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Abstract: The reactivities of transition metal coordination compounds are often controlled by
the environment around the coordination sphere. For ruthenium(II) complexes, differences in
polypyridyl supporting ligands affect some types of reactivity despite identical coordination
geometries. To evaluate the synergistic effects of (i) the supporting ligands, and (ii) the coordination
geometry, a series of dicarbonyl–ruthenium(II) complexes that contain both asymmetric and
symmetric bidentate polypyridyl ligands were synthesized. Molecular structures of the complexes
were determined by X-ray crystallography to distinguish their steric configuration. Structural,
computational, and electrochemical analysis revealed some differences between the isomers. Photo-
and thermal reactions indicated that the reactivities of the complexes were significantly affected by
both their structures and the ligands involved.

Keywords: bipyridine; phenanthroline; naphthyridine; ruthenium; carbonyl complex; isomerization;
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1. Introduction

Polypyridines with multiple covalently bonded pyridine groups exhibit unique photophysical and
redox properties [1,2]. Among the polypyridines, bipyridine analogues play an important role in the
formation of various transition metal complexes as bidentate ligands with two nitrogen donor atoms [3].
Bipyridine analogues function not only as supporting ligands for stabilizing metal complexes, but also
as electron pool sites. For example, in addition to catalysts for the production of useful resources,
such as in multi-electron reductions of carbon dioxide and water–gas shift reactions [4–11], bipyridine
analogues are also utilized as photosensitizers [12] and phosphorescence materials [13]. A variety of
studies that imparted selectivity to various reactions by strictly controlling the coordination sphere have
been reported for many ruthenium complexes. Various molecular structures can be readily designed
for a ruthenium center because ruthenium can take various oxidation states and can easily interact
with the ligand. These structures include examples where differences in the coordination geometry
dramatically changed both the electrical and photochemical properties of the complex, and therefore
its catalysis for chemical reactions [14–16]. Many examples of the relationship between the supporting
bipyridine ligands and the reactivity of metal complexes are known. For example, the relationship
between the number of heteroatoms involved in the supporting ligand and the reactivity of the complex
has been reported in a ruthenium complex containing bipyridine analogues [17].

Recently, we reported the synthesis of ruthenium complexes with 2,2’-bipyridine (bpy) and
an analogue, the asymmetric bidentate ligand 2-(2-pyridyl)-1,8-naphthyridine (pynp, Chart 1).
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The supporting ligands affected the properties of the complexes, and diastereomers with these ligands
showed different reactivities [18]. As is the case in some of the studies mentioned above, the difference
in reactivities based on coordination geometry or the effect of the supporting ligand on the properties of
the complex have been reported independently, but there are very few examples that investigated the
synergistic effects of both. In this study, we prepared a series of Ru(II) complexes (Chart 2) containing
the asymmetric bidentate pynp and a symmetric bidentate ligand NˆN, [Ru(pynp)(NˆN)(CO)2]2+ (NˆN
= bpy or 1,10-phenanthroline (phen) as a more rigid ligand, Chart 1), as a platform for investigating
these synergistic effects [19]. In addition to characterizing the above complexes, we performed photo-
and thermal reactions on the complexes, along with the bis–pynp complex [Ru(pynp)2(CO)2]2+ as
a reference compound. We comprehensively evaluated the synergistic effects of the coordination
geometry and supporting ligands on the reactivity.
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DFT calculations indicate that the minor formation of the p-isomer in addition to the d-isomer is due 
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2. Results and Discussion

2.1. Diastereoselective Synthesis and Characterization of Ruthenium Complexes with the Asymmetric
pynp Ligand

2.1.1. Synthesis and Structure of Complexes

Unlike unsubstituted 2,2’-bipyridine and 1,10-phenanthroline, the pynp ligand has no C2 symmetry
axis (Chart 1), so metal complexes containing pynp(s) may have several diastereomers. We previously
reported that for ruthenium carbonyl complexes containing both bpy and pynp, formation of the
desired isomers can be controlled by the order of introduction of the two ligands [18,20]. Using this
method, dicarbonylruthenium complexes containing both pynp and phen were successfully prepared.
As in the previous study, the distal isomer is produced preferentially when phen is introduced first
(Figure 1a). In the case of NˆN = bpy, the product obtained by this method is almost all the d-form,
whereas in the phen system a small quantity of the corresponding p-form (10–20%) is also formed.
This may be due to energy differences between the d- and p-isomers. Density functional theory
(DFT) calculations for each complex system suggest that the p-isomers are more stable, but the energy
difference between the d- and p-isomers in the phen system is smaller than that of the corresponding
bpy system (NˆN = bpy: 4.3 kcal/mol, NˆN = phen: 1.9 kcal/mol). The DFT calculations indicate that
the minor formation of the p-isomer in addition to the d-isomer is due to the relatively small energy
difference in the phen system.
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Figure 1. Diastereoselective synthesis of [1]2+ and [2]2+. (a) synthetic route for the d-isomers and
molecular structure of [2d]2+; (b) synthetic route for the p-isomers and molecular structure of [2p]2+.
Counteranions, H atoms, and solvent molecules are omitted for clarity. The asymmetric unit of the [2d]
crystal contains two chemically identical complex pairs, of which only one is displayed.

