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Abstract

Background

Primary congenital glaucoma (PCG) is the most common form of glaucoma in children.
PCG occurs due to the developmental defects in the trabecular meshwork and anterior
chamber of the eye. The purpose of this study is to identify the causative genetic variants in
three families with developmental and primary congenital glaucoma (PCG) with a recessive
inheritance pattern.

Methods

DNA samples were obtained from consanguineous families of Pakistani ancestry. The
CYP1B1 gene was sequenced in the affected probands by conventional Sanger DNA
sequencing. Whole exome sequencing (WES) was performed in DNA samples of four indi-
viduals belonging to three different CYP1B17-negative families. Variants identified by WES
were validated by Sanger sequencing.

Results

WES identified potentially causative novel mutations in the latent transforming growth factor
beta binding protein 2 (LTBP2) gene in two PCG families. In the first family a novel missense
mutation (c.4934G>A; p.Arg1645Gilu) co-segregates with the disease phenotype, and in
the second family a novel frameshift mutation (c.4031_4032insA; p.Asp1345Glyfs*6) was
identified. In a third family with developmental glaucoma a novel mutation (c.3496G>A; p.
Gly1166Arg) was identified in the PXDN gene, which segregates with the disease.

Conclusions

We identified three novel mutations in glaucoma families using WES; two in the LTBP2
gene and one in the PXDN gene. The results will not only enhance our current
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understanding of the genetic basis of glaucoma, but may also contribute to a better under-
standing of the diverse phenotypic consequences caused by mutations in these genes.

Introduction

Childhood or infantile glaucoma include primary congenital glaucoma (PCG) and develop-
mental glaucoma, which can be associated with syndromes (e.g. Axenfeld Rieger syndromes)
or can lead to defects only in the eye. The majority (about 60%) of patients with these types of
glaucoma are diagnosed by the age of 6 months, and 80% are diagnosed within the first year of
life. PCG usually leads to permanent visual impairment, and accounts for 0.01-0.04% of total
blindness [1,2]. The incidence of PCG, however, varies among different populations: 1 in 2,500
in Saudi Arabians, 1 in 3,300 in southern Indians, 1 in 1,250 in Slovakian gypsies [3], and from
11in 10,000 to 1 in 20,000 in Western populations [4]. In most cases, developmental anomalies
affect the anterior chamber and the trabecular meshwork. PCG is characterized by an elevated
intraocular pressure (IOP), an increased corneal diameter, and optic disc damage [4,5]. The
clinical features of PCG include buphthalmos, corneal edema and opacification with rupture of
the Descemet membrane, thinning of the anterior sclera, iris atrophy, and an anomalously
deep anterior chamber. In addition, less common features include epiphora, blepharospasm,
and photophobia.

Three chromosomal locations have been associated with PCG: GLC3A at 2p21, GLC3B at
1p36.2-1p36.1, GLC3C at 14q24.3, and thus far only two causative genes (CYP1BI, LTBP2)
have been identified [6]. The CYPIBI gene is frequently mutated, ranging 20-100% in PCG
cases from Japan, Saudi Arabia and Slovakian gypsies [7]. Mutations in the PXDN gene are
known to cause developmental glaucoma with opacification/clouding of the cornea, cataract,
and developmental glaucoma in Pakistani and Cambodian families [8].

In the current study, we aimed to identify novel mutations in three CYP1B1-negative glau-
coma families from Pakistan using whole-exome sequencing (WES).

Materials and Methods
Subjects

The participants were recruited at the pediatric glaucoma department of Al-Shifa Eye Trust
Hospital, Rawalpindi, Pakistan. Blood samples were collected from affected and unaffected sib-
lings, and from the parents. Genomic DNA was extracted using AutoPure LS DNA Extractor
and PUREGEN reagents (Gentra Systems Inc, Minneapolis, Minnesota, USA).

Ethics statement

This study was approved by the Institutional Review Board of the Al-Shifa Eye Trust hospital,
and adhered to the tenets of the Declaration of Helsinki. Written informed consent was
obtained for study participation from the participants and/or their parents, as appropriate.

