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Abstract

In clinical trials, animal and cell line models are often used to evaluate the potential toxic

effects of a novel compound or candidate drug before progressing to human trials. However,

relating the results of animal and in vitro model exposures to relevant clinical outcomes in

the human in vivo system still proves challenging, relying on often putative orthologs. In

recent years, multiple studies have demonstrated that the repeated dose rodent bioassay,

the current gold standard in the field, lacks sufficient sensitivity and specificity in predicting

toxic effects of pharmaceuticals in humans. In this study, we evaluate the potential of deep

learning techniques to translate the pattern of gene expression measured following an expo-

sure in rodents to humans, circumventing the current reliance on orthologs, and also from in

vitro to in vivo experimental designs. Of the applied deep learning architectures applied in

this study the convolutional neural network (CNN) and a deep artificial neural network with

bottleneck architecture significantly outperform classical machine learning techniques in

predicting the time series of gene expression in primary human hepatocytes given a mea-

sured time series of gene expression from primary rat hepatocytes following exposure in

vitro to a previously unseen compound across multiple toxicologically relevant gene sets.

With a reduction in average mean absolute error across 76 genes that have been shown to

be predictive for identifying carcinogenicity from 0.0172 for a random regression forest to

0.0166 for the CNN model (p < 0.05). These deep learning architecture also perform well

when applied to predict time series of in vivo gene expression given measured time series of

in vitro gene expression for rats.
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Introduction

The field of toxicology primarily concerns itself with the evaluation of compounds for poten-

tial adverse effects in humans. The liver is the primary organ for metabolism and detoxification

of pharmaceuticals and other compounds, consequently adverse effects most often occur in

the liver. However, the liver is not readily accessible for sampling. In the absence of relevant

human data a plethora of alternative bioassays are used to predict adverse toxicological out-

comes in humans. The current ‘gold standard’ for evaluating the toxicity of a compound is

the two-year rodent bioassay [1]. However, this method is time-consuming, expensive, and

requires the sacrifice of large numbers of animals in order to screen a single compound. More-

over, the predictive relevance of the rodent bioassay is increasingly being called into question,

with a 2009 report by Hartung indicating that tests in rodents had correctly predicted just 43%

of toxic effects of pharmaceuticals in humans [2]. Given the high attrition rates of novel candi-

date drugs in the final stages of research and drug development having alternatives to animal

toxicity tests that are more reliable is of particular concern to the pharmaceutical industry [2].

Coupled with the increasingly restrictive legislation surrounding animal testing, this has moti-

vated the development of alternatives, mostly based on human in vitro cellular models.

The intra-cellular response to an external stimulus, such as a potentially toxic exposure, is

mediated by gene transcripts, also known as mRNA. The gene transcripts relay the genomic

information stored within our DNA in the nucleus of each cell allowing proteins necessary to

metabolise and detoxify the compound to be translated and activated, in accordance with the

central dogma of molecular biology. With advancements in high-throughput omics platforms

such as micro-array, and more recently RNA-Seq, it is now possible to measure the mRNA lev-

els within a sample. Such transcriptomic profiles not only provide a particularly sensitive

assessment of the cellular response to a potentially toxic external stimulus, but as they capture

genome-wide alteration in mRNA levels following an exposure they may also facilitate mecha-

nistic insight into modes of toxicological action or disease development.in vitro toxicogenomic

assays have produced promising results in the discrimination between subclasses of carcinoge-

nicity [3, 4] with an overall accuracy of 80% for the prediction of in vivo rodent toxicity [5–10].

Nevertheless, in vitro assays are not without their limitations. These simple cell systems differ

greatly in terms of functionality and signalling from the organs they represent; lacking the sys-

temic interplay with other tissues that exists in vivo. This is more so a problem with commonly

used immortalized cell lines, such as tumour derived hepatocytes HepG2, where liver meta-

bolic functions tend to vanish as culture time increases [11, 12].

In addition, the analysis and interpretation of the high dimensional, highly correlated gene

expression data presents many new challenges. While, multiple studies have reported positive

results in predicting toxicity of a novel compound using genomic signatures of disease states

[13–15], relating the genetic signatures identified from human disease states to in vitro or in
vivo rodent toxicogenomics assays is achieved using, often putative, orthologs. Orthologs are

genes in different species that are share a similar function or role, often predicted based on

similarities in genetic sequences. However, a study which compared the toxicogenomics

responses for various compounds following 24 hour exposure for HepG2 cells, primary

human, rat, and murine hepatocytes noted that while the biological replicates for a given com-

pound and model were close together no single compound induced similar responses in all in
vitro models [16]. The discrepancy between gene expression patterns between orthologs in dif-

ferent cellular models highlights the need for methods that can help us bridge not only the

cross-species division but also resolve differences resulting from experimental techniques.

