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In a study of the stop signal task (SST) we employed Bayesian modeling to compute
the estimated likelihood of stop signal or P(Stop) trial by trial and identified regional
processes of conflict anticipation and response slowing. A higher P(Stop) is associated
with prolonged go trial reaction time (goRT)—a form of sequential effect—and reflects
proactive control of motor response. However, some individuals do not demonstrate
a sequential effect despite similar go and stop success (SS) rates. We posited that
motor preparation may disrupt proactive control more in certain individuals than
others. Specifically, the time interval between trial and go signal onset—the fore-period
(FP)—varies across trials and a longer FP is associated with a higher level of motor
preparation and shorter goRT. Greater motor preparatory activities may disrupt proactive
control. To test this hypothesis, we compared brain activations and Granger causal
connectivities of 81 adults who demonstrated a sequential effect (SEQ) and 35 who did
not (nSEQ). SEQ and nSEQ did not differ in regional activations to conflict anticipation,
motor preparation, goRT slowing or goRT speeding. In contrast, SEQ and nSEQ
demonstrated different patterns of Granger causal connectivities. P(Stop) and FP
activations shared reciprocal influence in SEQ but FP activities Granger caused P(Stop)
activities unidirectionally in nSEQ, and FP activities Granger caused goRT speeding
activities in nSEQ but not SEQ. These findings support the hypothesis that motor
preparation disrupts proactive control in nSEQ and provide direct neural evidence for
interactive go and stop processes.

Keywords: cognitive control, post-error slowing, post-signal slowing, motor urgency, motor readiness

INTRODUCTION

Previously we combined computational modeling and fMRI of a stop signal task (SST) to
characterize the neural processes linking conflict anticipation or Bayesian estimate of the likelihood
of an upcoming stop signal—P(Stop)—and go trial reaction time (goRT; Ide et al., 2013; Hu
et al., 2015a). A higher P(Stop) is associated with prolonged goRT, a behavioral finding related to
‘‘sequential effect’’ (Yu and Cohen, 2008). In brain imaging data, the anterior pre-supplementary
motor area (preSMA) along with the inferior parietal cortex (IPC) respond to higher P(Stop)
and the posterior preSMA and bilateral anterior insula (AI) respond to prolonged goRT. Granger
causality analyses showed directional influence of anterior preSMA on posterior preSMA and
bilateral insula, suggesting proactive control of motor response (Hu et al., 2015a). A sequential effect
reflects trial by trial monitoring and learning to update the current expectation of the stop signal.
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On the other hand, some participants failed to demonstrate a
significant sequential effect despite similar go and stop success
(SS) rates. The current study aimed to examine the neural
processes of proactive control that distinguish individuals who
demonstrate the sequential effect (SEQ) and those who do not
(nSEQ).

One hypothesis is that P(Stop) is not represented in nSEQ.
That is, individuals may not track the occurrence of stop
signal and thus do not demonstrate a sequential effect. As the
true probability of the stop signal does not vary from trial
to trial, tracking the stop signal does not confer advantages
and nSEQ would not suffer in behavioral performance. An
alternative hypothesis concerns motor preparation—a process
that has not been systematically considered in characterizing
SST performance. In the SST, the go signal appears after a
randomized interval (1–5 s)—the fore-period (FP)—following
trial onset. It is known that a longer FP is associated with motor
preparation and correlated negatively with goRT, reflecting an
urgency for action (Woodrow, 1914; Bertelson and Tisseyre,
1968; Niemi and Naatanen, 1981; Coull et al., 2016), or a ‘‘FP
effect’’ (Li et al., 2005). The FP effect describes the readiness
level at which participants are prepared to respond to the
go signal. It is possible that individuals vary in this motor
urgency, and preparatory motor activities in nSEQ play an
outsized role in disrupting the neural processes of proactive
control. Specifically, under this hypothesis, we expect P(Stop)
to be represented in both SEQ and nSEQ, but SEQ and
nSEQ may demonstrate distinct cerebral processes of motor
preparation and proactive control. Alternatively, SEQ and nSEQ
may share the same processes but demonstrate distinct regional
interactions such that the sequential effect is disrupted in
nSEQ.

