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Objective: The interaction between immunity and hypoxia in tumor

microenvironment (TME) has clinical significance, and this study aims to

explore immune-hypoxia related biomarkers in LUAD to guide accurate

prognosis of patients.

Methods: The LUAD gene expression dataset was downloaded from GEO and

TCGA databases. The immune-related genes and hypoxia-related genes were

acquired from ImmPort and MSigDB databases, respectively. Genes related to

immune and hypoxia in LUAD were obtained by intersection. The significantly

prognostic genes in LUADwere obtained by LASSO andCox regression analyses

and a prognostic model was constructed. Kaplan-Meier and receiver operating

characteristic curves were generated to evaluate and validate model reliability.

Single-sample gene set enrichment analysis (ssGSEA) and gene set variation

analysis (GSVA) were employed to analyze immune cell infiltration and pathway

differences between high- and low-risk groups. Nomogram and calibration

curves for survival curve and clinical features were drawn to measure

prognostic value of the model.

Results: The prognosis model of LUAD was constructed based on seven

immune-hypoxia related genes: S100P, S100A16, PGK1, TNFSF11, ARRB1,

NCR3, and TSLP. Survival analysis revealed a poor prognosis in high-risk

group. ssGSEA result suggested that activities of immune cells in high-risk

group was remarkably lower than in low-risk group, and GSVA result showed

that immune-related pathway was notably activated in low-risk group.

Conclusion: Immune-hypoxia related genes were found to be prognostic

biomarkers for LUAD patients, based on which a 7-immune-hypoxia related

gene-signature was constructed. This model can assess immune status of

LUAD patients, and provide clinical reference for individualized prognosis,

treatment and follow-up of LUAD patients.
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Introduction

Lung cancer is the most frequent fatal disease. According to

statistics, 2.09 million new diagnoses and 1.76 million deaths

occurred in 2020, and morbidity and mortality are on the rise

(Bade and Dela Cruz, 2020). As a histology of non-small cell lung

cancer (NSCLC), lung adenocarcinoma (LUAD) with high

morbidity and mortality is featured by highly invasive and

disruptive growth characteristics (Li et al., 2014). Occurrence,

development, recurrence, and patient’s prognosis of tumors are

associated with pathological type, clinical stage and tumor gene

expression (Müller et al., 2016). With the constant development

of biotechnology and the rapid development of precision

medicine, LUAD-targeted drug research and treatment

methods are becoming increasingly mature. Biomarkers

identified include EGFR, TP53, AKT1, KRAS and PTEN

(Bean et al., 2007; Bleeker et al., 2008; Jin et al., 2010).

TP53 mutation is a prevalent mutated gene in LUAD patients

and attenuates the immune response of early LUAD patients

(Zhu et al., 2021). It is a prognostic biomarker for LUAD patients

(Sun et al., 2020). Additionally, phosphorylated AKT1 and

MAPK3/1 can co-activate RELA, and they can also activate

NF-κB through miR-3613-5p, thus modulating LUAD cell

proliferation (He et al., 2020). Currently, these biomarkers

have been applied in surgery, targeted therapy, radiotherapy,

immunotherapy and chemotherapy. Although the therapeutic

effect is evident, only a few patients can benefit from it. In

addition, due to local recurrence and remote metastasis, LUAD

patients have a 5-year survival rate of 4%–17% (Bade and Dela

Cruz, 2020). Thus, to further explore prognostic biomarkers

involved in the progression of LUAD is of great significance.

The occurrence and progression of tumor is

accompanied by hypoxia, which is one of the markers of

TME, and has close relation with the excessive growth, distal

metastasis, recurrence and drug resistance of many solid

tumors (Rey et al., 2017). Current studies believe that tumor

cells under hypoxia can increase expression of hypoxia

inducible factor-1 (HIF-1), while overexpressed HIF can

be a transcription regulatory factor on target genes. Under

the regulation of the transcription level of target genes, many

biological processes, including tumor angiogenesis,

autophagy, apoptosis, immune regulation, energy

metabolism and pH regulation, are affected, which

promotes tumor cells to adapt to the hypoxia

environment, so that the continuous survival, proliferation

and invasion of tumor cells are achieved (Weidemann and

Johnson, 2008; Majmundar et al., 2010; Semenza, 2010).

Meanwhile, the connection between tumor hypoxia

environment and tumor immunity is very close. It has

been documented that T cells exhibit immune dysfunction

in anoxic microenvironment (Cubillos-Zapata et al., 2017).

