random -0.74 (-0.95, -0.54) <0.00001
5 days 6 <0.00001 Random -0.46 (-0.67, -0.25) <0.0001
6-8 days 7 <0.00001 Random -0.55 (-0.84, -0.26) 0.0002

10-15 days 11 <0.00001 Random -0.37 (-0.53, -0.20) <0.0001
28-30 days 7 <0.00001 Random -0.53 (-1.04, -0.02) 0.04

≥42 days 6 <0.00001 Random -0.22 (-0.39, -0.06) 0.007

BUN

2-3 days 6 <0.00001 Random -25.08 (-37.49, -12.67) <0.0001
4-5 days 8 <0.00001 Random -45.71 (-59.36, -32.05) <0.00001
6-8 days 5 <0.00001 Random -57.55 (-99.19, -15.91) 0.007

13-15 days 4 <0.00001 Random -13.40 (-32.34, 5.54) 0.17

≥28 days 8 <0.00001 Random -23.39 (-36.39, -10.40) 0.0004

UAE — 3 0.72 Fixed -22.66 (-26.41, -18.90) <0.00001
MDA — 4 0.41 Fixed -17.21 (-20.38, -14.04) <0.00001
GSH — 4 <0.00001 Random 4.62 (2.74, 6.50) <0.00001
SOD — 3 <0.00001 Random 5.42 (2.92, 7.93) <0.0001
Renal pathology

Inflammatory cells — 4 <0.00001 Random -2.66 (-3.83, -1.49) <0.00001
Necrotic tubule — 2 <0.00001 Random -2.58 (-4.75, -0.40) 0.02

Regenerative tubules — 2 — Fixed 6.00 (3.45, 8.55) <0.00001
Renal interstitial fibrosis — 3 <0.00001 Random -5.82 (-7.41, -4.23) <0.00001

Note: Scr: serum creatinine; BUN: blood urea nitrogen; UAE: urinary albumin excretion; Ccr: creatinine clearance rate; MDA: malondialdehyde; GSH: L-
glutathione; SOD: superoxide dismutase.
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reduce the levels of MDA in rats induced by unilateral
ureteral obstruction.

The mechanism by which MSCs repair injured kidneys
may be complex. After kidney injury, VCAM-1, GFP, SDF
-1/CXCR4, and CD44 are upregulated in the injured tissue,
which may play important roles in the migration of MSCs

to the damaged area. These substances may be partly secreted
by the MSCs themselves [20, 48, 49]. The presence of MSCs
may limit the injury and repair the ischemic tubular damage
to maintain the glomerular filtration rate and downregulate
BUN [50]. In addition, MSCs lower the expression of several
proinflammatory cytokines such as TNF-α, IL-1β, and IFN-γ

MSC Control
Mean SD Total Mean SD Total WeightStudy or subgroup

Mean difference
IV, random, 95% CI

Mean difference
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Figure 4: Effect of MSC on BUN.
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as well as increase anti-inflammatory cytokines such as IL-1,
IL-10, Bcl-2, TNF-α, bFGF, and prostaglandin E2 [49, 51].
Another possibility is that MSCs may restore damaged cells
and prevent apoptosis by secreting microvesicles, which con-
tain microRNAs, mRNAs, or proteins [49]. To conclude,
MSCs can migrate to the damaged tissue, promote the recov-
ery of renal function, enhance proliferation, and reduce
fibrosis and inflammation.

Furthermore, our study indicates that MSC treatment
can alleviate inflammatory cells, necrotic tubules, regenera-
tive tubules, and renal interstitial fibrosis in kidney disease
induced by toxicants. Some previous studies indicated that
MSC treatment can alleviate renal pathological changes in
unilateral ureteral obstruction rat or mice [9, 10, 52].

However, this meta-analysis also has some limitations.
First, a small sample size was found for the recruited studies.
The administered dose and the type of MSCs were not exactly
the same. Publication bias was found in this meta-analysis,
and the results should be reassessed in the future. Further-
more, the studies frequently had different animal models
(mouse or rat), toxin doses, and administration routes for
renal injury. These limitations may affect the robustness of
our results.

5. Conclusions

TheMSC treatment reduced Scr levels after 2, 4, 5, 6-8, 10-15,
28-30, and ≥42 days and reduced BUN levels after 2-3, 4-5, 6-
8, and ≥28 days. The results also indicate that MSC treatment
alleviated the inflammatory cells, necrotic tubules, regenera-
tive tubules, and renal interstitial fibrosis in kidney disease
induced by toxicants.
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