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Abstract (200 words)  

Dimethyl sulfate (DMS) chemical mapping is widely used for probing RNA structure, with low 

reactivity interpreted as Watson-Crick (WC) base pairs and high reactivity as unpaired 

nucleotides. Despite its widespread use, a quantitative understanding of how DMS reactivity 

relates to specific RNA 3D structural features remains incomplete. To address this gap, we 

systematically analyzed DMS reactivity patterns with a massive library of 7,500 RNA constructs 

containing two-way junctions with known 3D structures. Our results reveal that DMS reactivity 

exists on a continuous spectrum rather than discrete high and low bins. Approximately 10% 

overlap in reactivity between WC and non-WC nucleotides demonstrates that simple thresholds 

cannot accurately determine base-pairing status. In flanking WC pairs, DMS reactivity correlates 

with base stacking strength and junction dynamics. For non-WC nucleotides, increased 

hydrogen bonding and decreased solvent accessibility led to WC-like DMS protection. Most 

significantly, we discover that DMS reactivity in non-canonical pairs strongly correlates with 

atomic distances and base pair geometry, enabling discrimination between different 3D 

conformations. These quantitative relationships establish novel metrics for evaluating RNA 

structural models and provide a new framework for incorporating DMS reactivity patterns into 

structure prediction algorithms. 
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Introduction 

Structured RNAs are pivotal in fundamental biological processes, including protein translation, 

mRNA maturation, and telomere maintenance (1-3). To perform these functions, RNA must fold 

into intricate secondary and tertiary structures capable of conformational changes in response 

to stimuli (4-8). Elucidating these functions requires a comprehensive understanding of RNA 

folding and conformational dynamics. While high-resolution 3D structures provide valuable 

atomic-level insights, they capture static snapshots, failing to elucidate conformational 

transitions and their associated energetics crucial for RNA function (9, 10). Chemical mapping 

offers an orthogonal and complementary approach to high-resolution structure determination. 

These approaches employ small molecule reagents that chemically modify nucleotides based 

on their local environment, giving insights into dynamic conformation changes and 

thermodynamics (11-24). Recent advances in next-generation sequencing techniques have 

dramatically enhanced these methods, enabling the collection of vast amounts of data in single 

experiments, spanning entire transcriptomes or hundreds of rationally designed RNAs (13, 25-

27).  

Various chemical reagents probe different aspects of RNA structure, including backbone, sugar, 

and base atoms (19, 26). While each reagent can provide valuable information, the use of 

dimethyl sulfate (DMS) chemical mapping has rapidly accelerated due to its ease of use in vitro 

and in vivo, its modification of the Watson-Crick face, and the ability to read out modifications 

via next-generation sequencing (24, 28). DMS selectively methylates the N1 position of adenine 

and the N3 position of cytosine, typically leaving nucleotides involved in Watson-Crick (WC) 

base pairs unmodified. This selective modification has enabled DMS reactivity profiles, 

combined with thermodynamic rules, to refine secondary structure models of RNA (24, 29-33).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2024. ; https://doi.org/10.1101/2024.11.21.624766doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.21.624766
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4 

 

Techniques leveraging DMS chemical mapping continue to evolve. Recent advancements 

analyze RNA sequences that contain multiple DMS modifications in a single read. This enables 

the computational separation of the data into clusters that reveal distinct RNA secondary 

structures present (34-38). Despite these advances, current DMS analysis approaches face 

three fundamental limitations restricting their utility in RNA structure determination. First, current 

RNA structure prediction methods use DMS reactivity values to bias folding algorithms through 

pseudo-energy terms, where lower reactivity increases the likelihood of Watson-Crick base 

pairing and higher reactivity decreases it (24, 29-33). This simplified interpretation discards 

valuable quantitative information about modification frequencies that could reveal subtle 

structural features. Second, mounting evidence suggests this interpretation requires refinement 

– WC pairs can show unexpectedly high reactivity, while unpaired nucleotides sometimes show 

surprisingly low reactivity (12, 20, 39-42). Third, we lack a comprehensive understanding of how 

local sequence context and 3D structure influence DMS reactivity patterns. These limitations 

stem from the absence of a large-scale, systematic comparison between DMS reactivity 

patterns and known RNA structures. To address these challenges and unlock the full potential 

of DMS chemical mapping, we need to establish a comprehensive 'ground truth' dataset that 

relates their characteristic reactivity signatures to 3D structure. Such analysis will better decode 

the structural and dynamic information embedded in DMS experiments of complex RNAs. 

In this study, we designed a large-scale RNA library to provide foundational measurements to 

relate DMS reactivity with RNA structure. We generated 7,500 RNA constructs, each containing 

unique two-way junctions with known 3D structures, and performed DMS chemical mapping to 

probe their reactivity profiles. This approach allowed us to systematically examine the 

relationship between DMS reactivity and structural features across sequence contexts to build a 

framework for interpreting the chemical mapping data. First, we demonstrate that DMS reactivity 
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exists on a continuous spectrum rather than discrete states, with significant overlap between 

WC and non-WC nucleotides. Second, we identify how local sequence context, junction 

asymmetry, and base-stacking patterns modulate DMS reactivity, establishing new parameters 

for structural modeling. Third, we discover that specific non-canonical pairs exhibit distinctive 

reactivity signatures that correlate with their 3D conformations, enabling the identification of 

structural features from DMS data. These insights provide a quantitative foundation for 

extracting detailed structural information from DMS experiments, advancing our ability to 

determine RNA structure and dynamics in biological contexts. 