We have three aims in this study. First, we characterized the
FP effect and posited a stronger FP effect in the nSEQ than SEQ.
Second, by modeling hemodynamic responses each at trial and
go signal onsets we examined the neural correlates of conflict
anticipation—expectation to encounter a stop signal—and
goRT slowing as well as the correlates of motor preparation
and goRT speeding. We posited that SEQ and nSEQ would
demonstrate different patterns of regional activations. Third,
with Granger causality analyses we examined Granger causal
connectivities among regional activities of conflict anticipation,
motor preparation, goRT slowing, and goRT speeding. We
posited a stronger influence of motor preparation on conflict
anticipation and goRT-related activities in nSEQ than SEQ. The
study would address how control and action circuits determine
a critical executive function and provide further evidence to
support the Bayesian model of inhibitory control (Shenoy and
Yu, 2011), where go and stop processes interact to support
behavioral performance.

MATERIALS AND METHODS

Participants and Behavioral Task
Healthy participants were recruited from the Greater New
Haven area of Connecticut. All were without neurological

or psychiatric illnesses, denied use of illicit substances and
tested negative in urine toxicology on the day of study. A
total of 116 subjects (32.3 ± 12.6 years of age; 59 men)
participated in the study, following a protocol approved
by the Human Subject Investigation Committee of Yale
University School of Medicine. All subjects gave written
informed consent in accordance with the Declaration of
Helsinki.

Participants performed a SST (Li et al., 2009; Hu and Li,
2012), in which go and stop trials were randomly intermixed
in presentation with an inter-trial-interval of 2 s. A fixation
dot appeared on screen to signal the beginning of each trial.
After a FP varying from 1 s to 5 s (uniform distribution), the
dot became a circle—the ‘‘go’’ signal—prompting participants
to quickly press a button. The circle disappeared at button
press or after 1 s if the participant failed to respond. In
approximately one quarter of trials, the circle was followed by
a ‘‘cross’’—the stop signal—prompting participants to withhold
button press. The trial terminated at button press or after
1 s if the participant successfully inhibited the response. The
time between the go and stop signals, the stop signal delay
(SSD), started at 200 ms and varied from one stop trial to
the next according to a staircase procedure, increasing and
decreasing by 67 ms each after a successful and failed stop
trial (Levitt, 1971). With the staircase procedure we anticipated
that participants would succeed in withholding the response
half of the time. Participants were trained briefly on the task
before imaging to ensure that they understood the task. They
were instructed to quickly press button when they saw the go
signal while keeping in mind that a stop signal might come
up occasionally. In the scanner, they completed four 10-min
sessions of the task, with approximately 100 trials in each
session.

Behavioral Data Analysis
A critical SSD was computed for each participant that represents
the time delay required for the participant to successfully
withhold the response in half of the stop trials, following a
maximum likelihood procedure (Wetheril et al., 1966). Briefly,
SSDs across trials were grouped into runs, with each run being
defined as a monotonically increasing or decreasing series. We
derived a mid-run estimate by taking the median of every
second run. The critical SSD was computed by taking the
mean of all mid-run SSDs. It was reported that, except for
experiments with a small number of trials (<30), the mid-run
measure is close to the maximum likelihood estimate of X50
(50% positive response, Wetheril et al., 1966). The stop signal
reaction time (SSRT) was computed for each participant by
subtracting the critical SSD from the median goRT (Logan et al.,
1984).

A sequential effect was quantified by Pearson correlation
between P(Stop)—the Bayesian estimate of the probability of a
stop signal—and RT of go trials for individual subjects. We used
a dynamic Bayesian model (Yu and Cohen, 2008) to estimate
the prior belief of an impending stop signal on each trial, based
on prior stimulus history. In the model subjects believe that
stop signal frequency rk on trial k has probability α of being
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the same as rk − 1, and probability (1-α) of being re-sampled
from a prior distribution π(rk). Subjects also believe that trial k
has probability rk of being a stop trial, and probability 1 − rk
of being a go trial. Based on these generative assumptions,
subjects use Bayesian inference to update their prior belief of
seeing a stop signal on trial k, p(rk|sk − 1) based on the prior
on the last trial p(rk − 1|sk − 1) and last trial’s true category
(sk = 1 for stop trial, sk = 0 for go trial), where sk = {s1,
. . ., sk} is short-hand for trials 1 through k. Specifically, given
that the posterior distribution was p(rk − 1|sk − 1) on trial k
− 1, the prior distribution of stop signal in trial k is given
by:

p(rk|sk − 1) = αp(rk − 1|sk − 1)+ (1− α)π(rk),

where the prior distribution π(rk) is assumed to be a beta
distribution with prior mean pm, and shape parameter scale, and
the posterior distribution is computed from the prior distribution
and the outcome according to the Bayes’ rule:

p(rk|sk) ∝ P(sk|rk)p(rk|sk − 1)