WES and Sanger Sequencing

WES was employed to identify the disease-associated genes in four subjects, belonged to three
families. Genomic DNA was prepared from peripheral venous blood, and was randomly frag-
mented into 200-400 base pair (bp) fragments with the Covaris Acoustic System according to
the manufacturer’s instructions (Covaris, Inc., Woburn, MA). Kapa Library preparation (Kapa
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Biosystems, Inc., Wilmington, MA) was performed on a Caliper Sciclone NGS workstation
(Caliper Life Sciences, Hopkinton, MA) followed by capture using the Nimblegen SeqCap EZ
V2 kit (Roche Nimblegen, Inc., Madison, WI). Each captured library was then loaded on an
Mumina HiSeq2000 sequencer using Illumina TruSeq V3 chemistry (Illumina, Inc., San Diego,
CA).

Downstream analyses included demultiplexing (CASAVA software, Illumina), alignment to
the human reference genome (GRCh37, UCSC hgl9) using the Burrows-Wheeler alignment
(BWA)[9] tool. Alignments were sorted by Picard (http://broadinstitute.github.io/picard) and
subsequently processed by GATK [10].

Finally, the mean depth of coverage was determined using GATK, and Free mix values were
estimated through verify BAMid [11]. Samples that passed technical QC metrics were geno-
typed to gVCF level through GATKs Haplotype Caller. Indels, SN'Vs, microinsertions and
microdeletions were filtered separately using GATKs Variant-Quality Score Recalibration.
Both the SNV and indel sets were annotated using ANNOVAR [12]. Only mapped reads were
used for subsequent analysis. They were annotated with information from the University of
California, Santa Cruz genome annotation database (http://genome.ucsc.edu/index.html), con-
sensus coding sequence (http://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi), Ensembl
(http://www.ensembl.org), RefSeq (http://www.ncbinlm.nih.gov/RetSeq/), MirBase (http://
www.mirbase.org/), and EntrezGene (www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene).

All variants obtained through WES were first filtered against several public databases for the
minor allele frequency (MAF) < 0.5%, including dbSNP135, 1000 Genomes Project databases
(http://www.1000genomes.org/, 1000g2012April_all version), NHLBI GO Exome Sequencing
Project (ESP6500, http://evs.gs.washington.edu/EVS/, esp6500si_all version) and the Human
Genetic Variation Database (HGVD,http://www.genome.med.kyoto-u.ac.jp/SnpDB/). Subse-
quently, only coding nonsynonymous variants, frameshift, and splice site variants were ana-
lyzed. To predict the functional impact of the sequence variants on the encoded protein, the
pathogenicity of missense variants was evaluated by publically available tools including PhyloP,
Grantham, polymorphism phenotyping v-2 (PolyPhen-2) (version 2.1.0 r367; http://genetics.
bwh.harvard.edu/pph2/), MutationTaster, and sorting intolerant from tolerant (SIFT; http://
sift.jevi.org/).

Variant validation and segregations analysis of variants identified by WES were carried out
by performing standard PCR and Sanger sequencing using ABI BigDye chemistry (Applied
Biosystems Inc, Foster City, California, USA), and was processed through an automated ABI
3730 Sequencer (Applied Biosystems, Inc).

Results
Family 1

Proband IV:1 was a 5-year-old boy with buphthalmos in both eyes. He had a corneal diameter
of 14.5 mm in the right eye and 13.5 mm in the left eye. The corneal thickness was 0.625 mm
and 0.733 mm in the right and left eyes, respectively. Axial lengths were 26.32 mm in the right
and 21.22mm in the left eye. Intraocular pressures (IOP) were 24 mmHg in the right and 25
mmHg in the left eye. In the left eye he had a persistant pupillary membrane which was
removed by surgery. He had subluxated lenses in both eyes. The cup-disc ratio (CDR) was 0.7
in the right eye and 0.2 in the left eye.

Sibling IV:2 was a 3-year-old boy with a phthisical right eye after surgery for glaucoma, and
a left eye with buphthalmos. The IOP of the left eye was 13 mmHg after surgical treatment and
topical drops with a vision of 6/ 96, and the CDR was 0.9. He had microspherophakia (a small
spherical lens) and an iridogoniodysgenesis (IGDS)-like iris pattern.