In contrast, initial introduction of the asymmetric pynp ligand leads to the selective formation of
p-isomers (Figure 1b). Considering the molecular structure of an isolated and analyzed intermediate
cis(solv)-[Ru(pynp)(CO)2(solv)2]2+; Supplementary Materials Figure S1), it is reasonable to propose
that an intramolecular interaction between the non-coordinating nitrogen atom in the pynp ligand
and the adjacent coordinated carbonyl promotes the formation of p-isomers [18]. In addition, only
the dp-isomer was selectively isolated in the case of [Ru(pynp)2(CO)2]2+ (Figure 2), even though
the bis-pynp complex could form three diastereomers (pp, dp, and dd; Chart 3). According to DFT
calculations for the three diastereomers, the total energy of the experimentally formed dp-isomer
was 3.79 kcal/mol higher than that of the most stable pp-isomer, which appears to contradict the
experimental result. We then performed total energy calculations for the two possible intermediates
in the coordination of the second pynp ligand to the ruthenium center by assuming that the aqua
ligand in the trans position of the coordinated pynp is substituted earlier than the aqua ligand in the cis
position (see the structure diagram in Supplementary Materials Figure S1). The results indicate that
both intermediates have almost the same energy (∆E = 0.08 kcal/mol; Figure S2). Therefore, the second
pynp ligand may coordinate through a kinetically favorable pathway rather than a thermodynamic
one to give the selective dp-isomer.
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Table 1 summarizes the structural parameters of a series of [Ru(pynp)(NˆN)(CO)2]2+ complexes.

The data around the ruthenium center and the {Ru–CO}2+ moieties are within the typical range of
dicarbonylruthenium(II) complexes that have polypyridines as supporting ligands [4,21,22]. In addition,
the interatomic distances between the carbonyl carbon and the non-coordinating nitrogen of pynp
(2.607(5) to 2.754(14) Å) in the three p-forms are much shorter than the sum of van der Waals radii
(3.25 Å) [23]. The shortening suggests that pynp and the adjacent CO ligand interact considerably in
these complexes.

Table 1. Selected bond and interatomic distances (Å) and angles (◦) for dicarbonyl complexes.

Parameter [1d]2+ 2 [1p]2+ 3 [2d]2+ [2p]2+ [3dp]2+

Ru–C 1.905 (3) 1.925 (11) 1.903 (9) 1.917 (4) 1.919 (10)
1.900 (3) 1.910 (10) 1.888 (9) 1.911 (4) 1.886 (8)

1.909 (9)
1.895 (10)

C–O 1.134 (4) 1.123 (13) 1.145 (11) 1.133 (5) 1.132 (10)
1.124 (4) 1.119 (12) 1.123 (11) 1.122 (5) 1.120 (11)

1.133 (11)
1.121 (11)

Ru–C–O 176.9 (3) 177.6 (8) 177.0 (8) 176.0 (4) 175.7 (7)
176.6 (3) 174.3 (9) 175.5 (8) 171.6 (4) 175.6 (8)

177.4 (8)
177.1 (8)

C . . . N 1 - 2.671 (14) - 2.607 (5) 2.754 (14)
1 Distance between the non-coordinating nitrogen in pynp and the CO carbon atoms. 2 [18]. 3 [20].

2.1.2. Characterization of Complexes

Spectroscopic and electrochemical analyses were performed on the synthesized complexes (Table 2).
Two strong IR bands assignable to νCO were observed around 2100 and 2040 cm−1 in all complexes.
These values were similar to those in other dicarbonyl-ruthenium(II) complexes [4,21,22], and no clear
differences were observed between the isomers. Given that the complexes contain two carbonyl ligands
of the highest order in the spectrochemical series, no obvious absorption was observed in the visible
region (Supplementary Materials Figure S3). However, intense polypyridyl-centered π–π* intraligand
transitions were observed in the UV region [24].
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Table 2. Spectral and electrochemical data for dicarbonyl complexes.

Technique [1d]2+ [1p]2+ [2d]2+ [2p]2+ [3dp]2+

IR (νCO/cm−1) 2097 2097 2099 2093 2094
2044 2045 2045 2044 2040

UV–vis (λmax/nm) 339 (1.78) 343 (2.90) 342 (1.64) 349 (2.05) 336 (2.93)
(ε/×104 M−1 cm−1) 314 (2.22) 315 (2.63) 273 (3.19) 272 (3.79)
CV (E/V vs. Fc+/Fc) −1.09 1

−1.07 1
−1.12 1

−1.09 1
−1.11 1

−1.45 1
−1.48 1

−1.59 1
−1.49 1

−1.29 1

−0.98 2
−1.05 2

−1.03 2
−1.03 2

(−0.78) 3 (−0.87) 3 (−0.79) 3

1Epc. 2Epa. 3 Data in parentheses represent oxidation waves caused by the second reduction.

Although spectroscopic measurements did not show any marked differences between isomers,
electrochemistry clearly showed different behavior. The cyclic voltammograms (CV) of all the complexes
showed multiple ligand-based reduction waves in the range of −1 to −2 V vs. Fc+/Fc. Since pynp
is more easily reduced than bpy or phen, the first reduction peak at ca. −1 V was attributed to the
reduction of the pynp ligand [25]. When the cathodic scan was immediately reversed after the first
peak potential, the coupled oxidation wave was reversible in the d-isomers (Figure 3a, dotted line);
however, those of the corresponding p-isomers were either irreversible or quasi-reversible at the first
reduction wave (Figure 3b). Although the first reduction wave of [2p]2+ in Figure 3b appears to be
reversible, the coupled anodic current decreased as the scan rates slowed (Supplementary Materials
Figure S4). The basicity of the free nitrogen atom of the 1,8-naphthyridine moiety in pynp increased
due to one-electron reduction of pynp, thus making intramolecular nucleophilic attack to the adjacent
carbonyl carbons possible, leading to the formation of a metallacyclic compound (Scheme 1) [26]. Due
to this structural change, only the p-isomer exhibited irreversible one-electron reduction behavior.
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Scheme 1. Reversible metallacyclization induced by one-electron transfer in [Ru(pynp)(CO)2(PPh3)2]2+ [26].