The Bayesian estimate of the probability of trial k being stop
trial, which we colloquially call P(Stop) in this article, given the
predictive distribution p(rk|sk − 1) is expressed by:

P(sk = 1|sk − 1) =

∫
P(sk = 1|rk)P(rk|sk − 1)drk

=

∫
rkP(rk|sk − 1)drk =< rk|sk − 1 >

In other words, the probability P(Stop) of a trial k being
a stop trial is simply the mean of the predictive distribution
p(rk|sk − 1). The assumption that the predictive distribution is
a mixture of the previous posterior distributions and a generic
prior distribution is essentially equivalent to using a causal,
exponential, linear filter to estimate the current rate of stop trials
(Yu et al., 2009). In summary, for each subject, given a sequence
of observed go/stop trials, and the threemodel parameters {α, pm,
scale}, we estimated P(Stop) for each trial.

Imaging Protocol and Spatial
Preprocessing of Brain Images
Conventional T1-weighted spin-echo sagittal anatomical images
were acquired for slice localization using a 3T scanner (Siemens
Trio). Anatomical images of the functional slice locations were
obtained with spin-echo imaging in the axial plan parallel to
the Anterior Commissure-Posterior Commissure (AC-PC) line
with TR = 300 ms, TE = 2.5 ms, bandwidth = 300 Hz/pixel, flip
angle = 60◦, field of view = 220 × 220 mm, matrix = 256 × 256,
32 slices with slice thickness = 4 mm and no gap. A single
high-resolution T1-weighted gradient-echo scan was obtained.
One hundred and seventy-six slices parallel to the AC-PC line
covering the whole brain were acquired with TR = 2530 ms,
TE = 3.66 ms, bandwidth = 181 Hz/pixel, flip angle = 7◦,
field of view = 256 × 256 mm, matrix = 256 × 256,
1 mm3 isotropic voxels. Functional blood oxygenation level
dependent (BOLD) signals were then acquired with a single-shot

gradient-echo echo-planar imaging (EPI) sequence. Thirty-two
axial slices parallel to the AC-PC line covering the whole
brain were acquired with TR = 2000 ms, TE = 25 ms,
bandwidth = 2004 Hz/pixel, flip angle = 85◦, field of
view = 220 × 220 mm, matrix = 64 × 64, 32 slices with slice
thickness = 4 mm and no gap. There were 300 images in each
session for a total of four sessions.

Data were analyzed with Statistical Parametric Mapping
(SPM12, Wellcome Department of Imaging Neuroscience,
University College London, UK). In the pre-processing of
BOLD data, images of each participant were realigned (motion-
corrected) and corrected for slice timing. A mean functional
image volume was constructed for each participant for each
run from the realigned image volumes. These mean images
were co-registered with the high resolution structural image and
then segmented for normalization to an Montreal Neurological
Institute (MNI) EPI template with affine registration followed
by nonlinear transformation (Friston et al., 1994; Ashburner and
Friston, 1999). Finally, images were smoothed with a Gaussian
kernel of 8 mm at Full Width at Half Maximum. Images from
the first five TRs at the beginning of each trial were discarded
to enable the signal to achieve steady-state equilibrium between
radio frequency pulsing and relaxation.

General Linear Models of Imaging Data
Four trial outcomes—go success (GS), go error (GE), SS and
stop error (SE)—were distinguished for general linear models
(GLMs) of imaging data. In the first GLM, the F model,
we modeled BOLD signals by convolving trial onsets with
a canonical hemodynamic response function (HRF) and the
temporal derivative of the canonical HRF (Friston et al., 1994).
Realignment parameters in all six dimensions were entered in
the model. We included the following variables as parametric
modulators (PMs) in two separate F models: P(Stop) of GS trials,
FP of GS trials, SSD of SS trials, P(Stop) of SS trials, FP of SS trials,
SSD of SE trials, P(Stop) of SE trials, FP of SE trials. Inclusion
of these variables as PM improves model fit (Büchel et al., 1996,
1998; Cohen, 1997; Hu et al., 2015b). In the F1 model P(Stop)
preceded FP and in the F2 model FP preceded P(Stop) in the
order of PM’s. Because SPM orthogonalizes subsequent PM with
respect to antecedent PM, F1 and F2 model each allowed us to
identify independent regional activities of motor preparation and
stop signal anticipation. That is, FP activities were identified from
the F1 model with P(stop) activities accounted for, and P(Stop)
activities were identified from the F2 model with FP activities
accounted for. A contrast of ‘‘+1’’ on the PM FP and P(Stop)
each identified activities of motor preparation and stop signal
anticipation from the F1 and F2 model, respectively. In actuality,
as none of the 116 subjects showed a significant correlation
between P(Stop) and FP (all p’s > 0.05), the order of these
PM’s did not influence the results. Serial autocorrelation of the
time series was corrected by a first degree autoregressive or
AR(1) model (Friston et al., 2000; Della-Maggiore et al., 2002).
The data were high-pass filtered (1/128 Hz cutoff) to remove
low-frequency signal drifts.