PLOS ONE | DOI:10.1371/journal.pone.0159259 July 13,2016 3/9


http://broadinstitute.github.io/picard
http://genome.ucsc.edu/index.html
http://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi
http://www.ensembl.org
http://www.ncbi.nlm.nih.gov/RefSeq/
http://www.mirbase.org/
http://www.mirbase.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db�=�gene
http://www.1000genomes.org/
http://evs.gs.washington.edu/EVS/
http://www.genome.med.kyoto-u.ac.jp/SnpDB/
http://genetics.bwh.harvard.edu/pph2/
http://genetics.bwh.harvard.edu/pph2/
http://sift.jcvi.org/
http://sift.jcvi.org/

@ : PLOS ‘ ONE Identification of Novel Variants in LTBP2 and PXDN in Developmental and Congenital Glaucoma

1A 1C
A Arg1645Glu
/l |
N f | Human 014767-1 LCNVARIEAEREAGVHFRPGY
A L
121 AL i A . Mouse 008999-1 LCNVARIEAERCAG HFRPGY
TTGLGCCAGACCUGRACGECCREEETCC Rat 035806-1 LCNVARIEAEREAG  HFRPGY
it Chimpanzee K7C700-1 LCNVARIEAEREAGVHFRPGY
[\ Gorilla G3SCK9-1 LCNVARIEAEREAGVHFRPGY
al /\ N\ M M /\ I ﬂ A Pig F1S275-1 LCNVARTEAEREAGVHFRPGY
IV:1 VM"/M" /\ A /\f\ }(\/\ /\ /\A Dog E2R$32-1 LCNVARIEAEREAGVHFRPGY
TTGAGGCAGRGCAGCROGCCCEEET Rhesus macaque F7DH92-1 LCNVARTEAEREAGVHFRPGY
cat M3W556-1 LCNVARIEAEREAGVHFRPGY

Fig 1. (a) Sanger sequencing chromatograms showing lll:1 carrier and IV:1 homozygous mutant (b) Family pedigree and segregation of a novel
missense mutation (c.4934G>A; p.Arg1645Gilu) in the LTBP2 gene in a PCG family. (c). Multiple sequence alignment of the region of the LTBP2
protein surrounding the novel Arg1645Glu mutation in various species. The arginine residue (indicated with an arrow) is highly conserved among all
species analyzed.

doi:10.1371/journal.pone.0159259.g001

WES in DNA samples of the two affected children of the family revealed a novel pathogenic
missense variant (c.4934G>A; p.Argl645Glu) in LTBP2 (Fig 1a and 1b). This particular vari-
ant was predicted to be deleterious by SIFT, damaging by Polyphen-2, and disease causing by
MutationTaster. The PhyloP score was 3.64 and Grantham distance was 43. The mutated argi-
nine amino acid was conserved among PRDMS5 orthologs from different species (Fig 1c).

Family 2

Proband IV:2 was a 4-year-old boy who visited the hospital with the complaint of watering
eyes. On examination he had a hazy cornea, buphthalmos, and poor vision in both eyes. He
had four surgeries for glaucoma. The IOP was 24 mmHg and 30 mmHg and the CDR was 0.7
and 0.9 for the right and the left eye, respectively.

In this family a novel homozygous frameshift mutation (c.4031_4032insA; p.Asp1345Glyfs*6)
segregates with the disease (Fig 2a and 2b). Due to this single base pair insertion the reading
frame is shifted leading to a premature stop codon, which may result in a truncated protein, or
the the mRNA may be subjected to nonsense-mediated decay.

Family 3

Proband IV:2 was a 9-year-old girl with a hazy cornea. Axial lengths were 19.7 mm and 17.3
mm with a horizontal corneal diameter of 11.5 mm and 10 mm for the right and the left eyes,
respectively.

Sibling IV:3 was a 6-month old girl having a severe bilateral corneal haze, due to which
detailed clinical evaluation of the anterior chamber was not possible. Her left eye was phthisi-
cal, and the right eye had poor vision due to corneal opacity. The IOP of the right eye was
within normal range after surgery for glaucoma.