2.2. Reactivities of Complexes

2.2.1. Photochemical Reactions

Polypyridylruthenium complexes are generally photoreactive. When cis-[Ru(bpy)2(CO)2]2+

in acetonitrile is irradiated with light, two carbonyl ligands simultaneously dissociate and the
corresponding solvent complex (cis-[Ru(bpy)2(CH3CN)2]2+) is produced [27,28]. However, when pynp
is substituted for one of the two bpy ligands, the two carbonyl groups dissociate stepwise due to their
electronic non-equivalence [18]. Since no comparisons between the d- and p-isomers were made in the
previous report, we compared the photoreactivities of both isomers. As previously reported, there
are two reaction steps for both isomers (Scheme 2) [18,29]. In the first step, one carbonyl ligand was
dissociated, and, at the same time, the acetonitrile used as the solvent became coordinated (the first
step in Scheme 2 and Figure 4a). Steric retention of the complex was supported by structural analysis
of the isolated species at this step (Figure 5a). In the subsequent step, photoisomerization from the d-
to p-isomer subsequent slow dissociation of the second CO ligand and solvent coordination occurred
(the second step in Scheme 2a and Figure 4b). Reaction analysis and DFT calculations suggest that
the formation of photoexcited states of the complex promote such an isomerization to a more stable
p-form in similar complexes containing pynp [30,31]. In the bis-pynp complex ([3dp]2+), a similar
two-step photoreaction (Scheme 2a) was confirmed from structural analyses of both products (dp-form
in Figure 5b and pp-form in Supplementary Materials Figure S5). On the other hand, the final structure
of the p-isomers was unchanged from spectroscopic analyses (Scheme 2b).
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Scheme 2. Photoreactions of [Ru(pynp)(NˆN)(CO)2]2+ [29]. (a) The two-step reaction of d-isomers
([1d]2+, [2d]2+, and [3dp]2+) with isomerization; (b) The two-step reaction of p-isomers ([1p]2+ and
[2p]2+) without isomerization. The structures of these species were confirmed by X-ray crystallographic
analyses (Figure 5, Supplementary Materials Figure S5, and reference [18]).
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in place of the pyridine unit in bpy (or phen), which is both more delocalized and a π-acceptor. The 
superior charge acceptor properties of the naphthyridine unit in the d-isomers leads to better 
labilization of the trans-CO, and thus the d-isomers exhibit faster CO release compared with the 
corresponding p-isomers, despite having lower extinction coefficients between 300 and 400 nm 
(Table 2 and Supplementary Materials Figure S3). We also found that the overall photoreaction of 
the bpy system proceeded more smoothly than that of the corresponding phen system. This was 
probably because phen compounds were significantly more stable than their bpy analogues, based 
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Figure 5. Molecular structures of monosubstituted complexes with atom labels and displacement
ellipsoids for non-H atoms drawn at the 50% probability level. Counteranions, H atoms, and solvent
molecules are omitted for clarity. (a) d-[Ru(pynp)(phen)(CO)(CH3CN)]2+; (b) dp-[Ru(pynp)2(CO)
(CH3CN)]2+.

From comparisons of the first CO-dissociation rates (Table 3), it was found that the photoreactions
of the d-isomers were always faster than those of the corresponding p-isomers (ca. two times in both
complexes). This difference was interpreted to be due to their geometries, based on photoreaction
behavior seen in similar diastereomers [32]. The pynp ligand has a naphthyridine unit in place of
the pyridine unit in bpy (or phen), which is both more delocalized and a π-acceptor. The superior
charge acceptor properties of the naphthyridine unit in the d-isomers leads to better labilization of the
trans-CO, and thus the d-isomers exhibit faster CO release compared with the corresponding p-isomers,
despite having lower extinction coefficients between 300 and 400 nm (Table 2 and Supplementary
Materials Figure S3). We also found that the overall photoreaction of the bpy system proceeded more
smoothly than that of the corresponding phen system. This was probably because phen compounds
were significantly more stable than their bpy analogues, based on the rigidity of phen [33]. Despite
prolonged photoirradiation, incomplete dissociation of the second CO ligand in the phen system
consequently prevented isolation of the single disubstituted complex ([Ru(pynp)(phen)(CH3CN)2]2+).

Table 3. Rates of the first photoreaction step (298 K) of the dicarbonyl complexes.

Rate [1d]2+ [1p]2+ [2d]2+ [2p]2+ [3dp]2+

kobs/sec−1 12 × 10−3 6.5 × 10−3 2.4 × 10−3 1.3 × 10−3 7.6 × 10−3
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2.2.2. Thermochemical Reactions

As shown in Scheme 3, in thermal reactions one carbonyl ligand of a dicarbonylruthenium(II)
complex undergoes nucleophilic attack from solvent molecules [34,35]. Thus, when the d-isomers of
the dicarbonyl complexes, which are expected to be more reactive (see Section 2.2.1.), were heated
in water/acetonitrile or alcohol (methanol or ethanol)/acetonitrile mixtures, one of the coordinated
CO moieties underwent nucleophilic attack from the solvent to the CO ligand at the trans position
of pynp. As expected, molecular structures of the isolated complexes showed the formation of the
hydroxycarbonyl (–C(O)OH in Figure 6a) and the methoxy- or ethoxycarbonyl (–C(O)OC2H5 in
Figure 6b and Supplementary Materials Figure S6) complexes. Given that the pynp ligand is more
π-acidic than bpy or phen, the CO carbon in the trans position of pynp has a more positive charge.
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(a) d-[Ru(pynp)(bpy)(CO)(C(O)OH)]+; (b) d-[Ru(pynp)(bpy)(CO)(C(O)OC2H5)]+.

