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ABSTRACT

Composite resins are the most commonly used dental restorative materials after minimally 
invasive dental procedures, and they offer an aesthetically pleasing appearance. An ideal 
composite restorative material should have wear properties similar to those of tooth tissues. 
Wear refers to the damaging, gradual loss or deformation of a material at solid surfaces. 
Depending on the mechanism of action, wear can be categorized as abrasive, adhesive, 
fatigue, or corrosive. Currently used composite resins cover a wide range of materials with 
diverse properties, offering dental clinicians multiple choices for anterior and posterior 
teeth. In order to improve the mechanical properties and the resistance to wear of composite 
materials, many types of monomers, silane coupling agents, and reinforcing fillers have been 
developed. Since resistance to wear is an important factor in determining the clinical success 
of composite resins, the purpose of this literature review was to define what constitutes 
wear. The discussion focuses on factors that contribute to the extent of wear as well as to the 
prevention of wear. Finally, the behavior of various types of existing composite materials such 
as nanohybrid, flowable, and computer-assisted design/computer-assisted manufacturing 
materials, was investigated, along with the factors that may cause or contribute to their wear.
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INTRODUCTION

Composite resins are the most commonly used dental restorative materials, following the 
principles of minimally invasive dentistry and offering an aesthetically pleasing appearance. 
Various types of composite restorations in the oral cavity have occlusal contact with each 
other, and continuous mastication forces inevitably lead to composite wear. An ideal 
composite restorative material should have wear properties similar to those of tooth tissues 
[1]. Under physiological conditions, enamel wear is approximately 0.02–0.04 mm of vertical 
loss per year [2]. If this amount of tooth wear increases and the wear rate accelerates, 
then pathological surface loss is defined as occurring, which poses a challenge for dental 
practitioners, as the impact of pathological surface loss could be severe and may influence 
patients' quality of life.
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The technology of composite materials has advanced significantly in recent years, mainly due 
to the increased aesthetic demands of patients. Additionally, improvements in the physical 
and mechanical properties of composite materials, the increased familiarity of dental 
practitioners with these materials, and concerns regarding the use of amalgam have made 
composite resins more popular in dental practice [3,4]. Various changes in the composition 
of the composite resins have been implemented, including the use of reinforcing fillers, 
organic matrix, and coupling agents [3]. The most important modifications involve a reduced 
size of reinforcing fillers in order to produce composite materials with improved surface 
polishing and resistance to wear.

The wear of composite materials is a multifactorial phenomenon, as it depends on factors 
such as tooth characteristics, the type of material, the size of the cavity, the physiology of 
occlusion, and the nature of the opposing teeth [5]. Reinforcing fillers play a crucial role in 
restorative material, in terms of size, distribution, and volume content. Water absorption 
is an important parameter that negatively affects the strength of composite resin materials 
because it causes plasticization of the organic matrix and weakens the bonding of the 
reinforcing fillers with the organic matrix. As a result, the structure of the composite 
materials is degraded, which leads to faster hydrolytic decomposition due to the action of the 
enzymes in saliva [5,6].

Wear of composite resin restorations can be evaluated both in clinical and laboratory 
conditions. In clinical conditions, the methods of wear evaluation are further classified as 
direct and indirect [7]. Direct methods include observation of composite restorations in the 
oral cavity by a trained evaluator, mainly based on the United States Public Health Service 
criteria. Indirect methods require impressions of the restored teeth and fabrication of casts. 
Subsequently, the casts are evaluated by either qualitative methods such as Leinfelder and 
Moffa-Lugassy scales or quantitative methods through measurements of properties such 
as surface topography, surface roughness, material loss, and fractal dimension. These 
properties can be measured by mechanical (stylus profilometry and atomic force microscopy) 
or optical (laser scanning microscopy and white-light optical profilometry) systems. In 
laboratory conditions, the wear evaluation of composite restorations follows ISO/TS 14569 
and is mainly conducted using profilometry after simulation of the mastication process [8].

Despite improvements in the mechanical properties of composite resins, wear is still a major 
problem, especially in patients with parafunctional activities, such as bruxism [9]. It has 
been estimated that in 2015 alone, 800 million composite resin restorations were placed 
worldwide, of which 80% were located on posterior teeth [10]. The same research also 
estimated that at least 5% of the restorations placed on posterior teeth failed due to fracture 
and 12% presented significant wear over a period of 10 years. About 77 million composite 
resin restorations on posterior teeth worldwide were likely to show significant wear, while 
approximately 32 million composite resin restorations placed in 2015 will need to be repaired 
or replaced due to fracture during the next 10 years [11].