In the second GLM, the G model, we modeled the BOLD
signals by convolving go signal onsets of each trial with a
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FIGURE 1 | Sequential effect and fore-period (FP) effect. (A) Correlation between P(Stop) and go trial reaction time (goRT) across all go success (GS) trials in SEQ
and nSEQ. (B) Correlation between FP and goRT across all GS trials in SEQ and nSEQ. Gray lines are the fitted regressions for individual participants; black solid
and dashed lines are the mean and 95% confidence interval of the regressions.

canonical HRF and its temporal derivative. The goal is to
identify regional activations related to RT while controlling
for absolute or unsigned stimulus prediction error (UPE):
|stimulus—P(Stop)|, where stimulus is 1 for a stop and 0 for a go
trial (Ide et al., 2013). Thus, we included the following variables
as PMs: |0–P(Stop)| or P(Stop) of GS trials, RT of GS trials, SSD
of SS trials, |1–P(Stop) | of SS trials, SSD of SE trials, |1–P(Stop)|
of SE trials, and RT of SE trials, in that order. A contrast of ‘‘+1’’
and ‘‘–1’’ on go trial RT each identified activities related to goRT
slowing and goRT speeding.

In group level analyses, we conducted a two-sample t-test
to compare SEQ and nSEQ for each of the four parametric
contrasts: P(Stop), FP, goRT slowing and goRT speeding. For
reach of these contrasts we also performed a one-sample t test
to examine whole-brain activations across all participants. To
control for type I errors, we evaluated all imaging results at
p < 0.05, corrected for family wise error (FWE) of multiple

comparisons on the basis of Gaussian random field theory, as
implemented in SPM.

Granger Causality Analysis (GCA)
As stop signal anticipation and motor preparation take place
prior to motor response, we posited that neural activities
associated with stop signal anticipation and motor preparation
Granger causes goRT related activities. It is also likely that
activities between stop signal anticipation andmotor preparation
as well as activities between goRT slowing and speeding may
be causally related. To test these hypotheses, we employed a
multivariate Granger causality analysis (GCA) to examine the
direction of influence between the activities of ROIs as identified
from each contrast (Granger, 1969; Stilla et al., 2007; Deshpande
et al., 2008, 2009; Duann et al., 2009; Ide and Li, 2011).

The multivariate GCA was performed for individual
participants. For each subject and each ROI, a summary time
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series was computed by averaging across voxels inside the ROI.
These average time series were concatenated across sessions,
after detrending and normalization (Ding et al., 2000). The
pre-processed time series were used for multivariate GCA
modeling. For model selection, we used Akaike Information
Criterion (AIC), which imposes a complexity penalty on the
number of parameters and avoids over-fitting of the data
(Akaike, 1974). Multivariate GCA required that each ROI time
series was covariance stationary, which we confirmed with the
Augmented Dickey Fuller (ADF) test (Hamilton, 1994). The
ADF test verified that there was no unit root in the modeled time
series. The residuals were used to compute the Granger causality
measures (F values) of each possible connection between ROIs.
Connectivity strength was quantified by using the variance of the
residual other than the sum of square of the variable (Geweke,
1982; Goebel et al., 2003), which we referred to as the FGeweke. As
multivariate GCA often involves highly interdependent residuals
(Deshpande et al., 2009), we used permutation resampling
(Hesterberg et al., 2005; Seth, 2010) to obtain an empirical null
distribution of no causality, as suggested by Roebroeck et al.
(2005), in order to estimate the Fcritical, and assess the statistical

significance of Granger causality. With resampling, we produced
surrogate data by randomly generating time series with the
same mean, variance, autocorrelation function, and spectrum
of the original data (Theiler et al., 1992), as implemented in
previous EEG (Kamínski et al., 2001; Kuś et al., 2004) and fMRI
(Deshpande et al., 2009) studies. Following previous group
analysis procedures (Sato et al., 2009; Ide and Li, 2011), we
assessed the statistical significance by computing mean FGeweke
of the group for comparison with Fcritical, as estimated from
permutation resampling (Seth, 2010). Multiple comparisons
were corrected for false discovery rate (FDR; Genovese et al.,
2002).