Allowing for extrapolation of functional and mechanistic changes in cellular responses to the

human in vivo disease state.
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Artificial Neural Networks (ANNs) have emerged as a highly successful field of machine

learning. ANNs consist of several layers of forward connected nodes, which transform the raw

data into increasingly abstract feature representations for use in classification or prediction

[17–19]. While neural networks themselves are not a novel idea, advances in computational

power and training algorithms in more recent years, coupled with the availability of suffi-

ciently large data sets, have allowed deeper architectures to be trained [20]. Deep ANNs have

produced outstanding results on a range of applications including natural language [21] and

image processing [22] and have been mooted as being a potential solution to the challenges

faced with analysing high dimensional toxicogenmics data [23]. Deep learning methods have

already been shown to outperform more classical techniques in predicting toxicity [24, 25] and

drug-induced liver injury [26, 27] given information about the chemical structure and proper-

ties of a compound. In addition, multiple recent studies have had some success in applying

deep learning architectures to the analysis of gene expression data, predicting genome-wide

gene expression given information on histone modifications [28] or expression levels for a

subset of, so-called, landmark genes [29]. Within the field of toxicology, deep learning models

have also been successfully applied to predict the pharmacological properties of drugs given

transcriptomic profiles, facilitating drug repurposing [30] and also predicting liver toxicity

[31].

In this study, we evaluate the potential of deep learning methods to extrapolate transcrip-

tomic profiles from rodent to human and from in vitro to in vivo in rats. Several deep learning

network architectures are compared with more classical machine learning approaches, such as

random regression forests and k-nearest neighbours, to determine the added value of the deep

learning approaches. Firstly, we examine the cross-species prediction problem, applying the

models to predict human in vitro gene expression given a time series of rat in vitro gene

expression following exposure to a previously unseen compound. Subsequently, we look at

predicting rat in vivo gene expression given a measured pattern of rat in vitro gene expression

following an exposure using data from open TG-GATEs. In addition, a systematic analysis is

conducted to determine the effect of the composition of the included genes on the accuracy of

the model predictions.

Materials and methods

Open TG-GATEs

Open TG-GATEs is a large, publicly available toxicogenomics database containing gene

expression profiles as well as traditional toxicological data from in vitro assays, in both primary

rat and human hepatocytes, and in vivo rats following exposure to 170 compounds [32]. The

data used in these analyses are summarised in Fig 1. For the in vitro human and rat experi-

ments gene expression profiles were measured at three time points (2, 8, and 24 hours) follow-

ing a single exposure to a given compound at up to three dosages (low, middle, and high) plus

a control; with two biological replicates. The high dosage for each compound was determined

as the maximally tolerated dose (yielding an 80-90% relative survival ratio). The ratio of con-

centrations for the low and middle doses were 1/25 and 1/5 of the high dose. For the rat in vivo
experiments, gene expression profiles were measured at four time points (3, 6, 9, and 24

hours) following a single exposure. The high dosage for each compound was selected to match

the level shown to induce the minimum toxic effect over the course of a four week toxicity

study, with the ratio of concentrations for the low and middle doses at 1/10 and 3/10 of the

high dose. There are three biological replicates for each in vivo compound-dosage combina-

tion. Gene expression profiles were generated using the Affymetrix GeneChip, the Rat

Genome 230 2.0 Array and the Human Genome U133 Plus 2.0 Array. Array data for all
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available compounds for rat and human in vitro and rat in vivo were downloaded in the form

of CEL files from the Open TG-GATEs database (https://toxico.nibiohn.go.jp) and pre-pro-

cessed using Affymetrix Power Tools using the robust multi-array average normalisation

method, correcting the raw micro-array probe intensities for background and inter-array

noise to produce interpretable gene expression data. Following normalisation, compounds

with incomplete data, missing either time points or dosages, were removed, leaving 45 com-

pounds with a complete set of data in all three domains which were included in this study

(Supplementary Table S1 in S1 File).

Experimental setup

The experimental setup of this study is visualised in Fig 2 and detailed below. In summary,

gene sets are identified either from literature or randomly selected from a list of known

rat-human orthologs. Once the relevant gene expression data has been extracted from the

TG-GATEs data set machine learning examples can be generated by pairwise matching of

compound-dose combinations from the source (rat in vitro) and target (human in vitro or

rat in vivo) domains. The gene expression data is then re-encoded and reformatted into the

preferred input for the models. In order to maximise the number of learning examples avail-

able for training each of the models are trained using a leave-one-compound-out cross vali-

dation approach. Model performance is assessed using the average mean absolute error in

Fig 1. Overview of toxicogenomics data available in open TG-GATEs. Outline of toxicogenomics data available in

Open TG-GATEs across three domains. In rat and human in vitro studies gene expression profiles are measured at

three time points (2, 8, 24 hours) with two biological replicates at low, medium, and high dosages plus the control. The

rat in vivo data is available at four time points (3, 6, 9, and 24 hours) at a low, medium, and high dosage plus a control

with three biological replicates. No data is available for the human in vivo domain.

https://doi.org/10.1371/journal.pone.0236392.g001
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predicting gene expression over all 45 compounds. A detailed description of the three

applied deep learning architectures and two machine learning models can also be found

below.