Results 

Designing a massive library to quantitatively correlate DMS reactivity to 

RNA structure  

To build a quantitative relationship between RNA structure and DMS reactivity, we developed a 

systematic approach using RNA elements with known 3D structures. We extracted two-way 

junctions from the RNA non-redundant database (43), which are non-WC interactions flanked by 

two WC base pairs. These junctions are ideal for our study because they maintain their 

structure when isolated from larger RNAs (4, 44-46). They are fundamental building blocks in 

functional RNAs, playing critical roles in ligand binding and catalysis (47-49). We found 177 

unique RNA two-way junctions that were isolatable, i.e., had no more than two hydrogen bonds 

to non-motif residues (See methods). These junctions represent diverse RNA structural 

elements, including kink turns (50), sarcin-ricin loops (51),  bulges, and internal loops 

(Supplemental Figure S1, Supplemental Table S1). We supplemented our dataset with 536 

1×1 and 2×2 symmetrical junctions without known 3D structures (Supplemental Table S2). 

Previous work has shown that these small, symmetric junctions often comprise non-canonical 
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base pairs (52). These additional junctions expand our ability to systematically observe trends 

among different types of potential non-canonical pairs. 

We engineered a massive RNA library by incorporating these junctions into 7,500 unique RNA 

constructs. Each construct was designed as a 150-nucleotide sequence containing 5-7 junctions 

arranged within stable hairpin structures (Figure 1A). This hairpin architecture was crucial - 

providing a stable structural scaffold ensured each junction would fold into its intended 

conformation rather than forming alternative structures (see Methods). Each junction appears 

30 times on average, ranging from 5 to 104 occurrences (Figure 1E). This redundancy enables 

the calculation of average DMS reactivity per junction and reveals how local sequence context 

influences junction reactivity.  

DMS reactivity is highly reproducible and is primarily governed by local 

sequence and structure  

We performed DMS mutational profiling with sequencing (DMS-MaPseq) on our library of 7500 

constructs, with a high average read depth of 38,000 reads per sequence (Figure 1B, 

Supplemental Figure S2). Our measurements revealed DMS reactivities spanning four orders 

of magnitude (6.0 x 10-5 to 0.5). Based on previous research, we employed the natural logarithm 

of DMS reactivity, which allows for a more intuitive interpretation of the data while preserving the 

full range of observed reactivities (Figure 1D) (13). Replicate experiments showed excellent 

reproducibility (R² = 0.99) for the 240,000 DMS measurements (Figure 1C), though the 

correlation decreased with reactivity values below 0.001 (R² = 0.37; Supplemental Figure S3). 

This lower bound corresponds to our no-modification background mutation rate of 0.0014.  

To quantify how consistently each junction behaved across different sequence contexts, we 

calculated the coefficient of variation (CV) - a standardized measure of variability that divides 
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standard deviation by the mean. A low CV would indicate that a junction's DMS reactivity 

remains stable regardless of its position in different constructs. In contrast, a high CV would 

suggest that surrounding sequences strongly influence its reactivity. We found that the average 

CV was 0.36 across all nucleotides (Figure 1H), with WC pairs showing slightly more variability 

(CV = 0.42) than non-WC residues (CV = 0.30). These relatively low CV values reveal that DMS 

reactivity is primarily determined by local structural features rather than being strongly 

influenced by the broader RNA context.  

To further investigate how local structure influences DMS reactivity, we analyzed the effects of 

the next WC pair after the flanking pair (the second flanking pair). When we grouped our data 

based on the second flanking pair identity, the average CV for WC pairs decreased from 0.42 to 

0.34, and non-WC residues reduced from 0.30 to 0.22. To ensure these reductions weren't 

simply an artifact of dividing our data into smaller groups, we performed a control analysis using 

random groupings of the same size, which showed significantly smaller CV reductions, 0.37 for 

WC pairs and 0.27 for non-WC residues (Supplemental Figure S4). These data indicate that 

DMS reactivity is highly reproducible over an extensive range of values and largely depends on 

local effects, not the entire RNA's sequence and structure. 

DMS reactivity values are continuous, and a significant overlap exists 

between Watson-Crick and non-Watson-Crick nucleotides 

A key purpose of this study is to systematically investigate the relationship between high-

resolution structure features and DMS reactivity. Most RNA structure prediction methods 

assume WC base pairs will have low DMS reactivity while non-WC nucleotides will experience 

high reactivity. Based on this assumption, we expected to observe two distinct populations of 

DMS reactivity values in our dataset. However, comparing the DMS reactivity of flanking WC 
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pairs with non-WC residues revealed overlapping distributions rather than distinct populations 

(Figure 2A), suggesting a more complex relationship between structure and DMS reactivity 

(including non-flanking WC pairs gives similar distributions and analysis but do not have 3D 

structures see Supplemental Figure S5). This overlap suggests DMS data contains additional 

structural information beyond simple WC pair identification. 

We applied a logistical regression to find the best reactivity cutoff to quantitatively distinguish 

WC pairs from non-WC residues based on DMS reactivity. The analysis identified a DMS 

reactivity threshold of 0.0043 (ln (0.0043) = -5.45), corresponding to a 50% probability of a 

nucleotide being in a WC pair (Figure 2C). Using this threshold value, we found that 9.87% of 

non-WC residues (11,597/117,498) showed low reactivity typical of WC pairs, while 8.92% of 

WC residues (10,399/116,579) displayed unexpectedly high reactivity. These findings 

demonstrate the limitations of fixed reactivity thresholds for structure prediction. 