We next investigated other thermochemical reactions using monocarbonyl complexes that do
not undergo nucleophilic attack on the coordinated carbonyl. When the monocarbonyl complex
(d-[Ru(pynp)(phen)(CO)(CH3CN)]2+), which was produced by the photoreaction described in
Section 2.2.1, was heated in acetone, it isomerized from the d- to the p-isomer (Figure 7). Notably,
this thermal isomerization reaction was accelerated more than 70 times when water was added to the
solution. A similar isomerization was observed in d-[Ru(pynp)(bpy)(CO)(CH3CN)]2+. In contrast, such
thermal isomerization could not be confirmed for other monocarbonyl complexes with anionic ligands
(–COR−; R− = OH, OCH3, or OC2H5). These results strongly suggest that the thermal isomerization
reaction involves a donor-acceptor interaction between the solvent and the complex. In ruthenium(II)
complexes, terminal CO ligands that interact with the donor solvent tend to exhibit νCO IR frequencies
over 2000 cm−1 [36,37]. In this study, the CO stretching frequency of the thermally isomerized
acetonitrile complexes exceeded 2000 cm−1 (2008 and 2009 cm−1), while those of complexes containing
an anionic ligand were 1950–1960 cm−1. It would therefore be expected that weak interactions between
the coordinated carbonyl and the solvent (acetone or water) could induce thermal isomerization. That
is, the interaction between the coordinated CO and the solvent significantly changes the electronic state
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of the ruthenium center, resulting in lowering the activation energy for isomerization of the d-isomer
to the thermally more stable p-isomer [38].
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3. Materials and Methods

3.1. General Remarks

All chemicals were purchased from commercial sources and used without further purification
unless otherwise stated. All solvents used for the syntheses were anhydrous. Acetonitrile for
electrochemical measurements was purified by passing through solvent purification columns (Glass
Contour, Laguna, CA, USA). Then 2-(2-pyridyl)-1,8-naphthyridine (pynp), [Ru(CO)2Cl2]n, trans-(Cl)-
[Ru(bpy)(CO)2Cl2], trans-(Cl)-[Ru(phen)(CO)2Cl2], cis(OH2)-[Ru(bpy)(CO)2(OH2)2](CF3SO3)2, cis-(OH2)-
[Ru(phen)(CO)2(OH2)2](CF3SO3)2, and cis-(OH2)-[Ru(pynp)(CO)2(OH2)2](CF3SO3)2 were prepared
according to previously reported procedures [18,39,40].

IR spectra were obtained using a JASCO FT–IR 4100 spectrometer (Tokyo, Japan). Electrospray
ionization mass spectrometry (ESI–MS) data were obtained using a Bruker Daltonics micrOTOF
spectrometer. Electronic spectra were obtained on a JASCO V-560 spectrophotometer. The 1H and
13C{1H}-NMR spectra were acquired on a JEOL JMN-AL300 spectrometer (Tokyo, Japan) operating at
1H and 13C frequencies of 300 and 75.5 MHz, respectively. Elemental analysis data were obtained on a
PerkinElmer 2400II series CHN analyzer (Yokohama, Japan). Electrochemical measurements were
performed on an electrochemical analyzer (ALS/CHI model 660E, Tokyo, Japan) with a solution of the
complex in acetonitrile (1 mM) and n-Bu4NClO4 (0.1 M) as a supporting electrolyte in a cell consisting
of a glassy carbon working electrode (φ = 1.6 mm), a Pt wire counter electrode, and Ag/AgNO3 (0.01 M)
as the reference electrode. All potentials are reported in volts versus the ferrocenium/ferrocene couple
(Fc+/Fc) under Ar at 25 ◦C. DFT calculations were performed using the quantum computation software
Gaussian 09 [41]. The geometries of the Ru complexes were fully optimized using a restricted DFT
method employing the B3LYP function [42,43], with a 6-31G(d) basis set for the light elements (H, C,
N, and O) [44,45] and a LanL2DZ basis set [46] for the Ru atom. The solvent effect of acetonitrile
was evaluated using an implicit solvent model and a polarizable continuum model. The vibrational
analyses were performed at the same calculation level employed for geometry optimization.