Gene sets. Micro-array data measures the abundance of more than 20,000 gene tran-

scripts. Consequently, our time series of gene expression profiles have a very high dimensional

feature space. While Open TG-GATEs is a comparatively large toxicogenomics database, the

720 learning examples that could be generated by combining all available compounds and dos-

ages are somewhat restrictive for effectively training a model to predict genome-wide gene

expression. For example, a single fully connected layer of a neural network going from n nodes

in the input layer to m nodes in the internal layer requires the training of n�m weights. A

genome-wide prediction for a single time-point would require an input layer consisting of

20,000 nodes resulting in 20,000�m parameters which would need to be optimised. Therefore,

it was decided to select subsets of genes to evaluate the predictive ability of the neural net-

works. Four subsets of genes associated to relevant toxicological outcomes were identified

from literature; namely steatosis (developed in-house using the KEGG pathway hsa04932),

cholestasis [33–35], genotoxicity and carcinogenicity (GTX+C) [13, 14], and NAFLD [15].

The published gene lists were filtered to contain only known rat-human orthologs. Gene sets

can be found in Supplementary Tables S2-S5 in S1 File.

In order to evaluate the effect of gene set composition on model predictions several ran-

domly selected gene sets of increasing size were generated. Initially, sets of 20 genes were ran-

domly selected independently from both the source domain (rat in vitro) and the target

domain (human in vitro or rat in vivo). Subsequently, sets of 15 randomly selected genes were

iteratively added to the core set; generating nested gene sets consisting of 35, 50, 65, and 80

Fig 2. Schematic of experimental setup. Overview of the design of this study. Firstly, gene sets are identified either from literature or by randomly

selecting genes from a list of known rat-human orthologs. Once the relevant gene expression data has been extracted from the TG-GATEs data set and

learning examples are generated by the pairwise matching of compound dose combinations. The models are then trained using a leave-one-compound-

out cross validation loop, where by all instance for one compound are removed from the data set, the models are then trained on the data for the

remaining 44 compounds and predictions assessed by predicting for this unseen compound.

https://doi.org/10.1371/journal.pone.0236392.g002
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genes. Random sets of orthologs were also generated by repeating this nested gene set selection

procedure within a reduced set of known rat-human orthologs. The expression of some genes

was not altered following the exposure. Constant gene expression is easier to predict. There-

fore, all generated gene sets were screened to ensure sufficient variation in gene expression.

This threshold was set at 3% lower than the variance measured in the steatosis gene set.

Learning examples. Once the expression data for the selected gene sets have been

extracted from the TG-GATEs data set. Machine learning examples are generated by pairing

the time series of gene expression for a given compound-dose combination in the source

domain (rat in vitro) with the time series of gene expression for the same compound-dose

combination in the target domain (human in vitro or rat in vivo). As each replicate for a

given compound-dose combination in the source domain is a valid match for both repli-

cates in the target domain four learning examples can be generated for each compound-

dose combination (Fig 2, Supplementary Fig S1 in S1 File). In order to maintain the struc-

ture of the data in each domain one of the three replicates for the rat in vivo domain is ran-

domly discarded. For the purpose of generating learning examples, the controls are treated

as an additional dose. With 45 compounds, three dosages plus the control, and the pairwise

matching of replicates it is possible to generate 720 learning examples for each source-target

domain combination. For all models, with the exception of the convolutional neural net-

work, gene expression data is arranged in a vector consisting of each time points of gene

expression for consecutive genes for a given compound-dose combination, for example the

rat in vitro data for the GTX+C gene set consists of gene expression values for 76 genes at

three time points resulting in a (228 x 1) dimensional input vector. For the CNN the gene

expression data is restructured into a two dimensional array with time points on one dimen-

sion and genes on the second, consequently the rat in vitro data for the GTX+C gene sets

forms a (76 x 3) array.

Encoding the gene expression data. With time series of gene expression data, it is the

changes in gene expression between consecutive time points, and not the levels of gene expres-

sion, which is of primary interest. Consequently, the input data was re-encoded, favouring the

correct prediction of the pattern of gene expression. The first entry for each gene is the mea-

sured gene expression at time point one. The values have been re-scaled relative to maximum

and minimum gene expression levels across all genes and compound-dose combinations such

that the values are in the range [0, 1], the preferred input to neural networks. The remaining

entries encode the slopes between each consecutive pair of time points. The second entry is the

difference in gene expression between the first time point and the second time point and so

on. This re-encoding of the gene expression data produces a lower error for predictions with

the correct gene expression pattern, even if the level of gene expression has been shifted, with-

out the need to use a more complex error function when training (Supplementary Fig S2a and

S2b in S1 File).

Leave-one-compound-out cross validation

In order to maximise the number of learning examples available for training leave-one-com-

pound-out cross validation is used. All sixteen instances for a given compound were removed

from the training data, the models were then trained on the remaining 704 learning examples.