DMS reactivity of flanking WC pairs report on sequence, structure, and 

dynamics 

To improve our structural understanding of DMS reactivity, we investigated the 

conformational/sequence features linked to high reactivity (reactivity > 0.0043) in flanking WC 

pairs. We first observed a significant difference in the frequency of high reactivity flanking pairs 

between C-G (1%) and A-U (19%) pairs (Figure 3A). This substantial difference cannot be 

attributed to sampling bias, as our dataset contained comparable numbers of A-U and C-G pairs 

(47,652 and 52,121, respectively). This significant difference reflects the C-G pair’s greater 

thermodynamic stability, providing greater protection against DMS modification than A-U pairs. 

These data indicate that base pair identity plays a role in understanding the difference in DMS 

reactivity of flanking WC pairs. 
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To examine whether local structural distortions in WC pairs could account for reactivity 

differences, we examined each motif's high-resolution structure. Analysis of 306 high-resolution 

structures revealed no correlation between DMS reactivity and base pair geometric parameters 

(shear, stretch, stagger, buckle, propeller, and opening) or overall deviation from ideal geometry 

(Figure 3B-C, Supplemental Figure S6). Further analysis by specific base pair types (A-U, U-

A, G-C, or C-G) revealed no correlation improvement. These findings indicate that the static, 

lowest energy conformations of flanking WC pairs, as captured in high-resolution crystal 

structures, do not provide sufficient information to explain the observed variations in DMS 

reactivity. 

Given the lack of correlation between DMS reactivity and static structural features, we explored 

the role of RNA dynamics in flanking base pair reactivity. Previous studies suggest symmetric 

junctions form stable non-canonical pairs, while asymmetric junctions exhibit increased flexibility 

(52). We quantified this relationship by analyzing junction asymmetry, which is defined by the 

difference in residue numbers on each side (0 for symmetric to 4 for highly asymmetric). Our 

analysis revealed a correlation between junction asymmetry and elevated DMS reactivity in 

flanking pairs (Figure 3D). This pattern aligns with known dynamic structures like the 3×0 HIV-1 

TAR bulge, where the flanking AU pair forms transiently (53).  

Given the lack of correlation between DMS reactivity and static structural features, we explored 

the role of RNA dynamics in flanking base pair reactivity. Previous studies suggest symmetric 

junctions form stable non-canonical pairs, while asymmetric junctions exhibit increased flexibility 

(52). We quantified this relationship by analyzing junction asymmetry, which is defined by the 

difference in residue numbers on each side (0 for symmetric to 4 for highly asymmetric). Our 

analysis revealed a strong correlation between junction asymmetry and elevated DMS reactivity 

in flanking pairs (Figure 3D). This pattern aligns with known dynamic structures like the 3×0 
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HIV-1 TAR bulge, where the flanking AU pair forms transiently (53). These findings suggest 

motif topology, particularly junction asymmetry, is a critical determinant in DMS reactivity. 

We also analyzed how local sequence context influences flanking pair reactivity. Examining 

residues adjacent to flanking pairs revealed sequence-dependent patterns of DMS accessibility 

(Figure 3E-G). We found purines at either 5′ or 3′ positions significantly increased the 

probability of high reactivity in flanking WC pairs. These effects compound flanking pairs with 

guanines on both sides showed a 40% probability of elevated reactivity compared to only 2% for 

uracil pairs. These sequence-dependent reactivity patterns suggest a balance between base 

stacking and hydrogen bonding in RNA structure. Purine-rich environments favor stacking 

interactions over hydrogen bonding, increasing flanking pair flexibility and DMS accessibility. 

This model aligns with multiple high-resolution structures where stacked purines forgo hydrogen 

bonding (Supplemental Figure S7), suggesting a general principle in RNA structural 

organization. These results indicate that sequence, structure, and dynamics are embedded in 

WC flanking pairs' DMS reactivity values.  

Non-canonical base pairs protect against DMS modification through 

hydrogen bonding and decreased solvent accessibility.  

To enhance RNA structure prediction accuracy from DMS data, we identified cases where non-

canonical interactions could be misinterpreted as WC pairs due to low reactivity. Analysis of 

nucleotides with known 3D structures revealed that 11% of non-canonical pairs showed 

reactivity below our WC threshold (< 0.0043), compared to only 2.5% of unpaired nucleotides. 

This 4.4-fold difference indicates non-canonical pairing can protect nucleotides from DMS 

modification similarly to WC pairs (Figure 4A-B). Our engineered 1x1 and 2x2 motifs without 

known structures confirmed this pattern, where 14.50% and 9% of potential non-canonical pairs, 
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respectively, showed low reactivity. These results indicate that non-canonical interactions 

frequently generate WC-like protection patterns.  

We analyzed reactivity patterns across mismatched pairs (A-A, A-G, A-C, C-C, C-U) using 

structures with known 3D conformations. Low reactivity frequencies varied by pair type: A-G 

(19.40 %), C in C-U (14.39 %), C in C-A (6.78 %), C-C (6.75 %), A-A (6.65 %), and A in A-C 

(3.44 %) (Figure 4A). This protection stems from hydrogen bonding at DMS modification sites 

(N1 of adenine, N3 of cytosine). For example, A-G pairs often form cis Watson-Crick/Watson-

Crick (cWW) arrangements where stable a N1-N1 hydrogen bond provide protection. Similarly, 

low-reactivity C-A pairs typically show cWW conformations where cytosine's N3 hydrogen bonds 

to adenine's N1. These conformations must involve a protonation of one nucleotide, consistent 

with previously by NMR (54-57) (Figure 4C).  