3.2. Synthesis of Complexes

3.2.1. Synthesis of the Distal Isomers ([1d](PF6)2 and [2d](PF6)2)

[Ru(bpy)(CO)2(OH2)2](CF3SO3)2 (53 mg, 0.082 mmol) and pynp (20 mg, 0.098 mmol) were added
to methanol (10 mL). The mixture was refluxed with stirring for 1.5 h. The reaction vessel was cooled
to room temperature. The reaction mixture was condensed to 3 mL under reduced pressure. A light
orange precipitate formed on addition of a saturated aqueous solution of KPF6 to the mixture. The
product was collected by filtration, washed with cold water and diethyl ether, and dried in vacuo to
obtain the product (56 mg, 84%). Anal. Calcd for [1d](PF6)2: C25H17N5O2F12P2Ru: C, 37.05; H, 2.11; N,
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8.64. Found: C, 37.40; H, 2.03; N, 8.51. ESI–MS (CH3CN): m/z 260.5 ([M]2+), 246.5 ([M–CO]2+). IR (KBr):
2097, 2044 cm−1 (νCO). 1H-NMR (acetone-d6): δ 9.76–9.71 (m, 2H), 9.25 (d, J = 8.4 Hz, 1H), 9.09–8.99
(m, 2H), 8.77–8.71 (m, 2H), 8.64 (dd, J = 6.6, 1.8 Hz, 2H), 8.57 (td, J = 6.3, 1.5 Hz, 1H), 8.49 (dd, J = 1.8,
1.5 Hz, 1H), 8.28–8.25 (m, 2H), 8.17–8.13 (m, 1H), 7.76–7.69 (m, 2H), 7.66–7.63 (m, 1H). 13C{1H}-NMR
(acetone-d6): δ 192.08 and 191.49 (CO), 158.89, 158.73, 157.02, 156.71, 156.61, 156.16, 150.19, 145.33,
143.16, 142.76, 141.93, 139.61, 131.27, 130.70, 129.41, 129.07, 128.95, 127.20, 126.18, 125.92, 125.49, 125.39,
122.23. A similar reaction between [Ru(phen)(CO)2(OH2)2](CF3SO3)2 (60 mg, 0.089 mmol) and pynp
(23 mg, 0.109 mmol) gave a mixture of both [2d](PF6)2 and [2p](PF6)2. Yield: 63 mg (84%). The crude
product was recrystallized from a mixture of acetonitrile, acetone, and diethyl ether. Anal. Calcd for
[2d](PF6)2: C27H17N5O2F12P2Ru·CH3CN·0.5C2H6CO: C, 40.50; H, 2.56; N, 9.29. Found: C, 40.38; H,
2.29; N, 9.14. ESI–MS (CH3CN): m/z 272.6 ([M]2+), 258.6 ([M–CO]2+). IR (KBr): 2099, 2045 cm−1 (νCO).
1H-NMR (acetone-d6): δ 10.16 (dd, J = 5.1, 1.2 Hz, 1H), 9.80 (dd, J = 5.8, 0.9 Hz, 1H), 9.28 (dd, J = 7.6,
0.9 Hz, 1H), 9.18 (dd, J = 8.5, 1.2 Hz, 1H), 8.99 (s, 2H), 8.87 (dd, J = 8.3, 1.2 Hz, 1H), 8.80 (td, J = 8.1,
1.5 Hz, 1H), 8.52–8.47 (m, 2H), 8.39–8.23 (m, 4H), 8.08 (dd, J = 5.4, 1.5 Hz, 1H), 7.95 (dd, J = 8.1, 5.4 Hz,
1H), 7.60 (dd, J = 8.4, 4.5 Hz, 1H). 13C{1H}-NMR (acetone-d6): δ 192.33 and 191.47 (CO), 160.51, 159.49,
158.91, 157.29, 156.00, 155.95, 151.31, 147.34, 147.26, 145.17, 143.21, 141.68, 140.94, 139.41, 132.07, 132.06,
131.24, 129.16, 129.10, 128.46, 127.63, 127.59, 125.94, 125.83, 122.27.

3.2.2. Synthesis of the Proximal Isomers ([1p](PF6)2 and [2p](PF6)2)

Using a protocol similar to that described for the synthesis of [1d](PF6)2, the reaction between
[Ru(pynp)(CO)2(OH2)2](CF3SO3)2 (106 mg, 0.161 mmol) and bpy (31 mg, 0.197 mmol) or phen (39 mg,
0.197 mmol) gave [1p](PF6)2 or [2p](PF6)2 in 81% and 86% yield, respectively. Anal. Calcd for [1p](PF6)2:
C25H17N5O2F12P2Ru: C, 37.05; H, 2.11; N, 8.64. Found: C, 37.22; H, 2.01; N, 8.60. ESI–MS (CH3CN):
m/z 260.5 ([M]2+), 246.5 ([M–CO]2+). IR (KBr): 2097, 2045 cm−1 (νCO). 1H-NMR (acetone-d6): δ 9.64 (d,
J = 5.1 Hz, 1H), 9.49 (d, J = 3.9 Hz, 1H), 9.36 (d, J = 8.4 Hz, 1H), 9.17–9.11 (m, 2H), 9.02–8.99 (m, 2H),
8.86 (d, J = 8.1 Hz, 1H), 8.69 (t, J = 3.8 Hz, 1H), 8.50 (t, J = 4.7 Hz, 1H), 8.35 (t, J = 4.8 Hz, 1H), 8.22–8.16
(m, 2H), 8.02 (d, J = 6.3 Hz, 1H), 7.84–7.77 (m, 2H), 7.50 (t, J = 7.4 Hz, 1H). 13C{1H}-NMR (acetone-d6):
δ 193.12 and 192.20 (CO), 161.36, 158.14, 157.00, 156.88, 156.71, 155.91, 153.77, 151.45, 151.15, 145.42,
143.02, 142.94, 142.87, 140.57, 130.70, 130.65, 129.66, 128.19, 127.20, 126.92, 126.76, 126.03, 122.99. Anal.
Calcd for [2p](PF6)2: C27H17N5O2F12P2Ru·0.5CH3CN·0.5C2H6CO: C, 40.08; H, 2.45; N, 8.72. Found:
C, 39.90; H, 2.17; N, 8.68. ESI–MS (CH3CN): m/z 272.6 ([M]2+), 258.6 ([M–CO]2+). IR (KBr): 2093,
2044 cm−1 (νCO). 1H-NMR (acetone-d6): δ 10.04 (dd, J = 5.1, 1.2 Hz, 1H), 9.48 (dd, J = 3.9, 1.8 Hz, 1H),
9.40 (d, J = 8.4 Hz, 1H), 9.30 (dd, J = 8.4, 1.2 Hz, 1H), 9.18 (d, J = 8.7 Hz, 1H), 9.10 (d, J = 7.8 Hz, 1H),
9.03 (dd, J = 7.8, 1.8 Hz, 1H), 8.96 (dd, J = 8.4, 0.9 Hz, 1H), 8.56–8.38 (m, 4H), 8.23–8.17 (m, 2H), 7.88 (d,
J = 4.8 Hz, 1H), 7.82 (dd, J = 9.0, 5.4 Hz, 1H), 7.60 (dd, J = 7.5, 1.2 Hz, 1H). 13C{1H}-NMR (acetone-d6):
δ 192.08 (CO), 161.61, 158.85, 157.05, 156.69, 153.96, 152.34, 151.63, 147.09, 146.35, 145.47, 142.88, 142.05,
141.81, 140.59, 132.99, 132.47, 130.39, 129.46, 129.38, 128.88, 128.13, 127.84, 127.19, 126.77, 123.01.