The excluded instances were then used to validate the prediction accuracy of the model. This

was repeated for all 45 compounds. The overall performance of each model was assessed using

the average validation error over all 45 compounds. The validation error is the mean absolute

error between the model predicted time series of gene expression and the measured time series

of gene expression for each gene.
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Models are trained using the mean absolute error across all time points and genes according

to the following formula.

MAE ¼
1

G � T

XG

i¼1

XT

j¼1

jXijc � Mijcj ð1Þ

Where T is the number of sampled gene expression time points and G is the number of genes

in the gene set. Xijc is the measured gene expression level and Mijc is the model prediction of

gene expression at time point j for gene i for a given compound-dose combination c. Overall

model performance is assessed as the average mean absolute error over the 45 leave-one-com-

pound-out loops.

Models

Artificial Neural Networks consist of many nodes arranged into multiple connected layers

[17]. Each node processes the information received from the previous layer as a function of the

inputs and their connection weights and responds accordingly. These responses, known as

activations, become the input for the subsequent layer of nodes [36]. Through training the

connection weights are tuned [20], prioritising the most informative features for the particular

task. A bottleneck layer is a layer that contains fewer nodes compared to the previous layers,

depicted in Fig 3, forcing the network to find a reduced dimensional representation of the

data. The bottleneck forces learning by restricting the network to use only the most relevant

features [37]. Consequently, the reduced dimensional latent space also helps avoid over-fitting,

preventing learning of a one-to-one prediction. Two bottleneck architectures were imple-

mented in this study.

Naive encoder. The first model is a classical, fully connected ANN with a bottleneck struc-

ture (Fig 3). Through a grid search of the hyper-parameters a well-performing network struc-

ture was found to consist of two hidden layers containing 256 and 160 nodes respectively, a

central layer containing 32 nodes, followed by two further layers with 96 and 256 nodes. All

layers use rectified linear unit (ReLU) activation [38], except for the output layer which uses

sigmoid activation. L1 activity regularisation was applied to all five hidden layers to enforce

sparseness [39]. Initial connection weights were randomly assigned.

Modified autoencoders. Autoencoders are a subclass of ANNs with a bottleneck design,

used to learn an efficient encoding of data [40]. Rather than initialising our prediction model

with random weights, it was decided to independently train separate autoencoders for each

of our data domains. The trained weights for the encoder for our source domain were then

concatenated with the trained weights for the decoder of the target domain. These weights

became the initial weights for training our second bottleneck architecture, outlined in Fig 4.

This network also consists of five hidden layers. The first two layers forming the encoder con-

tain 70 nodes, the bottleneck layer contains 60 nodes, and the remaining two layers of the

decoder have 70 nodes. To stimulate the learning of compact internal representation of the

data L1 activity regularisation was applied to the three middle layers of the network. All layers

use ReLU activation except for the output layer, which uses sigmoid activation.

Convolutional neural network. The architecture of convolutional neural networks

(CNNs) is analogous to the connectivity pattern in the visual cortex, with neurons responding

to stimuli in only a limited region of the visual field [41]. As the filters applied in the convolu-

tional layers look at local regions, CNNs greatly reduce the number of weights requiring train-

ing. For input to the CNN model, the gene expression data was reshaped into a 2D format,

with genes on one axis and corresponding time points on the other. CNNs consist of alternat-

ing convolutional and pooling layers followed by fully connected layers [42]. In our network,
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Fig 5, the first convolutional layer consists of 16 filters with a 10x1 kernel, followed by Max-

Pooling [43] layer of pool size 2x1. This is followed by an 8-filter convolution again with a

10x1 kernel, with a second MaxPooling layer. A third convolutional layer uses four filters with

a 2x1 kernel, followed by a third MaxPooling layer. The output of the final MaxPooling layer is

then flattened to a vector which passed into a 20 node, fully connected layer with L1 activity

regularisation. The output is then up-sampled using a 30 node fully connected layer, followed

by a fully connected output layer.

All deep learning models are trained using Adam [44], an adaptive stochastic gradient

descent algorithm.

Machine learning models. In the absence of a gold standard in the field, in order to evalu-

ate the added benefit of using deep learning models to predict time series of gene expression,

classical machine learning techniques were used as a benchmark. Random Regression Forest

(RRF) [45] and k-nearest neighbours (KNN) [46] were selected as our bench-marking models.

This bench-marking strategy is in line with the validation methods used in previous studies to

assess the added value of deep learning approaches on genomics data [25, 28].

Fig 3. Schematic diagram of the architecture of the Naïve Encoder model. This model is a densely connected five-layer artificial neural network with

a bottle neck architecture. The two encoding layers consisting of 256 and 160 nodes respectively, followed by a central bottleneck layer containing 32

nodes and two decoder layers containing 96 and 256 layers respectively. All layers use ReLU activation, other than the final output layer which uses

sigmoid activation. L1 activity regulation is applied to all layers to enforce sparseness. Input and output layers are shown for the steatosis gene set in the

rat in vitro to human in vitro prediction, where both the input and the output have 150 dimension (50 genes � 3 time points).

https://doi.org/10.1371/journal.pone.0236392.g003
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Results

Three deep learning models (Naïve Encoder, Modified Autoencoder and CNN) are evaluated

for predicting time series of gene expression in a target domain (human in vitro or rat in vivo)

given a measured time series of rat in vitro gene expression following exposure to a previously

unseen compound.