Solvent accessibility plays a crucial role in DMS reactivity. In WC pairs, the N1/N3 positions are 

shielded from solvent, reducing DMS modification. Analysis of 695 nucleotides from high-

resolution structures revealed a moderate correlation (R² = 0.41) between DMS reactivity and 

solvent accessibility of these modification sites (Supplemental Figure S8). This relationship 

extends to non-canonical pairs – those with lower DMS reactivity showed reduced solvent 

accessibility at N1 and N3 atoms (Figure 4D). This pattern is most evident in 1x1 mismatches, 

where 33.38% of cytosines in C-A pairs and 29.52% of adenines in A-G pairs demonstrated 

WC-like reactivity (Figure 4E). These nucleotides had low solvent accessibility, with 51.66% of 

C-A pairs and 69.25% of A-G pairs showing values below 2 Å2, typical of WC pairs (Figure 4F, 

Supplemental Table S3). These findings provide strong evidence that the DMS reactivity of 

non-canonical pairs can approach that of WC pairs consistent with the reduced solvent 

accessibility of the target atoms.  
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The local stacking environment significantly influences non-canonical pair reactivity. While 

adenines in A-A, A-G, and A-C pairs showed minimal stacking effects, cytosines in C-A, C-C, 

and C-U pairs were strongly influenced by their neighboring bases (Supplemental Figure S9). 

Pyrimidines flanking these cytosine-containing pairs correlated with reduced reactivity. This 

effect was particularly dramatic in C-U pairs – 32.31% of cytosines with pyrimidine neighbors 

showed WC-like reactivity, compared to just 0.35% when flanked by purines (Figure 4G). This 

hundred-fold difference likely results from competing structural forces. In pyrimidine-rich 

environments, cytosine's weak stacking ability favors hydrogen bond formation with its partner, 

shielding the N3 position from DMS. Conversely, purine stacking may disrupt hydrogen bonding, 

exposing the N3 position and increasing DMS reactivity. 

Non-canonical base pairs have distinct reactivity relationships that report 

3D structure features. 

We explored the potential of DMS reactivity data to reveal 3D structural information about non-

canonical base pairs. We found that A-G, C-A, and C-C reactivity patterns correlate with specific 

atomic distances, providing insights into base-pair conformations (See Supplemental Figure 

S10 for other pairs with weaker correlations). For A-G pairs, we found a correlation (R² = 0.51, n 

= 122) between the phosphate-to-phosphate (P-P) distance and adenine reactivity (Figure 5A). 

This correlation resulted from the longest P-P distance in cis Watson-Crick/Watson-Crick (cWW) 

conformations, corresponding to the lowest reactivity values. In contrast, shorter P-P distances 

were associated with trans Sugar/Hoogsteen (tSH) conformations and the highest reactivity 

values (Figure 5B). This pattern suggests that DMS reactivity is sensitive to the overall 

geometry of the base pair. Further analysis revealed that grouping reactivities by base pair 

conformation yielded distinct clusters, indicating that the specific interaction type is a primary 

determinant of reactivity patterns (Figure 5C). While the P-P distance provided valuable 
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insights, it represents just one of several atomic measurements correlating with base-pairing 

modes (Supplemental Figure S11). 

C-A pairs showed multiple correlations between atomic distances and reactivity. The strongest 

correlation (R² = 0.51, n = 48) was between cytosine's O3′ atom and adenine's C2′ atom 

(Figure 5D, Supplemental Figure S12). Short O3′-C2′ distances corresponded to low cytosine 

reactivity in trans Sugar/Hoogsteen (tSH) and some cis Watson-Crick/Watson-Crick (cWW) 

conformations. Longer distances showed higher reactivity in cis Watson-Crick/Hoogsteen (cWH) 

and trans-Watson-Crick/Hoogsteen (tWH) arrangements. An even stronger correlation (R² = 

0.65, n = 48) appeared when comparing the ratio of cytosine-to-adenine reactivity with the 

distance between cytosine's O2′ and adenine's OP2 atoms (Figure 5E-F, Supplemental Figure 

13). This ratio effectively measures the relative solvent accessibility of the modification sites. 

Ratios above 1 indicate better protection of cytosine's N3 compared to adenine's N1, typical in 

tWH conformations. Ratios near 1 suggest equal accessibility, common in cWW arrangements, 

while ratios below 1 show better protection of adenine's N1. 

For C-C pairs showed the strongest correlation (R² = 0.64, n = 35) between O3′ and OP2 

distances, though with limited samples. Notably, this correlation reveals structural asymmetry, 

with indicating hydrogen bonding between one cytosine's O3′ and the other's OP2 

(Supplemental Figure S14-15). Together, these correlations between DMS reactivity and 

atomic distances indicate that chemical mapping data encodes 3D structural information of non-

canonical pairs. 