WES identified a novel missense variant (c.3496G>A; p.Gly1166Arg) in the PXDN gene
(Fig 3a and 3b). This variant segregates with the disease phenotype in the family and is pre-
dicted to be deleterious, damaging and disease causing by SIFT, Polyphen-2, and MutationTa-
ster, respectively, with a Grantham score of 125 and a PhyloP score of 6.10. The Gly1166Arg
variant affects a glycine residue in the haem peroxidase domain of the protein, which is a highly
conserved amino acid among PXDN orthologs of different species (Fig 3c).
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Fig 2. (a) Sanger sequencing chromatograms for the carrier l1l:1 and affected individual 1V:2 homozygous for the mutation (b) Family pedigree and
segregation of a novel frameshift mutation (c.4031_4032insA; p.Asp1345Glyfs*6) in the LTBP2 gene in a PCG family.

doi:10.1371/journal.pone.0159259.9002

The novel variants segregating with disease in LTBP2 and PXDN have been excluded from

150 Pakistani healthy controls.

Discussion

In the current study we identified two novel potentially pathogenic mutations (c.4934G>A; p.
Argl645Glu and ¢.4031_4032insA; p.Asp1345Glyfs*6) in the LTBP2 gene in two PCG families
from Pakistan. Exome data of the all patients can be viewed using the link: http://datadryad.
org/review?doi=doi:10.5061/dryad.k7455. In the PXDN gene a novel mutation (c.3496G>A; p.
Glyl166Arg) was identified in a family with developmental glaucoma. Previously, mutations in
the LTBP2 gene have been identified in the four recessive Pakistani families with PCG: a
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Fig 3. (a) DNA chromatogram of the relevant PXDN fragment for the carrier and homozygous variant are shown (b). Family pedigree and segregation
of a novel missense mutation (c.3496G>A; p.Gly1166Arg) in the PXDN gene. (c). Multiple sequence alignment of the region of the PXDN protein
surrounding the novel Gly1166Arg mutation in various species. The glycine residue (indicated with an arrow) is highly conserved among all species

analyzed.

doi:10.1371/journal.pone.0159259.g003
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homozygous single base pair deletion in exon 1 (c.412 del G; p.Ala138Profs*278), a homozy-
gous nonsense mutation in exon 4 (¢.895C >T; p.Arg299X), a homozygous 14-base pair dele-
tion in exon 6 (c.1243-1256 del; p.Glu415Argfs*596), and a homozygous nonsense variant in
exon 1 (¢.331C>T; p.GIn111X). In European Gypsies a recurrent founder mutation (c.895C
>T; p.Arg299X) was identified in 8 patients, which was initially identified in a Pakistani PCG
family, suggesting that they may have a common ancestry [13]. More recently, loss of function
mutations (c.1415delC; p.Ser472Trpfs*3 and ¢.5376delC; p.Tyr1793Alafs*55) in the LTBP2
gene have been identified in Iranian families [14]. In PCG patients from the United States,
WES revealed 3 nonsynonymous and 11 synonymous sequence variants in the LTBP2 gene in
heterozygous state but since a second variant remained unidentified these variants are unlikely
to be causative[15]. On the contrary, no variants in the LTBP2 gene were identified in 54 Saudi
Arabian families [16], in Turkish and British PCG families [17] nor in North Indian patients
[18]. This suggests that LTBP2 mutations are a relatively rare cause of PCG.

The LTBP2 protein is expressed in the trabecular meshwork and ciliary processes involved
in the regulation and production of the aqueous humor. In other tissues, LTBP2 is involved in
tissue repair and cell adhesion [19]. Mutations in LTBP2 were identified in PCG families and
patients from Pakistan and Gypsies [13]. The mechanism behind the pathogenic involvement
of the LTBP2 gene in glaucoma is not clearly established, but it has been demonstrated that the
LTBP2 protein is associated with elastic fibers in developing elastic tissues [20]. Furthermore,
LTBP2 interacts with fibrillin 1 (FBN1), which is required for its integration into the extracellu-
lar matrix [21]. The LTBP2 protein binds directly to FBN1 and competes with LTBP1 for this
interaction [22]. Mutations in the FBNI gene are known to cause Marfan syndrome, and a
number of studies have linked homozygous mutations in the LTBP2 gene with a syndrome
including megalocornea, microspherophakia, lens dislocation, and secondary glaucoma devel-
oping after the age of 3 years [23] and in isolated microspherophakia/lens dislocation [24]. In
addition to involvement in PCG, pathogenic mutations in the LTBP2 gene have also been
linked to Weill-Marchesani syndrome characterized by abnormalities of the lens of the eye,
proportionate short stature, brachydactyly, and joint stiffness [25]. These reports, together
with the current study, and the LTBP2 expression pattern in the trabecular meshwork, ciliary
body and ciliary process[13], shows underlying pathophysiology of LTBP2 in different eye
diseases.