Specifically, tumors in anoxic environment can induce the

expression of CCL28 to recruit a large number of Tregs, thus

promoting tumor angiogenesis and tolerance (Facciabene

et al., 2011). It is noteworthy that tumor-associated

macrophages (TAM) are important components of

hypoxic TME, and TAM enhances its inhibitory effect on

T cells by expressing HIF-1α (Doedens et al., 2010).

Currently, clinical trials have demonstrated that targeting

HIF-1α can enhance the viability of immune cells (Sun et al.,

2001). These studies suggest that targeting hypoxia pathway

can improve tumor immunotherapy, and targeted detection

of hypoxia may present patients the benefit of

immunotherapy. In conclusion, these findings highlight

potential of hypoxia as a prognostic marker for LUAD,

and the identification of LUAD prognostic markers from

the perspective of hypoxic TME is an important entry point.

In this study, on the basis of gene expression profile of LUAD

patients in TCGA database, seven prognostic markers of

immune-hypoxia related genes were identified, and a

prognostic model was established. TME immune cell

infiltration status of patients with varying risk ratings was

evaluated to further elucidate the influence of hypoxia

environment and immune infiltration on prognoses of LUAD

patients, improve understanding of LUAD hypoxic TME, and lay

scientific basis for the subsequent study on tumorigenesis,

development of LUAD and new targeted therapy.

Materials and methods

Data acquisition

The mRNA expression dataset TCGA-LUAD (normal: 59,

tumor: 535), as well as the corresponding clinical information

data, were accessed from TCGA database (https://portal.gdc.

cancer.gov/). GSE31210 (normal: 20, tumor: 226, platform

GPL570) and GSE72094 (tumor: 446, platform GPL15048)

were downloaded from GEO database (https://www.ncbi.nlm.

nih.gov/geo/). Samples with survival time less than 30 days in

each data set were excluded. Finally, 460, 226 and 386 cancer

samples in TCGA-LUAD, GSE31210 and GSE72094 were

reserved, respectively.

Identification of differentially expressed
hypoxia-immune related genes

1811 immune-related genes (Supplementary Table S1) and

200 hypoxia-related genes (Supplementary Table S2) were

acquired from ImmPort database (https://www.immport.org/

home) and Molecular Signature Database (MSigDB) (https://

www.gsea-msigdb.org/gsea/msigdb/), wherein 652 genes were

not identified in TCGA-LUAD, GSE31210 and

GSE72094 data sets. Therefore, survival analysis was

conducted after removing these 652 genes from the data set.
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Construction and assessment of a
hypoxia-immune related signature

Based on survival information of LUAD patients, PACKAGE

survival (Therneau and Grambsch, 2000) was applied to perform

univariate Cox regression analysis on immune-hypoxia related

genes in TCGA-LUAD and GSE72094 cohorts, and genes

significantly correlated with patient overall survival (OS) were

screened (p < 0.01). Intersection of survival-related genes in the

two cohorts was taken, and overlapping genes were used for further

analysis. Next, TCGA-LUADwas taken as the training set. By using

R package glmnet, LASSO Cox regression analysis was done on

genes that were remarkably associated with OS (Friedman et al.,

2010). Appropriate punishment parameter lambda was selected by

the ten-fold cross-validation selection method to remove genes with

strong correlation to reduce model complexity. Next, by using R

package survival, multivariate Cox regression analysis was

conducted on genes screened by LASSO Cox analysis to obtain

prognostic genes with immune-hypoxia feature in LUAD. The

prognostic risk assessment model of LUAD was built according

to risk coefficient and expression of feature genes.

Riskscore � ∑
n

i�1
exp i p βi

n is the number of selected genes, expi represents expression of

gene i, and βi indicates regression coefficient of gene i.

The riskscore of each cancer patient in TCGA-LUAD cohort

was calculated, and patients were assigned into high- or low-risk

groups by the median riskscore value. Survival analysis was

conducted, and R package survminer was employed to

generate survival curves of the two risk groups (https://cran.r-

project.org/web/packages/survminer/index.html). The relevant

survival state graph was plotted according to the riskcsore of

the samples. Subsequently, ROC curves for prognostic models

were plotted by R package survival ROC to predict patients’OS at

1, 3 and 5 years (https://rdrr.io/cran/survivalROC/man/

survivalROC.html). Independent data sets GSE31210 and

GSE72094 were used as validation sets to verify accuracy of

the model. Finally, effects of prognosis-related gene expression

on prognoses of LUAD patients were analyzed on the GEPIA

website (http://gepia.cancer-pku.cn/index.html).