RESULTS

Behavioral Performance
Of the 116 subjects, 81 showed a significant sequential effect
(p < 0.05; the SEQ group) and 35 did not show a significant
sequential effect (p > 0.05; the nSEQ group). Figure 1A shows
the results of linear regression between P(Stop) and goRT for

TABLE 1 | Stop signal task (SST) performance.

SEQ (n = 81) nSEQ (n = 35) T-Value P-Value

GR (%) 98.6 ± 2.7 98.2 ± 2.3 t = 0.6758 0.5006
SS (%) 51.3 ± 2.9 51.7 ± 3.3 t = −0.5697 0.5700
Median goRT (ms) 616 ± 123 675 ± 132 t = −2.3209 0.0221∗

SSRT (ms) 207 ± 36 241 ± 48 t = −4.2106 0.00005∗

SERT (ms) 537 ± 111 584 ± 113 t = −2.0739 0.0403∗

FP effect (Pearson r) −0.16 ± 0.10 −0.16 ± 0.13 t = 0.1165 0.9074

Note: SEQ/nSEQ, participants who demonstrate/do not demonstrate a significant sequential effect; GR, go response; SS, stop success; goRT, go trial reaction time;
SSRT, stop signal reaction time; SERT, stop error reaction time; FP effect, linear correlation of goRT and fore-period; ∗p < 0.05, independent sample t test.

TABLE 2 | Regional activations associated with stop signal anticipation, motor preparation, goRT slowing and goRT speeding.

Contrast Region Cluster size (voxels) Voxel P-value Peak voxel Z-value MNI coordinate (mm)

X Y Z

Stop signal anticipation R OFG 69 0.000 6.18 30 53 −8
R SMG 303 0.000 6.01 42 −52 52
L cerebellum 26 0.002 5.54 −27 −67 −32
L SMG 124 0.000 5.31 −45 −43 43
R pre-SMA 56 0.000 5.20 6 26 58

Fore-period motor preparation L OFG 151 0.000 7.55 −48 35 −11
L AG 102 0.000 7.52 −45 −70 34
L SFG/vmPFC 490 0.000 6.53 3 38 −14
L MTG 17 0.003 5.57 −60 −13 −20
R AG 16 0.003 5.40 51 −64 34

goRT slowing R insula 55 0.000 5.89 36 20 4
L insula 21 0.002 5.55 −33 20 7

goRT speeding R AG 65 0.000 Inf 48 −64 40
L AG 162 0.000 Inf −45 −64 40
L SFG/MFG 316 0.000 Inf −15 38 40
L caudate head 52 0.000 7.74 −15 17 4
L/R PCgG 264 0.000 7.52 −3 −40 37
vmPFC 270 0.000 7.47 0 56 1
L lateral OFG 17 0.000 7.26 −36 35 −14
R SFG 48 0.000 7.17 18 41 40

Note: L, left; R, right. OFG, orbitofrontal gyrus; SMG, supramarginal gyrus; SMA, supplementary motor area; AG, angular gyrus; SFG, superior frontal gyrus; vmPFC,
ventromedial prefrontal cortex; MTG, middle temporal gyrus; MFG, middle frontal gyrus; PCgG, posterior cingulate gyrus.
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FIGURE 2 | Regional activations to (A) stop signal anticipation (red) and motor preparation (blue) and to (B) go trial RT slowing (red) and speeding (blue). Clusters
overlapped for motor preparation and goRT speeding. With exclusive masking, voxels distinct to motor preparation and goRT speeding are highlighted in light blue.
Clusters are overlaid on a structural template in axial sections (from z = −30 to 72). P < 0.05, family wise error (FWE) corrected.

individual subjects. By definition, subjects of the SEQ but not
nSEQ group showed a significant sequential effect. Figure 1B
shows that both SEQ and nSEQ demonstrated a significant FP
effect—a negative correlation between goRT and FP—and the
magnitude of FP effect was indistinguishable between the two
groups. The SEQ and nSEQ did not differ in go response or
SS rates. The SEQ group showed significantly shorter mean
goRT and SSRT than the nSEQ group. Table 1 summarizes the
performance measures from the SST.