Discussion 

Our study presents the first large-scale analysis correlating DMS reactivity with RNA structure 

by systematically examining 7,500 RNA constructs. These constructs combine known 3D 
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structural motifs with engineered 1×1 and 2×2 symmetrical junctions, allowing us to investigate 

hundreds of instances of each structural element across different sequence contexts. Analysis 

of this comprehensive dataset revealed that DMS reactivity exists on a continuous spectrum 

rather than in discrete states of 'protected' and 'unprotected.' The significant overlap between 

WC and non-WC reactivity distributions has two critical implications. First, using simple.  

reactivity thresholds for structure prediction will inevitably lead to incorrect structural 

assignments. Second, observations of highly reactive WC pairs or protected non-WC residues 

should not be interpreted as structure prediction errors but as potential indicators of specific 

structural features. 

These results indicate the need for a new generation of RNA secondary structure prediction 

algorithms. Such models should incorporate multiple new features we found to systematically 

influence DMS reactivity. For WC pairs, the model should consider base pair identity (C-G pairs 

show five-fold lower reactivity than A-U pairs), local sequence context (purines at 5′ or 3′ 

positions increase reactivity), and junction asymmetry (which correlates with increased flanking 

pair flexibility). For non-WC residues, the model should account for potential hydrogen bonding 

patterns (11% show WC-like protection) and neighbor effects (pyrimidine neighbors protect C-U 

pairs 100-fold more than purine neighbors). By integrating these quantitative relationships, we 

can better interpret DMS reactivity patterns to generate more accurate RNA structural models.  

Our findings suggest that DMS reactivity patterns contain valuable information for modeling 

RNA tertiary structure. We found specific correlations between reactivity and three-dimensional 

features. For instance, phosphate-to-phosphate distances in A-G pairs correlate with adenine 

reactivity (R² = 0.51), reflecting distinct base-pairing geometries. Similar structural signatures 

appear in other non-canonical pairs: C-A pairs show correlations between atomic distances and 

reactivity ratios that distinguish different base-pairing modes. These quantitative relationships 
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between DMS reactivity and structural parameters suggest that chemical mapping data typically 

used only for secondary structure prediction, could help guide tertiary structure modeling, 

particularly for complex motifs containing non-canonical interactions. 

This study lays the groundwork for a quantitative framework linking DMS reactivity to RNA 

structure. Our findings indicate that DMS chemical mapping data, when properly interpreted, 

contains more structural information than previously appreciated. Future work can build on 

these relationships between reactivity patterns and structural features to develop more accurate 

RNA structure prediction methods, particularly for complex structural elements containing non-

canonical pairs. This advancement could significantly improve our ability to analyze and predict 

RNA structures, with far-reaching implications for understanding RNA biological systems and 

therapeutic design.  

Data, materials, and software availability 

All data, materials, and software used in this study are available. Unprocessed FASTQ files 

have been deposited to the Sequence Read Archive (SRA) under the accession 

PRJNA1188187. All other data is available on Fig Share (10.6084/m9.figshare.27880434). All 

code used in this study is available on GitHub: 

https://github.com/YesselmanLabPublications/2024_dms_quant_framework 

Acknowledgments 

This work was supported by the NIH NIGMS (1R35GM147706) to J.D.Y. We would like to thank 

Catherine Eichhorn and Daniel Herschlag for their thoughtful comments, which strengthened 

this paper.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2024. ; https://doi.org/10.1101/2024.11.21.624766doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.21.624766
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 

 

Contributions 

J.D.Y. and C.J. designed the experiments. B.L., D.A., and K.N. performed the experiments. 

J.D.Y. performed the analysis with help from C.J. and D.H.S.D. J.D.Y. wrote the paper with the 

help of D.H.S.D. and all other authors. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2024. ; https://doi.org/10.1101/2024.11.21.624766doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.21.624766
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

17 

 

Methods  

Extracting isolated two-way junctions from high-resolution RNA structures 

We extracted RNA structural motifs from high-resolution experimental structures using the RNA 

3D Motif Atlas (http://rna.bgsu.edu/rna3dhub/nrlist) (43). This database provided non-redundant 

RNA structures determined by X-ray crystallography and cryo-EM with resolution better than 3.5 

Å. Using DSSR (Dissecting the Spatial Structure of RNA) software (58), we identified all 

structural elements, including n-way junctions, two-way junctions, loops, and helices. At the 

same time, 3D Structures of Nucleic Acid-Protein complexes software (SNAP) (59) 

characterized any RNA-protein interactions present in these motifs. We focused on two-way 

junctions from these elements, applying filters to ensure structural stability when incorporated 

into designed constructs. We excluded junctions with more than two hydrogen bonds to non-

junction nucleotides and removed those with extensive protein contacts or other tertiary 

interactions. This process yielded a set of two-way junctions that could maintain their native 

structural features when isolated. All motifs with known 3D structures used in this study are 

listed in Supplemental Table S1. The PDB of each structure used in this study is included in 

Fig Share (10.6084/m9.figshare.27880434).  

Selecting symmetric junction sequences that do not have 3D structures.  

We generated all 1x1 and 2x2 potential junction sequences with all possible flanking pairs (A-U, 

U-A, G-C, C-G, G-U, U-G). As we could not include all possible sequences, we applied 

selection creation. We focused on sequences that have the most As and Cs as possible as 

those that are sensitive to DMS modification.  
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Design of RNA library of 7500 stable hairpin constructs 

We designed RNA constructs containing 5-7 two-way junctions arranged in hairpin structures. 

Each construct included standardized primer sequences and a central hairpin loop, with 

junctions separated by 3 WC base pairs. Using ViennaRNA, we verified that each sequence 

folded into its intended structure with low ensemble defect scores (≤5). We filtered constructs to 

ensure lengths were within 10% of the minimum sequence length while not exceeding 150 

nucleotides. We required a minimum hamming distance of 20 between all constructs to maintain 

sequence diversity. This design process continued iteratively until reaching 7,500 unique 

sequences, which were ordered as an Agilent oligo pool (sequences in Supplemental 

Document: Sequences.xlsx). 