Therefore, the aim of this literature review was to present modern views on the mechanisms 
of wear of composite resin materials and to compare the resistance to wear between different 
types of composite materials currently used in clinical practice.
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TYPES OF WEAR OF COMPOSITE MATERIALS

Wear is the damaging, gradual loss or deformation of a material at solid surfaces. It is the 
result of the mechanical and/or chemical interactions with another surface in relative motion 
[12]. The study of wear and related processes is referred to as tribology. Together with other 
processes such as fatigue and creep, wear causes functional surfaces to degrade, leading to 
material failure or loss of functionality.

The magnitude of wear as a function of time is the wear rate, which is affected by factors 
such as the type of loading, type of motion, temperature, and lubrication of the surfaces [13]. 
There are 3 different stages of wear rate of a material:

1.  The primary or early stage, where surfaces adapt to each other and the wear rate might 
vary between high and low.

2.  The secondary or mid-age stage, where steady wear can be observed. Most of the 
component's operational life is spent in this stage.

3.  The tertiary or old-age stage, where surfaces are subjected to rapid failure due to a high 
rate of wear.

Of note, the wear rate is significantly affected by the operating conditions and the formation 
of tribofilms. The secondary stage is shortened by changes in environmental conditions, 
such as higher temperatures, strain rates, and stresses [14]. Although the wear of materials 
is usually quantified in terms of weight loss and the wear rate, previous studies reported that 
the wear coefficient is more suitable because it takes the wear rate, the applied load, and 
the hardness of the wear pin into account [15]. The wear coefficient K in an abrasive model 
is defined as: K= 3HW/PLρ, where H is the Brinell hardness, W is the weight loss, P is the 
normal load, L is the sliding distance, and ρ is the density of the material [15].

The wear of the surface of a material depends mainly on 3 factors: a) the structure of the 
material, b) the conditions under the material comes in contact with the abrasive agent, 
and c) the environment of the material in relation with the nature of the surface [16-19]. 
Depending on the mechanism of action, wear can be categorized as 1) abrasive, 2) adhesive, 
3) fatigue, and 4) corrosive [20].

Abrasive wear
According to the American Society for Testing and Materials (ASTM) International, abrasive 
wear is the loss of a material due to hard protuberances or hard particles that are forced 
against and move along a solid surface [21]. During abrasive wear, the surface of the material 
is scraped off another surface, either by a hard protrusion or by hard particles between the 2 
surfaces [22] (Figure 1).
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Abrasive wear

Figure 1. Schematic representation of the mechanism of abrasive wear.



Abrasive wear can be classified in terms of the type of contact and the contact environment 
[23]. The type of contact indicates the 2 modes of abrasive wear. The first type is called 2-body 
abrasive wear, while the second is called 3-body abrasive wear [24]. Two-body wear occurs 
when grit or hard particles remove material from the opposite surface. Three-body wear occurs 
when the particles are not constrained, and are free to roll and slide down a surface. The 
contact environment can be defined as open or closed. An open contact environment occurs 
when the surfaces are sufficiently displaced to be independent of one another.

The mechanisms of abrasive wear include a) plowing, b) cutting, and c) fragmentation. 
Plowing results in the formation of grooves, but cannot directly remove the material's 
volume. The displaced material creates ridges besides grooves, which may be removed by 
subsequent passage of abrasive particles. Cutting occurs when a material is separated from 
the surface in the form of primary debris without displacement to the sides of the grooves. 
Fragmentation takes place when a material is separated from a surface by a cutting process 
and the indenting abrasive induces topical fracture of the wear material [23].

Abrasive wear can be measured as loss of mass by the Taber abrasion test according to ISO 
9352 or ASTM D 4060 [24,25]. The wear volume (V) for single-abrasive wear can be described 
by the following equation: V = K × WL/H, where K is the wear coefficient, W is the load, L is 
the sliding distance, and H is the hardness of the material.