Regional Activations to P(Stop), FP and go
Trial RT
We compared activations to P(Stop), FP, goRT slowing and goRT
speeding between SEQ and nSEQ with two-sample t-tests. The

results showed no significant differences even when examined at
a threshold of voxel p< 0.01, uncorrected. At p< 0.05, corrected
for FWE of multiple comparisons, one-sample t-test of the entire
cohort (SEQ and nSEQ combined) showed that anticipation of
the stop signal engaged activations of the anterior pre-SMA,
bilateral but predominantly right supramarginal gyrus (SMG),
right orbitofrontal gyrus (OFG) and left cerebellum. Motor
preparation was associated with activations in ventromedial
prefrontal cortex (vmPFC), left OFG, left superior frontal gyrus
(SFG), bilateral but predominantly left angular gyrus (AG) and
left middle temporal gyrus (MTG; Table 2; Figure 2A). Go
trial RT slowing was associated with activation of bilateral AI,
and go trial RT speeding was associated with activation of
the vmPFC, posterior cingulate cortex (PCgC), bilateral but
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FIGURE 3 | Box plots of beta weights, SEQ vs. nSEQ. (A) Stop signal anticipation: P(Stop); (B) motor preparation: FP; (C) go trial RT slowing; (D) go trial RT
speeding. SEQ and nSEQ were indistinguishable for all contrasts (p’s > 0.05).

predominantly left AG, left SFG and middle frontal gyrus
(MFG), left caudate head, and left lateral OFG (Table 2;
Figure 2B). Because there was spatial overlap between the
clusters responding to motor preparation and goRT speeding,
we constructed an additional set of ROIs for each of these
two contrasts by removing overlapping voxels (Figure 2). All
subsequent analyses on motor preparation and RT speeding
activities were performed on ROIs following exclusive masking.
Figure 3 shows the beta weight for all ROIs combined of
each contrast separately for SEQ and nSEQ. It is clear that
the two groups did not differ in regional response to P(Stop),
FP, goRT slowing or goRT speeding. Thus, SEQ an nSEQ
overall did not demonstrate differences in regional activations
to conflict anticipation, motor preparation or response time
adjustment.

Granger Causal Relationship Between
Activations to P(Stop), FP, goRT Slowing
and goRT Speeding
We used GCA to examine the directional connectivity between
brain regions responding specifically to stop signal anticipation,

motor preparation and RT modulation. We combined the
clusters as a single ROI for each of the four constructs and
evaluated the significance of each connection, i.e., Geweke test
(FGeweke > Fcritical), for SEQ (n = 81) and nSEQ (n = 35). In SEQ,
the results of the Geweke test showed significant connectivity for:
P(Stop)↔ FP; P(Stop)→ goRT slowing; and goRT slowing→
goRT speeding (Figure 4A). In nSEQ the results of the Geweke
test showed significant connectivity for: FP→ P(Stop); P(Stop)
→ goRT slowing; FP→ goRT speeding; and goRT speeding→
goRT slowing (Figure 4B).

We also considered the number of participants with a
significant connectivity in each group and employed one-tailed
Fisher’s exact test to directly compare SEQ and nSEQ for each
connectivity. The results showed a significant difference for FP
→ goRT speeding (30/81 of SEQ vs. 20/35 of nSEQ, p < 0.036).
The p value for P(Stop) → FP was 0.145 (38/81 of SEQ vs.
12/35 of nSEQ). All other p values were>0.246.