Across-species prediction—Rat in vitro to human in vitro
The average mean absolute error for the model predictions of time series of human in vitro
gene expression given rat in vitro gene expression for the models included in this analysis are

summarised in Table 1. The Naïve Encoder and CNN consistently outperformed both bench-

marking methods (KNN and RRF) for all four toxicologically relevant gene sets included in

this study. In fact, the CNN model has a significantly reduced average mean absolute error

when compared to the RRF for each gene set, calculated using a paired two-tailed t-test with

Benjamini-Hochberg correction for multiple testing within each gene set. The KNN model

was consistently the poorest performing model across all gene sets. It is also noteworthy that

the average mean absolute error for predicting time series of human in vitro gene expression

decreases as the number of included genes increases for all methods. The average mean abso-

lute error for the CNN model decreases from 0.0238 units for the cholestasis gene set (18

genes) to 0.01658 units for the GTX+C gene sets(76 genes). Suggesting the additional informa-

tion added by including more genes improves the model predictions.

Fig 4. Schema for the structure of the modified autoencoder. Initially, two separate autoencoders are trained independently one for the

source domain (red) and a second for the target domain (blue), these networks have the same architecture as the final modified

autoencoder. The weights for the encoder portion of the source domain autoencoder (red) are concatenated with the weights for the

decoder section of the target domain autoencoder (blue). These weights become the initialising weights for the prediction task. The

modified autoencoder consists of five hidden layers of 70, 70, 60, 70, and 70 nodes respectively. L1 activity regularisation is applied to the

three middle hidden layers. Input and output layers are shown for the steatosis gene set in the rat in vitro to human in vitro prediction,

where both the input and the output have 150 dimension (50 genes � 3 time points).

https://doi.org/10.1371/journal.pone.0236392.g004
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Fig 6 visualises the prediction of human in vitro gene expression for a subsets of genes from

the GTX/C gene set using the CNN model for the low, medium, and high dosages of the vali-

dation compound hexachlorobenzene, a visusal representation for the cholestasis, NAFLD,

and Steatosis gene sets are provided in the supplementary material (Fig S3a, S3b, S3c in S1

File). In each row the measured time series of gene expression for in vitro rat (red) and both

Fig 5. Outline of the structure of the implemented convolutional neural network. The convolutional neural network consists of three alternating

convolutional and MaxPooling layers. The output from the final MaxPooling layer is then flattened into a vector which then passed through two fully

connected layers to reconstruct the time series of gene expression pattern in the target domain. The above figure illustrates the rat in vitro to human in
vitro prediction for the steatosis gene sets consisting of 50 genes. The gene expression data is reconstructed into a 2D format, with the genes on one axis

and the respective time points on the other yielding an input of 50 genes by 3 time points as depicted in the diagram.

https://doi.org/10.1371/journal.pone.0236392.g005

Table 1. Average mean absolute error from leave one out cross validation for each model predicting the four toxicologically relevant gene sets identified from

literature.

Gene set ref. Cholestasis NAFLD Steatosis GTX + C

number of genes 18 22 50 76

k-nearest-neighbour [46] 0.02836 0.02303 0.02270 0.02076

random regression forest [45] 0.02335 0.0183 0.01865 0.01718

naive encoder [37] 0.02326 0.01819 0.01862 0.01667�

modified autoencoder [40] 0.02507 0.01987 0.01972 0.01768

CNN [41] 0.02138� 0.01742� 0.01841� 0.01658�

Table 1 shows the validation errors of the five models included in this analysis (rows) for predicting human in vitro gene expression given rat in vitro gene expression for

each of the four toxicologically relevant orthologous gene sets identified from literature. The validation errors are the average of the mean absolute errors (mean

prediction error across genes) calculated during the leave one out cross validation for the 45 compounds included in this study. The number of genes included in each

gene sets is indicated in the second row. Emboldened values indicate the best performing model for each gene set.

� indicated models that have a significantly lower average mean absolute error than random regression forest for that gene set as calculated using a paired two-tailed t-

test with correction for multiple testing using Benjamini-Hochberg correction.

https://doi.org/10.1371/journal.pone.0236392.t001

PLOS ONE Application of deep learning methods to translate gene expression patters across species

PLOS ONE | https://doi.org/10.1371/journal.pone.0236392 August 11, 2020 10 / 20

https://doi.org/10.1371/journal.pone.0236392.g005
https://doi.org/10.1371/journal.pone.0236392.t001
https://doi.org/10.1371/journal.pone.0236392


human in vitro replicates (blue) following an exposure are visualised. The rat in vitro and

human in vitro gene expression often notably differ in pattern (CCNE1 and SGK11) demon-

strating the potential issues of relying on orthologs to directly translate gene expression pat-

terns between species. The model predicted time series of human in vitro gene expression are

depicted in yellow. In instances where the measured human in vitro replicates have inconsis-

tent gene expression patterns the model predicts the mean gene expression pattern, as evident

when zooming in on the model predictions for BEAN1 and MARCKS for a low dose of hexa-

cholorbenzene in Fig 6. A visualisation of the CNN model prediction for the full GTX/C gene

set following a low, medium, and high dose exposure to hexachlorobenzene is provided in

Supplementary Figs S4a, S4b, and S4c in S1 File.