PCR amplification of oligo pool to generate DNA templates 

To generate double-stranded DNA templates for transcription, we amplified the oligo pool using 

PCR. The oligo pool was dissolved in 50 μL of 1x IDTE pH 8.0 buffer (IDT #11-05-01-13). The 

PCR reaction used forward (TTCTAATACGACTCACTATAGG) and reverse 

(GTTGTTGTTGTTGTTTCTTT) primers from IDT. Each 50 μL reaction contained 25 μL Q5 

High-Fidelity DNA Polymerase (NEB #M0494S), 2 μL oligo pool, 2.5 μL each primer (diluted to 

10 μM from 100 μM stock), and 18 μL RNase-free UltraPure water (ThermoFisher #10977015). 

PCR conditions were: 98°C for 30s, then 20 cycles of 98°C for 10s, 62°C for 15s, and 72°C for 

15s, with final extension at 72°C for 5min. Products were separated on 2% agarose gel (150V, 

1h) and purified using Zymoclean Gel DNA Recovery Kit (Genesee Scientific #11-301C). 

In vitro RNA synthesis and purification 
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RNA was transcribed in vitro using a 100 μL reaction containing: 10 μL 10x Transcription Buffer 

(400 mM Tris-HCl pH 8.0, 10 mM spermidine, 0.1% Triton X), 5 μL 50 mM DTT, 16 μL 25 mM 

NTPs, 8 μL 250 mM MgCl2, 4 μL T7 polymerase (NEB #M0251S), 24 μL template DNA 

(adjusted to 0.3 μM), and 33 μL RNase-free water. After 6 hour incubation at 37°C, DNA was 

removed with DNase I and RNA was purified using RNA Clean and Concentrator-5 kit 

(Genesee Scientific #R1014). Final RNA concentration was measured by nanodrop 

spectrophotometry and length was verified by 4% denaturing agarose gel electrophoresis 

(150V, 1h).  

DMS modification and library preparation for next-generation sequencing 

DMS modification was performed on 10 pmol RNA in 5 μL RNase-free water. RNA was 

denatured (90°C, 4min), snap-cooled (4°C, 3min), then added to folding solution containing 16.5 

μL buffer and 1 μL MgCl2 at optimized concentrations. To achieve final concentrations of 0.265 

mM sodium cacodylate and 10 mM MgCl2, we combined 16.5 μL of 0.4 M sodium cacodylate 

with 1 μL of 250 mM MgCl2. RNA was folded at room temperature for 30 min. Meanwhile, DMS 

solution was prepared by mixing 15 μL DMS (Sigma-Aldrich #D186309) with 85 μL 100% 

ethanol (Decon Labs #2716). After folding, 2.5 μL DMS solution was added for 6 min, then 

quenched with 25 μL BME (ThermoFisher #125470010). Modified RNA was purified using RNA 

Clean & Concentrator-5 kit (Genesee Scientific #R1014), eluted in 7 μL RNase-free water, and 

quantified using Qubit RNA BR Assay Kit (ThermoFisher #Q10211) using 1 μL sample. 

TGIRT-III reverse transcription was used to detect DMS modifications through mutation 

incorporation. The 12.1 μL reaction contained: 2.4 μL 5x TGIRT buffer (250 mM Tris-HCl pH 

8.3, 375 mM KCl, 15 mM MgCl2), 1.2 μL 10 mM dNTPs, 0.6 μL 100 mM DTT, 0.5 μL TGIRT-III 

enzyme, 6.4 μL modified RNA (diluted to 0.25 μM), and 1 μL barcoded RTB primer (0.285 μM; 
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sequences in Supplemental Document: Sequences.xlsx). After 2h incubation at 57°C, RNA 

was hydrolyzed by adding 5 μL 0.4 M NaOH, heating (90°C, 4min), and snap-cooling (4°C, 

3min). The reaction was neutralized with 2.5 μL quench acid (1.43 M NaCl, 0.57 M HCl, 1.29 M 

sodium acetate; volume adjusted per batch). The cDNA was purified using Oligo Clean and 

Concentrator Kit (Genesee Scientific #11-380B), adding 30 μL RNase-free water before 

purification to reach 50 μL total volume. cDNA was eluted in 15 μL RNase-free water. 

The cDNA library was amplified using PCR with forward primer 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCG and 

reverse primer 

CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC

TGGGCTTCGGCCC. Each 50 μL reaction contained 25 μL Q5 High-Fidelity DNA Polymerase 

(NEB #M0494S), 2.5 μL each primer, 2.0 μL purified cDNA, and 18 μL RNase-free water. PCR 

conditions were: 98°C for 30s, then 16 cycles of 98°C for 10s, 62°C for 15s, and 72°C for 15s, 

with final extension at 72°C for 5min. Products were separated on 2% E-gel EX Agarose Gel 

(ThermoFisher #G401002) using E-Gel Power Snap Plus system (ThermoFisher #G9301) for 

10min. Correct size bands were excised and purified using Zymoclean Gel DNA Recovery Kit 

(Genesee Scientific #11-301C). Final library concentration was measured using Qubit 1X 

dsDNA High Sensitivity Assay Kit (ThermoFisher #Q33230). 