Peroxidasin protein (PXDN) is localized to the cornea and in the layers of the lens epithelial.
Previous studied identified that it is required for the normal development of the anterior cham-
ber of the eye [8]. Therefore, any pathogenic change or mutations affect the normal develop-
ment of the eye and results in various congenital eye anomalies. Previously, mutations in
PXDN have been reported in families and patients with congenital cataracts, microcornea,
sclerocornea, developmental glaucoma, and anterior segment dysgenesis [8,26]

In the current study, a novel missense mutation (c.3496G>A; p.Gly1166Arg) is identified in
the PXDN gene in a Pakistani family with the developmental glaucoma. Mutations in the
PXDN were previously reported to cause severe inherited eye diseases, such as congenital cata-
ract, corneal opacity and developmental glaucoma in Pakistani [(c.2638C>T; p.Arg880Cys),
(c.2568delC; p.Cys857Alafs*5)] and Cambodian (c.1021C>T; p.Arg341X) families [8]. In addi-
tion to homozgous mutations identified in the current and previous studies, recently, muta-
tions in the PXDN have been identified compound heterozygously in a non-consanguineous
family with two children who had anterior segment dysgenesis, sclerocornea, microphthalmia,
hypotonia and developmental delays. Both siblings carried a heterozygous nonsense mutation
(c.1021C>T; p.Arg341*) and a heterozygous 23-basepair deletion leading to a frameshift
(c.2375_2397del23; p.Leu792Hisfs*67). In addition, a sporadic male patient carried a
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heterozygous frameshift mutation (c.1192delT; p.Tyr398Thrfs*40) and a heterozygous mis-
sense substitution (¢.947 A>C; p.GIn316Pro) [26].

A Pxdn mutant mouse carrying a premature stop codon mutation was described to have a
severe anterior segment dysgenesis and microphthalmia, resembling the phenotype in patients
with PXDN mutations. In the mutant mice, proliferation and differentiation of the lens is dis-
rupted due to the extrusion of lens material outside the lens, and aberrant expression of Pax6
and Foxe3 was observed. The defective peroxidasin was described to affect the structural integ-
rity of the ocular basement membrane, causing damage to the anterior segment of the eye and
leading to developmental eye defects. Moreover, the PXDN mutants exhibited an early-onset
glaucoma and progressive retinal dysgenesis [27,28].

Both affected siblings in the current study had corneal opacity, glaucoma, and buphthalmos.
The homozygous missense mutation (c.3496G>A; p.Gly1166Arg) affects a highly conserved
glycine reside in the haem peroxidase domain of the protein. Therefore, it is likely that this var-
iant affects the peroxidase activity of the protein, potentially leading to impaired integrity of
the basement membrane.

The pathogenic mechanism involving both LTBP2 and PXDN together in glaucoma is not
clearly established, however it has been proposed that both of them are linked to each other via
COL4A?2 http://pathwaynet.princeton.edu/predictions/geneset/?network=human-functional-
relation&geneset=4314%2C14540#. Collagens are present in the ECM together with other pro-
teoglycans, glycoproteins (LTBP2 and PXDN) fibronectin and fibrillin-1. The ECM assembly is
important in the TM for regulating the IOP of the eye [28, 29]. The excessive accumulation of
collagens might be able to disrupt their interaction with other proteins in the ECM or it could
be the variants present in other proteins present in close contact with collagens, such as LTBP2
and PXDN, alters the normal mechanism of ECM assembly and affect the anterior segment of
the eye resulting in the vision impairment due to defects in the anterior parts of the eye such as
iris, cornea, Descemet membrane etc.

In summary, we identified two novel mutations (c.4934G>A; p.Argl645Glu and
c.4031_4032insA; p.Asp1345Glyfs*6) in the LTBP2 gene and one novel mutation (c.3496G>A;
p-Glyl166Arg) in the PXDN gene in Pakistani families with the PCG and developmental glau-
coma. Our study, together with previous published studies, suggests that both LTBP2 and
PXDN are essential for eye development, and are important members of the extracellular
matrix essential for basement membrane integrity and cell adhesion during the eye develop-
ment. Mutations in both LTBP2 and PXDN can cause diverse phenotypic consequences, there-
fore, more studies are required to contribute to an accurate phenotypic classification based on
the genetic diagnosis.
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