Across experimental technique—Rat in vitro to rat in vivo
The above analysis was repeated to evaluate the potential for the deep learning models to also

predict time series of in vivo gene expression given in vitro gene expression following an expo-

sure in rats. The average mean absolute errors for the model predictions of time series of rat in
vivo gene expression are summarised in Table 2. Again, the CNN and the Naïve Encoder consis-

tently outperform the classical machine learning methods used for benchmarking, although the

Fig 6. Input data and model predictions for validation compound hexachlorobenzene for convolutional neural network trained on

carcinogenicity/genotoxicity gene set. The measured time series of rat in vitro (red) and human in vitro (blue) gene expression for a subset of genes

from the GTX+C gene set for a low, medium, and high dosage of hexachlorobenzene are visualised along each row. A visual representation of the model

predictions of a time series of human in vitro gene expression (yellow) relative to measured human in vitro gene expression in both biological replicates

(blue) for the same subset of genes from the GTX/C gene set. The model prediction and human in vitro biological replicates for BEAN1 and MARCKS

are visualised on a closer scale for the low dose exposure.

https://doi.org/10.1371/journal.pone.0236392.g006
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RRF does have a lower average mean absolute error than the Naïve Encoder for the cholestasis

gene set. While the average mean absolute error values are greater than the human in vitro pre-

dictions, the error values again decrease as the size of the gene set increases for all models.

Fig 7 visualises the prediction of rat in vivo gene expression for a subset of genes from the

GTX/C gene set using the CNN model for a low, medium, and high dose exposure the previ-

ously unseen compound azathioprine. As with the rat and human in vitro data, the measured

Table 2. Average mean absolute error from leave one out cross validation for each model predicting rat in vivo gene expression from rat in vitro for the four toxico-

logically relevant gene sets.

Gene set ref Cholestasis NAFLD Steatosis GTX + C

number of genes 18 22 50 76

k-nearest-neighbour [46] 0.04991 0.04027 0.03643 0.03140

random regression forest [45] 0.03934 0.03188 0.02883 0.02479

naive encoder [37] 0.03977 0.03102 0.02859 0.02437

modified autoencoder [40] 0.04233 0.03438 0.03056 0.02626

CNN [41] 0.03771� 0.03040� 0.02849 0.02462

Table 2 shows the validation errors of the models included in this analysis (rows) for predicting rat in vivo gene expression given rat in vitro gene expression for each of

the four toxicologically relevant orthologous gene sets identified from literature. The validation errors are the average of the mean absolute errors (mean prediction

error across genes) calculated during the leave one out cross validation for the 45 compounds included in this study. The number of genes included in each gene sets is

indicated in the second row. Emboldened values indicate the best performing model for each gene set.

� indicated models that have a significantly lower average mean absolute error than random regression forest for a given gene set as calculated using a paired two-tailed

t-test with correction for multiple testing using Benjamini-Hochberg correction.

https://doi.org/10.1371/journal.pone.0236392.t002

Fig 7. Input data and model predictions for validation compound azathioprine for convolutional neural network trained on carcinogenicity/

genotoxicity gene set. The measured time series of rat in vitro (red) and rat in vivo (blue) gene expression and the model predictions of rat in vivo gene

expression (yellow) for a subset of genes from the GTX/C gene set for a low, medium, and high dose exposure of azathioprine. The model prediction

and both measured rat in vivo biological replicates for APOM are visualised on a closer scale for the low dose exposure to demonstrate the discrepancy

in gene expression patterns that often exists for the rat in vivo biological replicates.

https://doi.org/10.1371/journal.pone.0236392.g007
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time series of rat in vitro (red) and rat in vivo (blue) gene expression often differ in pattern (Fig

7). The model predicted time series of rat in vivo gene expression in visualised in yellow. There

is a greater variance in gene expression patterns between the biological replicates for rat in vivo
than observed in the human in vitro (Fig 7). As in the cross species predictions, the model

often predicts the mean gene expression when the rat in vivo biological replicates differ in gene

expression patterns (Fig 7 BEAN1 and APOM). A graphical representation the CNN model

prediction for all 76 genes in GTX/C gene set following a low, medium, and high dose expo-

sure to azathioprine is presented in Supplementary Figs S5a, S5b, and S5c in S1 File respec-

tively. Visualisations of the model prediction for rat in vivo gene expression following a low

dose of azathioprine for the Cholestatisis, NAFLD, and Steatosis gene sets can also be found in

the supplementary material (Figs S6a, S6b, S6c in S1 File).