In clinical conditions, the abrasive wear caused by tooth brushing affects all exposed surfaces 
of a composite resin restoration, while abrasion caused by occlusal forces is limited to 
contact surfaces [26]. During mastication, both modes of abrasive wear are present; some 
areas of the opposing occlusal surfaces are scraped off between them (2-body abrasive wear), 
while others are scraped off by food particles that are inserted between the opposing teeth 
(3-body abrasive wear). It should also be noted that 2-body abrasive wear between opposing 
teeth involves the occlusal surface of a restoration with another tooth or restoration surface 
and should not be confused with attrition, which is the wear of occlusal surfaces of teeth as a 
result of functional or malfunctional tooth-to-tooth contact [26].

The abrasive wear observed in composite resin restorations is affected by various factors, 
such as the size, shape, content, orientation, and distribution of the reinforcing fillers, the 
type of monomers, which affect the degree of polymerization and as a result the hardness of 
the surface, as well as the bond between the organic and inorganic substances; if it is weak, 
it may lead to detachment of filler particles from the composite surface. All these factors are 
affected by the forces applied to the composite resin material during mastication, making the 
whole system very complicated [27].

Previous investigations demonstrated that the abrasive wear of a composite resin is reduced 
when the size of the fillers and the distance between them are reduced, when the degree of 
polymerization of the resin is increased, and when the strength of the bond between the 
fillers and the organic matrix is increased [16,28]. The properties of the surface and the 
particles that cause abrasion also play an important role in the wear rate. If the composite 
resin is harder than the abrasive surface, the wear is much lower [29]. It is interesting to 
mention that in 2-body abrasive wear, angular protrusions cause more abrasion than rounded 
ones, even if they are less hard [30].
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Adhesive wear
Adhesive wear occurs between 2 surfaces during frictional contact when unwanted 
displacement and attachment of wear debris or material compounds takes place from one 
surface to another [31] (Figure 2).

Adhesive wear can be classified into 2 types. The first type occurs when adhesive wear is 
caused by relative motion, and direct contact and plastic deformation result in the deposition 
of wear debris and material from one surface to another. The second type takes place when 
cohesive forces hold 2 surfaces together, although they are not in contact, with or without any 
actual disposition of material. Adhesive wear may lead to an increase in surface roughness 
and the creation of protrusions on the composite surface [32]. A simple model of the wear 
volume for adhesive wear can be described by the same equation as abrasive wear.

When the occlusal surfaces of antagonist teeth come in contact during mastication, welding 
may occur at the contact points of the surfaces [31]. When attempting to separate the 2 surfaces, 
shear forces are applied to the welding points, which can lead to the detachment of components 
from the composite resin surface and the induction of surface micro-fractures. The detached 
particles may be left loose on the surface or moved to the other surface. Small particles often 
form larger clusters, which may contribute to the abrasion of the surface (abrasive wear). 
Adhesive wear does not seem to contribute significantly to the abrasion of composite resin 
materials because saliva acts as a lubricant and significantly mitigates abrasion [33].

Fatigue wear
Fatigue wear occurs when a material is weakened by cycling loading. In particular, particles 
are detached from the material's surface after the application of cyclic forces, leading to the 
growth of microcracks, which may be either superficial or below the surface [34] (Figure 3).
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Adhesive wear

Figure 2. Schematic representation of the mechanism of adhesive wear.

Fatigue wear

Figure 3. Schematic representation of the mechanism of fatigue wear.



As these cracks propagate, they can coalesce and remove small particles from the surface, 
which can cause 3-body abrasive wear. In clinical conditions, this abrasion is considered to 
occur during mastication, where opposing teeth come into contact repeatedly [35]. It has 
been argued that when a surface is rubbed against another, a compression zone is created 
ahead of the direction of movement and a tension zone is created behind the direction of 
movement. Repetition of these stresses on a material can cause fatigue wear [36].

Corrosive wear
Corrosion is caused by a chemical reaction between a worn surface and the corroding 
medium [32] (Figure 4).

Corrosion occurs on both lubricated and dry surfaces by a synergistic action of tribological 
stresses. In the oral cavity, restorations are exposed to a variety of corrosive substances 
derived from food, beverages, bacteria, and saliva [19]. It has been claimed that all these 
corrosive substances are able to reduce surface hardness and increase the surface roughness 
of composite resins, resulting in increased susceptibility to abrasive wear [6]. In this 
aggressive environment, saliva works protectively by reducing the acidity of food and 
microbial activity through its buffering properties [6].

