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Abstract

Epigenetic alterations, including DNA methylation, microRNA, and long noncoding RNA, play important roles in the
pathogenesis of numerous respiratory health conditions and diseases. Exposure to tobacco smoking has been found to be
associated with epigenetic changes in the respiratory tract. Marketed as a less harmful alternative to combustible cigarettes,
electronic cigarette (e-cigarette) has rapidly gained popularity in recent years, especially among youth and young adults.
Accumulative evidence from both animal and human studies has shown that e-cigarette use (vaping) is also linked to simi-
lar respiratory health conditions as observed with cigarette smoking, including wheezing, asthma, and COPD. This review
aims to provide an overview of current studies on associations of smoking and vaping with epigenetic alterations in respira-
tory cells and provide future research directions in epigenetic studies related to vaping.
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Introduction

Electronic cigarette (e-cigarette) is a battery-operated device
that heats a liquid and allows users to inhale an aerosol, which
usually contains nicotine, ultrafine particles, flavorings such as
cytotoxic cinnamaldehyde and diacetyl (a chemical linked to a
serious lung disease), volatile organic compounds such as respi-
ratory irritants acrolein and acrylamide, lung cancer-causing
chemicals such as formaldehyde and acetaldehyde, and heavy
metals such as nickel, tin, and lead.1–4 Those respiratory toxi-
cants and irritants present in aerosols generated from e-ciga-
rettes are delivered to lungs with every puff taken by e-cigarette
user. E-cigarettes have rapidly gained popularity in the United
States in recent several years, especially among youth and
young adults.1,5 E-cigarettes use (vaping) in youth has also been

shown to be associated with subsequent cigarette smoking.6,7

Using large national survey data, our epidemiology studies have
found the association of vaping with self-reported wheezing
and chronic obstructive pulmonary disease (COPD) in US
adults,8–10 and the association of vaping with self-reported diffi-
culty concentrating, remembering, or making decisions in both
US youth and adults.11,12 Our recent findings that e-cigarette
aerosols cause oxidative stress, DNA damage, and inflamma-
tory responses in human lung epithelial cells and mouse lungs
indicated respiratory disease risk associated with e-cigarette
use, which is consistent with previous studies.13–18 While fla-
voring chemicals are commonly used in e-cigarettes, there is
limited information on the adverse health effects of those fla-
vorings in e-cigarettes.19 We have shown that e-cigarette
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flavoring chemicals such as acetoin, ortho-vanillin, and maltol
can stimulate the release of IL-8 in human bronchial epithelial
cells (Beas2B) and human lung fibroblasts (HFL-1) to trigger in-
flammatory responses.14,20 A recent review of toxicological
effects of tobacco and menthol-flavored e-cigarettes summa-
rized the cytotoxicity and genotoxicity of tobacco and menthol-
flavored e-cigarette inhalation exposure from both mice and
human cell line studies, including increased oxidative stress,
apoptosis, inflammation, DNA damage, and epithelial barrier
dysfunction.21

Epigenetic alterations, including DNA methylation changes,
dysregulation of microRNAs (miRNAs), and long noncoding
RNAs (lncRNAs), have been found to play some important
roles in the initiation and development of human diseases, as
well as the interactions between genetic and environmental
factors.22–33 DNA methylation is an epigenetic mechanism in-
volving transferring a methyl group to the C5 position of the cy-
tosine to form 5-methylcytosine, which could regulate gene
expression.34 DNA methylation has been involved in autoim-
mune diseases, metabolic disorders, neurological disorders, and
the aging process.35 miRNAs are a class of small noncoding
RNAs with 21–25 nucleotides that play important regulatory
roles in a wide range of cellular and biological processes such as
immune regulation and inflammatory response.36–39 miRNAs
have been reported to play crucial roles in pathophysiology of
chronic inflammatory lung diseases and lung cancers.40–43

lncRNAs are a type of noncoding RNAs with more than 200
nucleotides in length.44–46 lncRNAs are a relative abundant
component of transcriptome, which have been identified to
have important cellular functions including regulation of gene
transcription, cell differentiation, cancer cell invasion, and me-
tastasis, and chromatin remodeling.47–50 Increasing evidence
showed that lncRNAs regulate many physiological and patho-
logical responses, including immune cell differentiation and ac-
tivation, metabolism and glucose homeostasis, cardiovascular
development, brain temporal and spatial expression patterns,
and responses to environmental exposures. Deregulation of
lncRNA is responsible for numerous diseases in mammals, and
lncRNA has shown their significance as biomarkers in cancer
prognosis and diagnosis.49–53