Effect of gene set composition on model predictions

The toxicologically relevant gene sets identified from literature differed not only in gene com-

position but also in terms of the numbers of included genes. To evaluate the impact of gene set

composition on the accuracy of the cross species prediction of human in vitro gene expression

from rat in vitro gene expression each model was trained using leave-one-out cross validation

for ten randomly selected gene sets of increasing size (20, 35, 50, 65, and 80 genes) reflecting

the size of the toxicologically relevant gene sets identified from literature. The gene sets were

screened to ensure minimal overlap between sets of equal size. There was a considerable varia-

tion in average mean absolute error across the ten randomly selected gene sets for all models

(Fig 8). While the variation decreased, somewhat, as the number of genes increased, it was still

Fig 8. Average mean absolute error for randomly generated gene sets of increasing size for convolution neural network.

Average mean absolute error (AMAE) for CNN trained on ten randomly generated non-orthologous gene sets of increasing size

(20, 35, 50, 65, and 80 genes) (blue). The average AMAE for each size of gene set is depicted in orange. Note the distribution of

AMAE values for the ten gene sets of each size.

https://doi.org/10.1371/journal.pone.0236392.g008
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marked. Training of each model ten separate times on the same gene set demonstrated that the

large variation in prediction accuracy was not due to the randomisation in model initialisation

(not shown). This establishes that the particular genes included in a gene set can have a pro-

found effect on the resulting model prediction.

As each random gene set was generated independently, it was not possible to draw strong

conclusions on the impact of the number of genes on the model predictions. To this end, 30

nested gene sets of increasing size were randomly generated, providing a more thorough anal-

ysis of the impact of added information (increasing number of genes) on the models’ predic-

tions. The mean validation error for all models decreases as more genes are added (Fig 9). This

Fig 9. Average mean absolute error for each model trained on several nested sets of randomly selected genes of increasing size.

Each model included in the analysis (CNN, naïve encoder, modified autoencoder, and random regression forest) were trained on a

population of randomly selected nested gene sets of increasing size (20, 35, 50, 60, 80 genes). The figure depicts the mean average

mean absolute error for each model trained on a population of thirty randomly generated non-orthologous gene sets of each size. The

error bars indicate the standard error of the mean.

https://doi.org/10.1371/journal.pone.0236392.g009
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reflects the results obtained for the toxicologically relevant gene sets, with GTX+C, the largest

gene set, yielding the lowest average mean absolute error for all five models. The above analysis
was repeated for randomly selected orthologus gene sets from the rat in vitro to human in vitro
prediction and also the in vivo predictions and gave comparable results (Supplementary material
section 2). There appears to be no benefit is using only orthologus genes.

Discussion

The advent of genomics technologies, coupled with the growing pressure to reduce the need

for animal testing, has contributed to a surge in the development of in vitro toxicogenomics

bio-assays. While the identification of genomic signatures of adverse toxicological outcomes

have yielded positive results in the classification of novel compounds [13–15], relating changes

in genomic profile across species or from in vitro to in vivo, particularly for biological interpre-

tation of underlying mechanisms still proves challenging not only in toxicological research,

but also in several other biological disciplines that utilise cellular and animal models. In this

study, we demonstrate the potential of deep learning methods to translate time series of drug-

induced changes in gene expression across species and experimental domains. The deep learn-

ing models evaluated in this study outperform classical machine learning algorithms in pre-

dicting time series of human in vitro and rat in vivo gene expression given a measured time

series of rat in vitro gene expression following an exposure to a previously unseen compound.

Of the three deep learning models included in this analysis the Naïve Encoder, a fully con-

nected artificial neural network with a bottleneck architecture, and the CNN have the lowest

average mean absolute error in both the cross-species and in vitro to in vivo predictions, con-

sistently outperforming the Random Regression Forest, the best performing traditional

machine learning method. CNN are increasingly being investigated for their potential in the

analysis of gene expression data [47, 48]. Gene expression is a highly complex, co-regulated

system, which is currently not fully understood. The kernels implemented in our CNN model

have been restricted to filtering several genes at a single time point, identifying patterns of co-

expression. By integrating further biological knowledge, it may be possible to apply a more log-

ical structure to the genes in the input data, with neighbouring genes sharing some regulatory

relationship. In this way, the local convolution may be more optimally utilised to filter for

dependencies in neighbouring genes, improving the prediction accuracy.

Our Modified Autoencoder had consistently low prediction accuracies, out-performing

only the KNN method. Use of the weights obtained by pre-training two independent autoen-

coders to initialise the prediction model may have hindered its training. A recent study applied

domain adaptation to combine the pre-trained encoder and decoder weights [49], integration

of this approach in the training of the network may improve the performance of our Modified

Autoencoder.