Generation of DMS reactivity from DMS-MaPseq sequencing data 

The sequencing was conducted using Novaseq 6000. The sequencing run was initially 

demultiplexed using the RTB barcodes inserted during the RT process, utilizing the 

novobarcode software (https://www.novocraft.com/documentation/novobarcode/demultiplexing-

barcodedindexed-reads-with-novobarcode/).  
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novobarcode -b rtb_barcodes.fa -f test_R1_001.fastq test_R2_001.fastq  

An example for rtb_barcodes.fa would be;  

Distance   4  

Format     5  

RTB021     CCAATGGGTGTA  

RTB022     AGCCAAAACTGG  

RTB023     GTGTGTTTGCCC  
 

The Distance refers to the variation in base pairs between a barcode and a permissible read 

when three barcodes are provided. The format specifies that the barcode will be located at the 

5′ end of read 1. These demultiplexed fastq files are available on Sequencing Read Archive 

accession PRJNA1188187.  

Processing the demultiplexed fastq files into the mutation fractions was performed by the rna-

map software (https://github.com/YesselmanLab/rna_map) (60). With the following command for 

each replicate   

rna-map -fa <fasta file> -fq1 <R2 fastq file> -fq2 <R1 fastq file> --

dot-bracket <csv file> 

Where <fasta file> is the path to the fasta file with all library DNA sequences without T7 

promoters. <R2 fastq file> is the path to the R2 fastq file obtained from demultiplexing. 

<R1 fastq file> is the path to the R1 fastq file obtained from demultiplexing. <csv file> 

is an optional file that contains the name, RNA sequence and structure in dot bracket notation 

for each sequence in the library. rna-map will generate a ‘mutation_histos.p’ file that will be 

used for the next analysis steps. 
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Processing DMS reactivity for motif and residue analysis 

To ensure high quality data, we filtered our initial dataset of 7,500 sequences, removing any 

sequences with fewer than 2,000 reads or signal-to-noise ratios below 4. This filtering step 

eliminated 17 sequences. We also excluded individual reactivity measurements with z-scores 

exceeding 3 (approximately 2,424 datapoints, ~1% of total data). These outliers were 

predominantly found in flanking Watson-Crick pairs from a small subset of motif sequences 

(Supplemental Figure S16, Supplemental Table S4), suggesting sequence-dependent 

alternative conformations in these cases. 

Each construct sequence was parsed into motifs based on secondary structure and sequence. 

We defined the first flanking pair as the Watson-Crick pair directly neighboring non-canonical 

interactions, which remained constant for motifs derived from 3D structures. The second 

flanking pair was defined as the next Watson-Crick pair beyond the first flanking pair, which 

varied between constructs. To ensure consistent analysis, we standardized motif sequences by 

always placing the longer strand first (e.g., "GG&CAG" became "CAG&GG"). 

For each unique motif sequence, we calculated average reactivity values, standard deviations, 

and coefficients of variation. We then cross-referenced motifs with their corresponding PDB 

structures to extract detailed structural information. For each nucleotide in each motif, we 

collected nucleotide residue types (e.g., Flanking-WC, non-WC), sequential position, reactivity 

data, and pairing information. The residue data were expanded to include neighboring residue 

types (purine or pyrimidine) and stacking information between nucleotides. After log-

transforming residue reactivity data, we mapped each residue to its corresponding PDB file and 

retrieved additional structural parameters (e.g., B-factors) for residues in the PDB files. 
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Logistic Regression for Predicting Watson-Crick Base Pairs from Reactivity 

Data 

This method employs logistic regression to predict the probability that a base pair is either WC 

or NON-WC based on the natural logarithmic reactivity data of nucleotides. Logistic regression 

is a binary classification technique that applies a sigmoid function to the input data, producing a 

probability score between 0 and 1, where values closer to 1 indicate a higher likelihood of the 

base pair being WC. In this method, the base pair type is first transformed into a binary variable, 

with WC encoded as 1 and non-WC as 0. The logistic regression model is then trained on the 

natural logarithmic reactivity data, learning the relationship between reactivity and base pair 

type. Once trained, the model computes the probability that each base pair is WC. 

Calculating the structural features for nucleotides in motifs that have PDB 

files 

We analyzed the structural parameters of RNA junctions using the 3DNA software package 

(59). For each PDB file, the find_pair and analyze commands were executed to generate 

base-pair parameters.  

find_pair test.pdb test.inp 

analyze test.inp 

From the 3DNA output, we extracted detailed base-pair parameters including classification (WC 

or non-WC), residue numbers, and geometric measurements (shear, stretch, stagger, buckle, 

propeller, and opening angles). To assess structural deviations, we calculated root-mean-

square deviations (RMSDs) by aligning base pairs to ideal PDB conformations using the Kabsch 

algorithm. We then characterized non-canonical base pairs using the Leontis-Westhof 
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classification system (61), manually comparing each structure to exemplars from the RNA 

Basepair Catalog (62). This manual approach avoided misclassification errors we observed with 

automated methods. Using the Biopython PandasPdb module, we extracted atomic coordinates 

to calculate pairwise distances between all atoms in residues of interest. Finally, we calculated 

solvent accessible surface area (SASA) for specific atoms using the freesasa package. 
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Figures 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2024. ; https://doi.org/10.1101/2024.11.21.624766doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.21.624766
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

26

 