3.2.3. Synthesis of [3dp](PF6)2

A similar reaction between [Ru(pynp)(CO)2(OH2)2](CF3SO3)2 (58 mg, 0.083 mmol) and pynp
(20 mg, 0.098 mmol) in methanol (20 mL) gave [3dp](PF6)2. Yield: 67 mg (94%). Anal. Calcd for
[3dp](PF6)2: C28H18N6O2F12P2Ru·H2O: C, 38.23; H, 2.29; N, 9.56. Found: C, 37.95; H, 1.94; N, 9.32.
ESI–MS (CH3CN): m/z 286.1 ([M]2+), 272.1 ([M–CO]2+). IR (KBr): 2094, 2040 cm−1 (νCO). 1H-NMR
(acetone-d6): δ 9.85 (d, J = 4.8 Hz, 1H), 9.49 (dd, J = 2.2, 1.8 Hz, 1H), 9.28 (d, J = 8.4 Hz, 2H), 9.06–9.01
(m, 3H), 8.85–8.82 (m, 2H), 8.78 (t, J = 1.5 Hz, 1H), 8.53 (dd, J = 6.6, 1.8 Hz, 1H), 8.39–8.16 (m, 3H), 7.88
(d, J = 4.8 Hz, 1H), 7.75 (t, J = 1.5 Hz, 1H), 7.66 (dd, J = 2.2, 1.8 Hz, 1H), 7.54–7.49 (m, 1H). 13C{1H}-NMR
(acetone-d6): δ 192.58 and 192.27 (CO), 160.76, 160.25, 158.70, 157.76, 157.19, 155.92, 155.86, 151.01,
145.17, 144.22, 142.97, 142.70, 140.27, 139.57, 139.51, 131.42, 130.27, 129.16, 127.64, 127.58, 126.57, 126.11,
125.68, 125.63, 122.23, 122.03.
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3.3. Photochemical Reactions

Photochemical reactions of the complexes were conducted in the degassed CH3CN. The solution
was irradiated with UV–visible light (λ = 300–400 nm) through a cutoff filter using an Asahi Spectra
MAX-302 (Tokyo, Japan) with a xenon lamp (0.1 mW cm−2). In a typical reaction, an acetonitrile
solution of [1d](PF6)2 (0.10 mM) was placed in a quartz flask with a stopper and irradiated with a xenon
lamp for 30 min. The reaction mixture was condensed to 1 mL under reduced pressure. Addition of
diethyl ether to the solution resulted in the formation of a precipitate of the mono- or disubstituted
complexes in moderate yields (65–75%).

d-[Ru(pynp)(bpy)(CO)(CH3CN)](PF6)2: ESI–MS (CH3CN): m/z 246.5 ([M–CH3CN]2+). IR (KBr):
2009 cm−1 (νCO). Electronic spectrum (CH3CN): λmax/nm (ε/M−1 cm−1) 250 (31,200), 312 (18,500), 341
(19,400), 480 (950). p-[Ru(pynp)(bpy)(CH3CN)2](PF6)2: ESI–MS (CH3CN): m/z 232.5 ([M–(CH3CN)2]2+).
Electronic spectrum (CH3CN): λmax/nm (ε/M−1 cm−1) 239 (26,400), 288 (33,600), 407 (4400), 473 (6500).
d-[Ru(pynp)(phen)(CO)(CH3CN)](PF6)2: ESI–MS (CH3CN): m/z 258.5 ([M–CH3CN]2+). IR (KBr): 2008
cm−1 (νCO). Electronic spectrum (CH3CN): λmax/nm (ε/M−1 cm−1) 268 (33,400), 341 (16,700), 440 (1600).
dp-[Ru(pynp)2(CO)(CH3CN)](PF6)2: ESI–MS (CH3CN): m/z 272.0 ([M–CH3CN]2+), 292.5 ([M]2+). IR
(KBr): 2007 cm−1 (νCO). Electronic spectrum (CH3CN): λmax/nm (ε/M−1 cm−1) 241 (40,200), 340 (32,000),
420sh (2600). pp-[Ru(pynp)2(CH3CN)2](PF6)2: ESI–MS (CH3CN): m/z 258.0 ([M–(CH3CN)2]2+), 278.5
([M–CH3CN]2+). Electronic spectrum (CH3CN): λmax/nm (ε/M−1 cm−1) 315 (40,900), 496 (6400). Kinetic
measurements for the photoreaction were followed at an appropriate wavelength for each complex
(476 nm for [1d]2+, 478 nm for [1p]2+, 475 nm for [2d]2+ and [2p]2+, and 497 nm for [3dp]2+), and
the logarithm of the complex concentration versus time plots were generated for the first step of the
reaction in each measurement.

3.4. Thermochemical Reactions

3.4.1. Reaction of the Coordinated CO in [1d]2+ and [2d]2+ with Solvents

The [1d](PF6)2 (50 mg, 0.0617 mmol) was dissolved in acetonitrile (5 mL) and a suitable cosolvent
(water, ethanol, or methanol) (30 mL) and refluxed for 24 h. The volume was reduced to 1 mL
using a rotary evaporator. Addition of diethyl ether to the solution resulted in precipitation of the
reaction products ([Ru(pynp)(bpy)(CO)(C(O)R)]PF6, R = OH, OC2H5, or OCH3) in moderate to high
yields (50%–82%). [Ru(pynp)(bpy)(CO)(C(O)OH)]PF6: ESI–MS (CH3CN): m/z 538.1 ([M]+). IR (KBr):
1957 cm−1 (νCO). [Ru(pynp)(bpy)(CO)(C(O)OC2H5)]PF6: ESI–MS (CH3CN): m/z 566.1 ([M]+). IR (KBr):
1954 cm−1 (νCO). [Ru(pynp)(bpy)(CO)(C(O)OCH3)]PF6: ESI–MS (CH3CN): m/z 552.1 ([M]+). IR (KBr):
1954 cm−1 (νCO).