As the number of genes included in the analysis increases, the accuracy of the predictions

improves for all models. This is perhaps not surprising as the inclusion of additional genes

increases the information from which the models can learn. While the performance of all mod-

els, including the classical machine learning approaches, improve with the addition of genes

the reduction in average mean absolute error is more pronounced for the CNN and Naïve

Encoder, suggesting the deep learning models have an advantage in prediction for larger gene

sets. The improved performance is evident in both the toxicologically relevant gene sets identi-

fied from literature and the randomly selected gene sets. We have constrained our model pre-

dictions to relatively small gene sets consisting of approximately twenty to eighty genes. While,

Open TG-GATEs was selected as a pilot data set as it is a comparatively large toxicogenomics

data. The number of learning examples that could be generated is far less than the 20,000
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genes measured by microarray analysis, necessitating the use of subsets of genes. This does not

necessarily hinder our results; the use of subsets of genes, or genomic signatures, to classify

potential adverse outcomes is commonplace in toxicological research. In addition, we also do

not see any benefit in restricting the cross species prediction task to orthologus genes, with the

deep-learning models preforming equally as well on sets of randomly selected genes (Fig 9) as

randomly selected sets of orthologs (Supplementary Fig S7 in S1 File).

In order to evaluate the impact of the number of genes on model predictions nested gene

sets containing between twenty and eighty genes were generated. This range of values was

selected to reflect the numbers of genes in our toxicologically relevant gene sets while also

bearing in mind the 720 learning examples available for training. Generally, a ratio of 10 learn-

ing examples to number of features is advised, guiding the choice of gene set sizes included in

these analyses. Looking at the average mean absolute error values for models trained on these

randomly generated nested gene sets it is evident that model performance improves with the

addition of more genes. However, we would expect this improvement in validation error to

plateau at a certain gene set size as the dimensionality of the feature space would become too

large for the limited number of learning examples. The models would then be expected to

over-fit the training data and the validation error would increase. This point has not been

identified in our analyses.

As this was a provisional study evaluating the potential of deep learning algorithms for this

cross-domain prediction task it was decided to restrict training to a single data set of gene

expression measurements removing variation in the data due to differing experimental proto-

cols. TG-GATEs was selected as it is a large toxicogenomics data set. Sprague-Dawley rats

were used for both in vitro and in vivo experiments. The primary human hepatocytes used in

the experiments included in these analyses were derived from a single human donor. Conse-

quently, the subset of TG-GATEs used here provides a somewhat an idealised scenario for

evaluating the performance of the deep learning models greatly reducing variation in data due

to experimental technique. Despite this the average mean absolute error values for the in vivo
prediction are greater than the human in vitro prediction (Tables 1 and 2), we believe this may

be largely attributed to the greater variation in the gene expression pattern for the rat in vivo
replicates when compared to the human in vitro replicates. It may be possible to increase the

number of genes included in the analysis and improve the accuracy of the models predictions

by combining time series of gene expression from other toxicological data bases, such as

DrugMatrix [50], thereby increasing the number of learning examples. The variation in gene

expression introduced by the differing experimental protocols, and more genetically diverse

hepatocytes may further improve the generalisability of the models.

Within the context of this study, we were primarily concerned with the predictive ability of

the models. We have not explored the connection weights or structure of the latent space of

the trained models. Exploration of the latent spaces of neural networks applied in other classi-

fication tasks has provided insight into how the networks learn and make decisions [26]. Due

to the bottleneck structure in the networks implemented within this study the models are

forced to learn a compressed representation of the data. Accordingly, the time series of gene

expression predicted in the target domain is formed by a nonlinear combination of the input

gene expression patterns of multiple genes. Exploration of the most influential features in the

final, fully trained models, may provide new biological insight into the relationship between

genes. In addition, this reduced dimensional latent space may provide a novel method for the

classification of potential adverse outcomes as it is anticipated that compounds that trigger

similar responses in gene expression would cluster together in the compressed latent space

[51, 52].
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We have demonstrated the ability of deep learning models to translate time series of gene

expression across domains; predicting across species, from rat to human in vitro, and from in
vitro to in vivo for rats. Our aim in future work would be to train a model to predict human in
vivo gene expression. While the simple deep learning architectures evaluated in this study

show potential, they require vast quantities of data to train, which would be unavailable for the

human in vivo domain. It may be possible to further adapt the in vitro to in vivo models trained

on rat data to the human task by integrating some form of transfer learning as has been utilised

by Herdon and Caragea to predict protein localisation and splice site locations in a given

organism by leveraging large volumes of publicly available labelled data from well studied

model organisms [53, 54].

Conclusions

We have demonstrated the potential of deep learning architectures, most notably Convolution

Neural Networks and deep fully connected networks, in translating drug-induced changes in

gene expression across the species and experimental domains. These deep learning models

outperform classical machine learning algorithms in predicting time series of human in vitro
and rat in vivo gene expression given a measured time series of rat in vitro gene expression

following exposure to a novel compound. More importantly, we highlight the emerging poten-

tial of deep learning models in both the analysis of gene expression data and classification of

toxicity.
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