WEAR OF DIFFERENT DENTAL COMPOSITE RESIN 
MATERIALS
Modern dental composite materials have a wide variety of properties, and today they are 
almost the only aesthetic materials used for direct restorations of both anterior and posterior 
teeth [37]. Many laboratory studies have found that resistance to wear depends on the type 
and composition of the composite resin material. Composite resin materials include organic 
matrix, which consists of various monomers, a coupling agent, which bonds the fillers to the 
organic matrix, and various types of inorganic fillers. Restorations using composite resin 
materials are classified as direct and indirect restorations based on the method of placement. 
In direct restorations, the composite resin is placed in the cavity in 1 session by the dentist, 
while indirect restorations usually involve 2 sessions because the restoration is fabricated in 
the laboratory and then is placed on the tooth [37].

WEAR OF DIRECT COMPOSITE RESIN RESTORATIONS

It has been reported that the ratio of reinforcing fillers plays a very important role in the 
resistance to wear of conventional composite resin materials and that a higher content of 
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Corrosive wear

Figure 4. Schematic representation of the mechanism of corrosive wear.



fillers reduces wear. It has been demonstrated that although the wear of composite resins 
is mainly affected by the properties of the reinforcing fillers, the composition of the resin 
monomers also influences wear, which means that wear is a complex and multifactorial 
process [38]. The complexity of the mechanisms of wear has also been reported by more 
recent studies [39,40].

Nanohybrid composite resins have a significant percentage of nano-sized (nm) reinforcing 
fillers. They contain a mixture of colloidal silicon particles (20–60 nm) with larger metal 
particles (100–2,500 nm). Another type of composite resins is referred to as nanofilled 
resins, which contain a more uniform size distribution of nano-particles (5–75 nm) and 
also agglomerated nano-particles (nanoclusters, sized 0.6–1.4 μm) [3,5,41]. The content of 
reinforcing fillers in nanohybrid and nanofilled composite resins is up to 80 vol%. Nanofilled 
composite resins present good mechanical properties, improved surface characteristics, and 
less polymerization shrinkage [42,43]. The distribution of the fillers in nanofilled composite 
resins exhibits great homogeneity within the mass of the resin, and the small size of the 
fillers provides a greater contact surface between them and the organic matrix [44].

During mastication, the rigid fillers deliver the mastication forces to the more elastic organic 
matrix [45]. This may increase the tension at the bonding interface between the fillers and the 
organic matrix, which may lead to the displacement of the fillers and exposure of the more 
vulnerable organic matrix, resulting in wear of the material [46]. Clinical trials performed 
on posterior teeth restorations found no significant difference in the wear rate between 
conventional and nanofilled composite resins. On the contrary, in vitro studies reported that 
some nanofilled composite resins may present greater resistance to wear [45,46].

In 1996 a new type of composite resins was introduced with low viscosity, known as 
“flowable” composite resins. In early years, these materials presented many disadvantages 
attributable to a very low content of reinforcing fillers ranging between 25 and 30 vol%, 
which resulted in low viscosity, but also in high polymerization shrinkage and less favorable 
physical and mechanical properties. Advanced formulations of flowable composite resins 
have improved their physical and mechanical properties due to changes in the composition of 
the organic matrix, increased content of reinforcing fillers (45–65 vol%) and modifications of 
the filler size [47]. As a result, contemporary flowable composite resins are indicated even for 
conservative restorations of posterior teeth [48].

A recent clinical study found that conventional and flowable composite resins showed similar 
clinical behavior after 2 years, when placed in occlusal class I cavities where the isthmus 
width was less than one-half of the intercuspal distance [49]. Moreover, an in vitro study 
comparing a flowable and a nanofilled composite resin found that the resistance to wear of 
both materials was similar [50]. In another study, the authors concluded that in contrast 
to the conventional composite resins, the size of the reinforcing fillers of the flowable 
composite resins may play a more important role in the magnitude of wear than the physical 
properties of the organic matrix [51].