[Ru(pynp)(phen)(CO)(C(O)R)](PF6) complexes were also isolated in 50 to 75% yields using a similar
procedure starting from [2d](PF6)2. [Ru(pynp)(phen)(CO)(C(O)OH)]PF6: ESI–MS (CH3CN): m/z 562.0
([M]+). IR (KBr): 1960 cm−1 (νCO). [Ru(pynp)(phen)(CO)(C(O)OC2H5)]PF6: ESI–MS (CH3CN): m/z
590.2 ([M]+). IR (KBr): 1961 cm−1 (νCO). [Ru(pynp)(phen)(CO)(C(O)OCH3)]PF6: ESI–MS (CH3CN):
m/z 576.1 ([M]+). IR (KBr): 1960 cm−1 (νCO).

3.4.2. Thermal-induced Isomerization Using Monocarbonyl Complexes
d-[Ru(pynp)(NˆN)(CO)(CH3CN)]2+ (NˆN = bpy or phen) and dp-[Ru(pynp)2(CO)(CH3CN)]2+

In a typical reaction, d-[Ru(pynp)(phen)(CO)(CH3CN)](PF6)2 (4 mg, 0.005 mmol) was dissolved
in acetone (20 mL) and refluxed until the solution became dark red (~72 h). The solution was
condensed using a rotary evaporator, and addition of diethyl ether resulted in the formation of a
precipitate. After cooling overnight, the isomerized product was collected by filtration, washed
with diethyl ether, and then dried in vacuo. The yield was 3 mg (75%). A change of the solvent
(acetone/water, 1:20 v/v) brought about a considerable reduction in reaction time (1 h). Similar
reactions using d-[Ru(pynp)(bpy)(CO)(CH3CN)](PF6)2 or dp-[Ru(pynp)2(CO)(CH3CN)](PF6)2 gave the
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corresponding p- or pp-isomer, respectively. These products were characterized by spectroscopic and
X-ray crystallographic analyses.

p-[Ru(pynp)(bpy)(CO)(CH3CN)](PF6)2: ESI–MS (CH3CN): m/z 246.5 ([M–CH3CN]2+). IR (KBr):
1992 cm−1 (νCO). Electronic spectrum (CH3CN): λmax/nm (ε/M−1 cm−1) 251 (31,300), 312 (19,600), 343
(21,400), 383 (4700), 490 (1200). p-[Ru(pynp)(phen)(CO)(CH3CN)](PF6)2: ESI–MS (CH3CN): m/z 258.5
([M–CH3CN]2+). IR (KBr): 1994 cm−1 (νCO). Electronic spectrum (CH3CN): λmax/nm (ε/M−1 cm−1) 268
(34,500), 332sh (11,000), 521 (2200). pp-[Ru(pynp)2(CO)(CH3CN)](PF6)2: ESI–MS (CH3CN): m/z 272.0
([M–(CH3CN)]2+), 292.5 ([M]2+). IR (KBr): 1994 cm−1 (νCO). Electronic spectrum (CH3CN): λmax/nm
(ε/M−1 cm−1) 245 (31,200), 269 (26,900), 343 (28,800), 423sh (3000), 499 (1000).

3.5. X-ray Crystallographic Analyses

Single crystals of [2d]2(PF6)3(CF3SO3)·H2O, [2p](PF6)2·CH3CN, [3dp](CF3SO3)2, and d-[Ru(pynp)
(phen)(CO)(CH3CN)](PF6)2 were obtained by vapor diffusion of diethyl ether into an
acetonitrile/acetone solution of the complex. p-[Ru(pynp)(phen)(CO)(CH3CN)](PF6)2·CH3OH crystals
were obtained by vapor diffusion of diethyl ether into an acetonitrile/acetone/methanol solution of
the complex. [Ru(pynp)(CO)2(OH2)(CH3CN)](CF3SO3)2·C2H5OH crystals were obtained by vapor
diffusion of diethyl ether into an acetonitrile/acetone/ethanol solution of the complex. Single crystals
of dp-[Ru(pynp)2(CO)(CH3CN)](PF6)2·(CH3)2CO and [Ru(pynp)(bpy)(CO)(C(O)OH)]PF6·(CH3)2CO
were obtained by vapor diffusion of diethyl ether into an acetone solution of the complex. Single crystals
of pp-[Ru(pynp)2(CH3CN)2](PF6)2 were obtained by vapor diffusion of diethyl ether into an acetonitrile
solution of the complex. Single crystals of d-[Ru(pynp)(bpy)(CO)(C(O)OC2H5)]PF6·(CH3)2CO
and d-[Ru(pynp)(phen)(CO)(C(O)OC2H5)]CF3SO3 were obtained by layering diethyl ether over
an acetone/ethanol solution of the complex. Crystal structure determination and refinement data for
the complexes are given in Figures 1, 2 and 5–7, Supplementary Materials Figures S1, S5 and S6, and
Tables 4–6 and Supplementary Materials Table S1. CCDC-1966877–1966887 contains the supplementary
crystallographic data for this paper.

Table 4. Crystallographic data for dicarbonyl complexes.