DISCUSSION

There are several main findings. First, individuals who
demonstrated a sequential effect (SEQ) and those who did
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FIGURE 4 | Geweke test results of Granger causality analysis (GCA) of the time series of the stop signal anticipation, FP motor preparation, goRT speeding and
goRT slowing in (A) SEQ and (B) nSEQ. P(Stop) and FP activations shared reciprocal influence in SEQ but FP activities Granger caused P(Stop) activities
unidirectionally in nSEQ. Further, FP activities Granger caused goRT speeding activities in nSEQ but not SEQ. Numbers in parenthesis indicate the p value for that
connection, corrected for false discovery rate (FDR).

not (nSEQ) were indistinguishable in the magnitude of FP
effect. Both showed a significant negative correlation between
FP and go trial RT and the magnitude of correlation did
not differ between the two groups. Second, the two groups
did not differ in regional activations to P(Stop), FP, goRT
slowing or goRT speeding, even when the results of two-sample
t tests were examined at a very liberal threshold, suggesting
that P(Stop) is represented in both SEQ and nSEQ, with
shared regional activities for proactive control. Third, Granger
causality analyses identified differences in the interactions
between ROIs in response to P(Stop), FP, goRT slowing and
goRT speeding. Specifically, both SEQ and nSEQ demonstrated
a Granger causal influence of P(Stop) activities on goRT
slowing activities. However, in contrast to SEQ where there
are bidirectional influences between P(Stop) and FP activities,
the Granger causality is significant only from FP to P(Stop)
activities—suggesting a predominance of motor preparation—in
the nSEQ. Further, nSEQ but not SEQ demonstrated a
significant directional influence of FP on goRT speeding
activities, and SEQ and nSEQ showed opposite directions of
influence between activities of goRT slowing and speeding:
slowing activities Granger caused speeding activities in SEQ
and vice versa in nSEQ. Together, these findings suggest that
although both SEQ and nSEQ demonstrate a significant and
indistinguishable FP effect and similar regional activations to
conflict anticipation and motor preparation, motor preparation
in nSEQ influences conflict anticipation and goRT speeding
to such an extent, that it significantly diminishes the strategic
adjustment of response time to fluctuating P(stop) and thus
the sequential effect. Although GCA has its limitation in
addressing causal relationship between regional time series
(Friston, 2009) and cannot elucidate causal interaction in an

event-related manner, it has been widely used to support
directional functional connectivity between regional activities
(Roebroeck et al., 2005; Seth, 2010). Here, along with our
earlier work (Duann et al., 2009; Hu et al., 2015a), we were
able to employ GCA to highlight the directional interactions
between regional processes of motor preparation and proactive
control.

To our knowledge, these are the first set of findings to
characterize how motor preparation interacts with conflict
anticipation to determine motor response in the SST. Conflict
anticipation involves predominantly right-hemispheric brain
regions, including the pre-SMA and SMG (Hu et al., 2016).
In contrast, motor preparation engages predominantly
left-hemispheric areas including the caudate head, AG and
SFG as well as vmPFC and PCgC, core areas of the default
model network (DMN). The pre-SMA is widely implicated
in self control (Jaffard et al., 2008; Rushworth, 2008; Sharp
et al., 2010; Cieslik et al., 2015; Hampshire and Sharp, 2015),
and unlike the more posterior medial frontal structures that
project to the lentiform nucleus, the pre-SMA projects to the
caudate head (Zhang et al., 2012), in support of a hierarchical
structure where anterior and posterior medial prefrontal
regions each respond to task set and response control (Korb
et al., 2017). As pre-SMA responds to conflict anticipation
and the left caudate nucleus responds to motor preparation,
it is likely that the right-hemispheric pre-SMA interacts with
the left caudate head via its excitatory inputs to the right
caudate head, which in turn inhibits the left caudate head
through trans-hemispheric processes or subcortical mechanisms
involving the pallidum (Watanabe et al., 2015). In another
study, anodal transcranial direct current stimulation of the
pre-SMA improved SSRT along with changes in pre-SMA
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connectivity with the vmPFC during stop trials (Yu et al.,
2015). In contrast, ‘‘lesioning’’ by repetitive transcranial
magnetic stimulation of the left IPC, which responds to
motor preparation, reduced risk taking—a behavioral analog
of speeded response—in a gambling task (Coutlee et al.,
2016). Together, these findings support an interaction
between the conflict anticipation and motor preparation
circuits.