In recent years, novel composite resins have been developed, such as those reinforced 
with synthetic fibers, bulk fill composite resins, silorane-based composite materials, and 
ormocers [52-55]. Nevertheless, there is insufficient information regarding their behavior in 
the oral environment and their resistance to wear in order to make credible conclusions.
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WEAR OF INDIRECT COMPOSITE RESIN RESTORATIONS

Direct restorations with composite resin materials are completed in 1 visit, which is an 
advantage compared to indirect restorations, which require at least 2 visits. However, a major 
disadvantage of direct composite restorations is their shrinkage during polymerization, 
which is around 2–4%. In contrast, in indirect restorations the contraction stresses 
are limited to a small surface occupied by the luting cement between the tooth and the 
restoration [3]. Another disadvantage of direct restorations is the internal stresses created 
during polymerization shrinkage, which tend to detach the composite material from the 
walls of the cavity and may be 13 times larger than those of indirect restorations [56].

Contemporary indirect composite restorations are fabricated in laboratories with light, 
temperature, humidity, pressure, and time control systems that are able to provide an 
increased degree of polymerization, lower polymerization shrinkage stresses, and improved 
mechanical properties [57-59]. Although in vitro studies reported that indirect composite 
restorations exhibited superior mechanical properties than direct composite restorations, 
their effectiveness in clinical practice is questionable. Indeed, it has been found that the 
survival rate of direct posterior composite restorations is similar to that of indirect restorations 
[60-62]. In a recent in vitro study, the authors compared the resistance to wear of composite 
resins for indirect restorations with that for direct restorations. The results showed that there 
were no significant differences in wear resistance among the different types of composite 
resins [63]. The longevity of indirect composite restorations is a very important factor for the 
choice of treatment. The choice of a resin cement for the bonding of the composite materials 
to the tooth structures is crucial and it has been claimed that an increased resistance of the 
cement to wear contributes to the survival rates of restorations [64-67].

WEAR OF COMPOSITE CAD/CAM MATERIALS

A special category of composite resin materials for indirect restorations is computer-aided 
design/computer-aided manufacturing (CAD/CAM) materials, the clinical application 
of which has increased significantly in recent years [68-70]. CAD/CAM technology was 
developed to improve the strength and aesthetics of tooth restorations, as well as to make the 
techniques easier, faster, and more accurate [71]. In particular, digital impressions are taken 
with a special scanning camera and the restoration is constructed by a milling machine. CAD/
CAM machines can mill restorations comprising both composite resin and ceramic materials. 
The quality of CAD/CAM restorations is high because measurements and construction are 
very accurate due to the advanced digital technology [72]. Nevertheless, there are also some 
shortcomings, such as the cost of the equipment and training [73].

CAD/CAM composites can be categorized into composite resins with dispersed fillers 
and polymer infiltrated ceramic networks (PICN) [74]. The first category contains basic 
monomers such as Bis-GMA, UDMA, and TEGDMA and dispersed fillers such as silica, 
zirconia, and barium glass [75]. PICN materials consist of a 3-dimensional ceramic network 
that is infiltrated with a monomer mixture, presenting a higher Weibull modulus and making 
the material less brittle than glass ceramics [76].

CAD/CAM composite materials are manufactured with polymerization under high pressure 
and high temperature, resulting in improved mechanical properties [76]. It has been found 
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that the wear of CAD/CAM composite materials was less than that of ceramic materials, 
and they induced less enamel abrasion of the opposing teeth than ceramic materials [77]. 
Additionally, CAD/CAM composite materials present lower wear than composite resins for 
direct restorations [78,79].

There is now a need for composite resin materials with higher wear resistance in order to 
maintain their morphology for a longer period of time. This goal can be achieved through 
more research focusing on the development of improved and more durable monomers 
leading to better polymerization rates [80]. Research should also be directed towards 
technologies to manufacture reinforcing fillers with better distribution and shape, more 
stable bonds with the organic matrix [81], and self-repairing abilities [82].

CONCLUSIONS

Dealing with the wear of composite resin materials is challenging due to a lack of adequate 
knowledge and complexity of the mechanisms of action. The results of in vitro studies of 
composite resin wear should be considered with caution because wear in the oral cavity 
is a complex phenomenon that is very difficult to reproduce in laboratory conditions. 
Furthermore, future studies should focus more on improving the wear resistance of 
composite materials by changing their properties to be more similar to tooth tissues. The 
development of new adhesive strategies such as universal adhesive systems may contribute to 
this goal.
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