Parameter [2d] [2p] [3dp]

Chemical formula C55H34F21N10O8P3Ru2S C29H20F12N6O2P2Ru C30H18F6N6O8RuS2
Formula weight 1689.02 875.51 869.69
Temperature (K) 93 93 93
Crystal system monoclinic triclinic triclinic

Space group P21/c P-1 P-1
a (Å) 13.2730(3) 8.57310(10) 9.68729(18)
b (Å) 22.5773(6) 12.7558(3) 13.0592(3)
c (Å) 20.2047(5) 15.8850(4) 13.6489(3)
α (◦) 90 82.856(6) 83.1931(7)
β (◦) 93.7571(8) 75.919(6) 81.5465(7)
γ (◦) 90 74.843(6) 72.0749(7)

V (Å3) 6041.7(3) 1622.90(8) 1620.10(6)
Z 4 2 2

Calcd density (g/cm3) 1.857 1.792 1.783
µ (Mo Kα) (mm–1) 0.744 0.691 0.709
No. unique reflns 62,024 16,768 16,909
No. obsd reflns 13,818 7331 7304

Refinement method Full-matrix least-squares on F2

Parameters 901 470 478
R (I > 2σ(I)) 1 0.0941 0.0552 0.1119
wR (all data) 2 0.2536 0.1483 0.2633

S 1.155 1.077 1.189
1R = Σ(||Fo| − |Fc||)/Σ|Fo|; 2 wR = {Σw(Fo

2
− Fc

2)2/Σw(Fo
2)2}1/2.
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Table 5. Crystallographic data for [Ru(pynp)(NˆN)(CO)(CH3CN)]2+ (NˆN = phen or pynp).

Parameter d-(phen) p-(phen) dp-(pynp)

Chemical formula C28H20F12N6OP2Ru C29H20F12N6O2P2Ru C32H27F12N7O2P2Ru
Formula weight 847.50 875.51 932.61
Temperature (K) 93 93 93
Crystal system orthorhombic triclinic monoclinic

Space group Pna21 P-1 P21/n
a (Å) 13.8734(9) 11.9822(4) 10.067(4)
b (Å) 24.7954(15) 12.5252(3) 32.588(12)
c (Å) 9.0869(5) 13.2975(4) 11.329(5)
α (◦) 90 84.1114(11) 90
β (◦) 90 87.5838(8) 109.861(5)
γ (◦) 90 63.326(2) 90

V (Å3) 3125.9(3) 1773.87(9) 3496(2)
Z 4 2 4

Calcd density (g/cm3) 1.801 1.639 1.772
µ (Mo Kα) (mm−1) 0.712 0.632 0.648
No. unique reflns 30,815 18,631 35,054
No. obsd reflns 7100 8064 7963

Refinement method Full-matrix least-squares on F2

Parameters 452 436 508
R (I > 2σ(I)) 1 0.0506 0.0832 0.0745
wR (all data) 2 0.1237 0.2503 0.1623

S 1.028 1.049 1.113
1R = Σ(||Fo| − |Fc||)/Σ|Fo|; 2 wR = {Σw(Fo

2
− Fc

2)2/Σw(Fo
2)2}1/2.

Table 6. Crystallographic data for [Ru(pynp)(bpy)(CO)(COR)]+ (R = OH or OC2H5).

Parameter R = OH R = OC2H5

Chemical formula C28H24F6N5O4PRu C30H28F6N5O4PRu
Formula weight 740.56 768.62
Temperature (K) 93 93
Crystal system triclinic monoclinic

Space group P-1 P21/n
a (Å) 8.35369(15) 17.2474(5)
b (Å) 12.9208(3) 8.1493(2)
c (Å) 13.3343(3) 22.1009(6)
α (◦) 88.9616(7) 90
β (◦) 79.0700(7) 102.3249(8)
γ (◦) 88.2204(7) 90

V (Å3) 1412.36(5) 3034.77(14)
Z 2 4

Calcd density (g/cm3) 1.741 1.682
µ (Mo Kα) (mm−1) 0.697 0.652
No. unique reflns 12,245 30,159
No. obsd reflns 4934 6960

Refinement method Full-matrix least-squares on F2

Parameters 406 463
R (I > 2σ(I)) 1 0.0583 0.0475
wR (all data) 2 0.1331 0.1132

S 1.219 1.067
1R = Σ(||Fo| − |Fc||)/Σ|Fo|; 2 wR = {Σw(Fo

2
− Fc

2)2/Σw(Fo
2)2}1/2.
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4. Conclusions

This study successfully formed non-equivalent CO-ligand environments by lowering the
molecular symmetry of the well-known benchmark complex, [Ru(bpy)2(CO)2]2+. In addition to the
diastereoselective synthesis of the desired complexes, the relationship between reaction selectivity and
coordination geometry was demonstrated using redox properties. We found that the monoacetonitrile
complexes undergo thermal isomerization in the d-isomers, whereas the diacetonitrile complexes
undergo photoisomerization to give the corresponding p-form. This study will conduct further research
on synthetic chemistry, stereochemistry, and structure–reactivity relationships in metal complexes.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/25/1/27/s1,
Figure S1: Molecular structure of [Ru(pynp)(CO)2(OH2)(CH3CN)]2+, Figure S2: Optimized structures of the
monosubstituted precursor of [3]2+ with the electronic energy difference, Figure S3: Electronic spectra of
[1d]2+, [1p]2+, [2d]2+, [2d]2+, and [3dp]2+, Figure S4: Cyclic voltammograms of [2p]2+ at various scan rates,
Figure S5: Molecular structure of [Ru(pynp)2(CH3CN)2]2+, Figure S6: Molecular structure of [Ru(pynp)(phen)(CO)
(C(O)OC2H5)]+, Table S1: Crystallographic data for [Ru(pynp)(CO)2(OH2)(CH3CN)]2+, [Ru(pynp)2(CH3CN)2]2+,
and [Ru(pynp)(phen)(CO)(C(O)OC2H5)]+.
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