Figure 1: Design and validation of a large-scale RNA library for DMS structure-reactivity

analysis 

(A) Library design strategy: Isolatable RNA motifs were extracted from 3D structures and

combined with engineered variants to create stable hairpin constructs containing multiple motifs

separated by helices. (B) A representative construct shows the secondary structure and DMS

reactivity data. Nucleotides are color-coded: adenine (red), cytosine (blue), uracil (green), and

guanine (gold). The height of the bars indicates DMS reactivity. (C) Reproducibility of DMS

measurements across independent experiments. Each point represents a nucleotide's

mutational fraction (R² = 0.99, n = 240,000 measurements). (D) Distribution of DMS reactivity

values shown on a natural logarithmic scale, spanning four orders of magnitude (6.0 x 10⁻� to

0.5). (E) Frequency distribution of motif occurrences within the library. (F) Example of reactivity

consistency: The motif "GGGAAAG&UAACAC" with secondary structure “(…..(&)…..)” shows

similar DMS reactivity patterns across multiple sequence contexts, demonstrating measurement
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reproducibility. (G) Measurement variability analysis: Coefficient of variation (CV = standard 

deviation/mean) for each nucleotide position across all motif instances. (H) Impact of structural 

context: Comparison of CV distributions when nucleotides are grouped by second flanking pair 

identity versus ungrouped, showing reduced variability with grouping (see Supplemental 

Figure 4 to compare to the random grouping of the same size). 
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Figure 2: Quantitative analysis of DMS reactivity in flanking Watson-Crick and non-

Watson-Crick nucleotides 

(A) Reactivity distributions reveal a significant overlap between nucleotides in flanking WC pairs 

(blue) and non-WC positions (orange), challenging the simple binary interpretation of DMS data. 

(B) Cumulative reactivity distributions comparing WC paired versus non-WC nucleotides as a 

function of the natural log of the mutational histogram. (C) Logistic regression analysis 

establishing the probability of WC pairing based on DMS reactivity. The horizontal dashed line 

marks the 50% probability threshold, corresponding to a natural log mutation fraction of -5.45 

(mutation fraction = 0.0043). (D) Distribution of nucleotides relative to the 50% probability 

threshold. While this cutoff optimally separates WC from non-WC nucleotides, significant 

overlap demonstrates the limitations of using fixed reactivity thresholds for structure prediction. 
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Figure 3: Sequence context and structural features influence Watson-Crick pair reactivity 

(A) DMS reactivity distributions comparing adenines in A-U pairs versus cytosines in C-G pairs. 

The vertical dotted line (natural log of reactivity = -5.45) is the 50% likelihood of being a WC 

base pair. A-U pairs are frequently more reactive than C-G pairs. (B-C) Example of WC pair that 

are highly reactive but maintain ideal geometry. (D) Distributions of the natural log of reactivity 

for As in A-U flanking pairs as a function of the asymmetry of the non-WC paired residues 

where 0 is symmetrical, and 4 is four more residues on one side than the other. (E) The 

distribution of the natural log of reactivity as a function of the 5′ residue or the residue that 

appears right before the A in the A-U pair. (F) The distribution of the natural log of reactivity as a 

function of the 3′ residue or the residue that appears right after the A in the A-U pair. (G) The 

combined influence of flanking sequence context. Two-nucleotide patterns (e.g., "GG" = 5′-

GAG-3′) reveal strong neighboring effects, with purine-rich contexts promoting higher reactivity. 

Similar trends were observed for cytosines (Supplemental Figure S17). 
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Figure 4: Structural and sequence determinants of low reactivity in non-canonical pairs 

(A) DMS reactivity distributions for non-canonical pairs with known structures. A vertical dotted 

line indicates the 50% WC probability threshold (-5.45). Nucleotides left of this line exhibit WC-

like protection. (B) Reactivity distribution of unpaired nucleotides in bulges, providing baseline 

comparison for non-canonical pairs. (C) Representative examples of conformations of low-

reactivity non-canonical pairs: A-G, A-C, C-C, and C-U, colored as A (red), C (blue), G (orange), 

and U (green). Each illustrates how specific hydrogen bonding patterns can protect DMS 

modification sites. (D) Solvent accessibility of DMS modification sites (adenine N1, cytosine N3) 

across non-canonical pairs. Horizontal lines indicate average accessibility for WC pairs (2 A) 

and unpaired nucleotides (upper), demonstrating a correlation between accessibility and 

reactivity. (F) Solvent accessibility analysis focused on 1×1 mismatches, revealing distinct 

patterns of nucleotide protection in symmetric contexts. (G) The impact of neighboring 

sequences on C-U mismatch reactivity shows how local context modulates DMS accessibility in 

non-canonical pairs. 
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Figure 5: DMS reactivity correlates with RNA 3D structural features of non-canonical 

pairs 

DMS features DMS reactivity analysis reveals quantitative relationships with three-dimensional 

structural parameters in non-canonical base pairs. (A) The natural log of adenine reactivity in A-

G pairs correlates with phosphate-phosphate distance (R² = 0.51, n=122). (B) Representative A-

G pairs show short, medium, and long P-P distances. (C) Distribution of adenine reactivity in A-

G pairs by base pair conformation type, showing distinct patterns. (D) Cytosine reactivity in C-A 

pairs correlates with O3′-C2′ distance (R² = 0.51, n=48). (E) The cytosine-to-adenine reactivity 

ratio in C-A pairs versus O2′-OP2 distance reveals geometric relationships (R² = 0.65, n=48). 

(F) Representative C-A pairs show short, medium, and long O2′-OP2 distances.  
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