Epigenetic Alterations Associated with
Smoking

Cigarette smoking is a well-known risk factor for cancer, cardio-
vascular disease, and COPD.54 Smoking exposure was consid-
ered a strong environmental modifier and has been found to be
associated with epigenetic changes across tissue types in sev-
eral studies.55–58 Smoking has been shown to modulate DNA
methyltransferase 1 (DNMT1) and histone modification
enzymes that are involved in pathogenesis of lung cancer and
COPD.59 A previous metaanalysis of genome-wide DNA methyl-
ation studies found the association of smoking with DNA meth-
ylation changes (2623 CpG sites) linked with pulmonary
functions, cancers, inflammatory diseases, and heart disease.60

Another study showed that smoking-associated DNA methyla-
tion biomarkers had a strong association with cognitive func-
tion, brain structure, physical health, and psychosocial health.58

Investigating the DNA methylation alterations associated with
smoking not only helps us understand the mechanisms in path-
ogenesis of those diseases associated with smoking exposure,
but also identifies biomarkers used for cigarette consumption
prediction. For example, DNA methylation status at locus

cg05575921 examined either in human whole blood or saliva
samples could be used as a biomarker to differentiate smokers
from nonsmokers as well as a predictor for daily cigarette
consumption.61,62

In addition to DNA methylation alterations, smoking expo-
sure can lead to noncoding RNAs change such as miRNAs and
lncRNAs. Using whole blood samples from Framingham Heart
Study participants, a six-miRNA signature of smoking was
found to be associated with smoking-induced inflammation
and reduced pulmonary functions.63 A genome-wide lncRNA
expression in human lung tissue study showed that hundreds
of lncRNAs were differentially expressed between five smokers
with COPD, five smokers without COPD, and three nonsmokers
without COPD, which suggest that smoking can change the ex-
pression of many lncRNAs.64 Gene enrichment analysis of iden-
tified significant lncRNAs showed changes in key pathogenic
processes of COPD due to smoking.65 In vitro human bronchial
epithelial (HBE) cell studies indicated the involvement of
lncRNAs in the epithelial–mesenchymal transition and malig-
nant transformation of the HBE cells induced by cigarette
smoke extract.66

Epigenetic Alterations Associated with Vaping

Very few studies have investigated the epigenetic changes asso-
ciated with vaping, and the potential association of DNA meth-
ylations, miRNAs, and lncRNAs with the health effects of
vaping (Table 1). Previous mouse studies showed that maternal
e-cigarette exposure could lead to global DNA methylation
changes and cognitive problems such as deficits in short-term
memory, reduced anxiety, and hyperactivity in the off-
spring.67,68 Using 45 human peripheral blood samples from ex-
clusive vapers, smokers, and controls (nonusers), recent study
showed significantly reduced methylation levels in LINE-1 re-
peat elements and global DNA hydroxymethylation in both
vapers and smokers compared with controls.69 Meanwhile, no
significant difference in those DNA methylation levels was ob-
served between exclusive vapers and smokers.69

Exosomes have been reported recently to mediate cell-
to-cell communication and affect many physiological pro-
cesses.72–75 Exosomes are small nano-sized vesicles released by
different cell types such as immune and structure cells.76

Exosomes contain enriched amount of surface proteins, regula-
tory proteins, mRNAs, miRNAs, and lncRNAs.77 Our recent study
using plasma exosomes from seven cigarette smokers, seven
vapers, and eight nonsmokers identified 24 significant miRNAs
between smokers and nonsmokers, and 17 significant miRNAs
between vapers and nonsmokers.70 Examination of the 24
miRNAs and 17 miRNAs showed 9 overlapped miRNAs, which
indicated both similarities and differences in the miRNA pertur-
bations between smoking and vaping.70 Identified miRNAs have
been found to be involved in multiple biological pathways and
processes in respiratory tract, such as regulation of nucleotide
and nucleic acid metabolism and transcription factor activities
using functional enrichment analysis. One of the identified sig-
nificant miRNA hsa-let-7a-5p was found to be able to differenti-
ate nonsmokers from tobacco users.70 Another study by our
group using human plasma exosomes from six smokers, six
vapers, and six nonsmokers identified seven significant
lncRNAs between smokers and nonsmokers, 13 significant
lncRNAs between vapers and nonsmokers.71 Examination of the
7 lncRNAs and 13 lncRNAs did not show overlapped lncRNAs,
which indicated the differences in the lncRNA perturbations be-
tween smoking and vaping.71 Functional analysis of identified
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lncRNAs showed the involvement of those significant lncRNAs
in the biological process such as steroid metabolism, hemopoie-
sis, and regulation of cell proliferation.71