The left lateral orbitofrontal cortex (OFC) responds to
motor preparation. The OFC comprises multiple subregions
each implicated in distinct roles to support motivated behavior
(Dixon et al., 2017). The left OFC increased activation to reward
decision making in association with a behavioral approach
personality trait (Yamamoto et al., 2017) and to loss trials when
individuals know they are more likely to lose than not (Dong
et al., 2013). Anatomically the lateral OFC is heavily connected
with the somatomotor and premotor structures as well as the
amygdala (Cavada et al., 2000). These studies suggest that left
OFC activation may reflect the affective component of motor
urgency accompanying the premotor processes. The left SFG
also responds to motor preparation and goRT speeding. Patients
with left SFG lesions exhibited a working memory deficit and
the impairment increased with task complexity, most markedly
for the spatial domain (du Boisgueheneuc et al., 2006). In a
semantic task, the left SFG increased activation to a longer
‘‘dwell’’ time before response (Scott et al., 2003). These findings
support a role of the left SFG in memory related processing
during the FP when participants anticipate ending the wait, and
contrast with the role of the right-hemispheric SFG in restraining
a motor response (Dambacher et al., 2014; Hu et al., 2016).
Also of note is the activation of the vmPFC and PCgC—core
structures of the DMN—during response speeding. The DMN
is commonly ‘‘deactivated’’ when participants are engaged in
external task challenges. Thus, responding ‘‘as usual’’ to the
frequent go signal may represent a default behavioral state
and the DMN deactivates when there is an impending need
to stop.

The current fMRI study is also the first to characterize
the neural correlates of FP effects in the SST. A recent work
employed a cued reaction time task to examine the neural
processes of temporal expectation, where the target appeared
after one of four intervals (FPs) that was either predictable
(temporal condition) or variable (neutral condition; Coull
et al., 2016). As expected, RTs were faster in temporal vs.
neutral condition, indicating the behavioral benefit of temporal
predictability. RTs were also faster as a function of FP in the
neutral, but not temporal, condition. The IPC, in the area
of the SMG, showed greater activation in the temporal vs.
neutral condition and along with increasing FP in the neutral
but not temporal condition. This finding supported the role
of the IPC in temporal expectation and response control.
However, it appears at odds with the current findings as we
showed SMG response to conflict anticipation rather than motor
preparation. Importantly, participants were required solely to
execute a speedy response (RT ∼300 ms vs. ∼650 ms here)
in the temporal expectation task. It is possible that, involved
in flexible sensorimotor mapping (Randerath et al., 2017), the

SMG is versatile in response to task requirements and engaged
to execute either a speedy or constrained action as the task
requires. It is also notable that the SMG and AG seem to be
differentially involved in response slowing and speeding. The
SMG and AG exhibit distinct functional connectivity with the
SMG more heavily connected with the ventrolateral prefrontal
cortex—a region involved in post-error slowing in the SST (Ide
and Li, 2011)—and the AG more connected with the DMN
(Daselaar et al., 2013; Zhang and Li, 2014). More work is needed
to investigate whether the two inferior parietal structures are
involved in opposing psychological processes beyond motor
response control and whether these functions may be lateralized
hemispherically.

An intriguing finding concerns the SSRT, which is
significantly shorter in the SEQ, suggesting more efficient
response inhibition, than the nSEQ. This appears to make
sense on the surface, as motor preparation may not only
compromise proactive control but also impede the stopping
process and prolong SSRT (Castro-Meneses et al., 2015).
In support, the pre-SMA not only responds to conflict
anticipation but also represents a critical node in the cortical-
subcortical circuits to support response inhibition (Duann
et al., 2009). On the other hand, as described earlier, tracking
the stop trial, in contrast to assuming a constant frequency
of stop signal, establishes the sequential effect but should
not bear on other aspects of stop signal performance. The
relationship of sequential effect with the SSRT thus does
not seem amenable to simple mechanistic explanation,
and motivational factors may facilitate response inhibition
in SEQ.

To summarize, we characterized how motor preparation
interact with conflict anticipation to determine motor response
in the SST. Conflict anticipation involves a network of
predominantly right-hemispheric regions, including the
pre-SMA and SMG, whereas motor preparation engages
predominantly left-hemispheric areas including the caudate
head, AG and SFG as well as core structures of the default
mode network. These regional activities do not distinguish
individuals who demonstrate a sequential effect and those who
do not. That is, conflict anticipation or P(Stop) is represented
neutrally in nSEQ, similar to SEQ. However, nSEQ do not
strategically optimize their decision policy given the prior
information encapsulated in P(Stop). A multitude of factors,
including motivation, could explain why nSEQ do not adjust
response time according to P(Stop). Here, we showed that
functional connectivity of motor preparation predominates
and may disrupt proactive control in the latter individuals.
The findings suggest the complexity of SST performance
and provide evidence to support an interaction between the
go and stop processes (Boucher et al., 2007; Yu and Cohen,
2008).
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