Conclusions and Future Perspectives

Emerging evidences from mice and human studies suggest po-
tential association of vaping with epigenetic alterations. Given
the similarities (eg, nicotine) and differences (eg, combustion
byproducts) in chemical compositions between tobacco smoke
and e-cigarette aerosols, our recent studies found both common
and different epigenetic changes when comparing smokers and
vapers with controls.70,71 How these epigenetic alterations could
assist us to understand relative risks of vaping compared to
smoking is still unclear. Meanwhile, whether the differences in
the epigenetic changes between vapers and cigarette smokers
could result in toxicities unique to vaping such as the EVALI (e-
cigarette, or vaping, product use-associated lung injury) cases in
vapers awaits further investigation.78 However, the role of those
identified epigenetic biomarkers in the etiology of vaping-asso-
ciated diseases remains unanswered. All of current studies are
cross-sectional. Thus, within-subject epigenetic alterations dur-
ing the e-cigarette initiation and cessation process warrant fur-
ther investigation. Meanwhile, how the epigenetic level
changes when e-cigarette users switch flavors such as switch-
ing from fruit flavor (mainly including maltol and furaneol fla-
voring chemicals) to menthol (L-menthol flavoring chemicals)
or tobacco (mainly 2,3,5-trimethylpyrazine flavoring chemicals)
flavor in response to the US Food and Drug Administration
(FDA) flavor enforcement policy are unknown, which need to be
investigated in the future.

With the development of new methods and technologies in
epigenetic studies, the epigenetic changes could be examined in
an increasingly higher resolution to allow new discoveries in
epigenetic changes associated with smoking and vaping. For ex-
ample, the Perturb-ATAC approach that combines multiplexed
CRISPR technique with chromatin accessibility analysis within
a single cell to determine the role of transregulatory factors, the
new method of selecting DNA methylation-based biomarkers
through different biophysical properties to distinguish cancer
cells from noncancerous cells, and a multiplexed mass cytome-
try assay to investigate the global levels of 40 different histone
modifications at single-cell resolution.79–81 Meanwhile, studies
on cell-type-specific and tissue-specific epigenetic changes will
allow us to have a better and deeper understanding of the role
of epigenetic changes plays in the etiology of disease develop-
ment. These new technologies on epigenetic studies as well as
tissue and cell-specific epigenetic studies could facilitate us to
understand how smoking and vaping affect the epigenetic
changes in different cell or tissue types, and potential health
risks associated with them. Scientific endeavors in terms of un-
derstanding the epigenetic/epigenomic changes based on mul-
tiomics and spatial transcriptomics will help determine the
toxicities of vaping at cellular/subcellular levels.
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Table 1. Current Literature on Epigenetic Alterations Associated with Vaping

Epigenetic alterations Study sample Tissue Groups Sample size Study results Reference

DNA methylation Mice Brain • Ambient air
• E-cigarette aerosols

with nicotine
• E-cigarette aerosols

without nicotine

8 in each group • Global DNA methyla-
tion was significantly
increased in Group 3
compared to Group 1.

• No significant change
between Group 1 and
Group 2.

Nguyen et al.67

DNA methylation Mice Lung • Ambient air
• E-cigarette aerosols

with nicotine
• E-cigarette aerosols

without nicotine

3 in each group Global DNA methylation
was significantly in-
creased in Groups 2 and
3 compared to Group 1.

Chen et al.68

DNA methylation Human Peripheral
blood

• Vapers
• Nonsmokers and

nonvapers

15 in each group Demethylation in the
LINE-1 repeat elements
and decreased global
methylation was signif-
icant between groups.

Caliri et al.69

Exosomal miRNAs Human Plasma • Vapers
• Nonsmokers

7 vapers and 8
nonsmokers

13 upregulated and 4
downregulated miRNAs
were significant be-
tween groups.

Singh et al.70

Exosomal lncRNAs Human Plasma • Vapers
• Nonsmokers

6 in each group 13 upregulated and 5
downregulated
lncRNAs were signifi-
cant between groups

Kaur et al.71
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