Single-sample gene set enrichment
analysis

Twenty-nine kinds of immune cells and immune-related

functional gene sets were got from the published literature

(Jiang et al., 2021). We assessed immune cell infiltration level

in TME of LUAD patients based on these 29 immune data sets.

ssGSEA was on samples in two groups using R package GSVA

(Hänzelmann et al., 2013) to study immune cell infiltration level

of patients with different riskscores.

Gene set variation analysis

GSVA estimates pathway activation variation in sample

populations in an unsupervised manner, which is an excellent

molecular mapping method (Hänzelmann et al., 2013).

Enrichment scores for varying biological pathways in each

sample in TCGA-LUAD cohort were calculated using R

package GSVA. From MsigDB (http://software.broadinstitute.

org/gsea/msigdb/index.jsp), the “c2.cp.kegg.v7.0.symbols.gmt”

data were downloaded as reference. Through GSVA analysis,

the differential pathways between groups were obtained. The

differential enrichment pathways were further identified, with

the standard of FDR < 0.01 and p < 0.01.

Riskcore independence verification and
nomogram construction

Univariate and multivariate Cox regression analyses were

conducted using riskscore and clinical information (gender, age, T,

N, stage) to verify whether riskscore could be an independent

prognostic factor for LUAD. To predict 1-, 3-, and 5-year survival

rates of LUAD patients, a nomogram was constructed based on

riskscore and clinicopathological information using R package rms

(Huang et al., 2019). Finally, calibration curves were drawn to evaluate

consistency in predicted survival time and actual survival time of

patients.

Statistics

All statistical analyses were done on R software (3.3.1). The

results were not statistically significant if data did not follow a

normal distribution. Differences between groups were compared

by Kruskal–Wallis test orWilcoxon rank-sum test. Cox Regression

model was utilized to perform univariate and multivariate

analyses. Survival differences were assessed by logarithmic rank

test. When p value < 0.01, the data were statistically significant.

Results

Identification of immune-hypoxia-related
prognostic genes

1,328 immune-hypoxia-related genes that were overlapped in

TCGA-LUAD and GSE72094 were identified (Figure 1A). Based

on these genes as well as the survival information of TCGA-LUAD

and GSE72094 cohorts, univariate Cox regression analysis was

completed, and 137 and 204 genes associated with survival in the

two cohorts were obtained, respectively. By intersecting, 43 genes

related to patient survival were identified (Figure 1B). LASSO Cox

regression evaluated the regression coefficients of 43 genes
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FIGURE 1
Identification of immune-hypoxia related prognostic genes in LUAD. (A) Venn diagram of immune-hypoxia-related genes in TCGA-LUAD,
GSE72094 and IRGs/HRGs; (B) Venn diagram of OS-related genes in TCGA-LUAD and GSE72094; (C) Gene coefficient spectrum in LASSO Cox
regression analysis of 43 OS-related genes in TCGA-LUAD cohort; (D) Selection of optimum penalty parameter (λ) in LASSO Cox regression model;
(E) Forest plot of Cox regression analysis, *p < 0.05, **p < 0.01, ***p < 0.001.
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associated with survival, and a fitting curve was plotted

(Figure 1C). Then, an appropriate punishment parameter

lambda was selected according to 10-fold cross-validation.

Results showed that when lambda was −4, the model contained

17 survival-related genes, which had the lowest complexity

(Figure 1D). The above 17 genes underwent multivariate Cox

regression analysis, and complexity and excellence of different

models were evaluated according to Akaike Information Criterion

(AIC). The model showing the lowest AIC value was chosen as the

prognostic model, which contained seven immune-hypoxia-

related genes significantly related to prognoses of LUAD

patients. Among these genes, S100P, S100A16, PGK1 and

TNFSF11 were risk factors and ARRB1, NCR3 and TSLP were

protective factors (Figure 1E). As the risk coefficients and

expression of seven genes mentioned above, the immune-

hypoxia feature prognostic model of LUAD was riskscore =

0.065145908*coef (S100P) − 0.27104694*coef (ARRB1) +

0.104952032*coef (S100A16) + 0.152008632*coef (PGK1) +

0.088969471*coef (TNFSF11) − 0.174725763*coef (NCR3) −

0.056725904 *coef (TSLP). In conclusion, seven immune-

hypoxia-related genes in LUAD were identified by LASSO and

Cox repression analyses combined with patient survival

information.

Performance assessment of the
prognostic model

Following risk coefficient and expression of 7-gene signature,

the riskscore of each LUAD patient in TCGA-LUAD cohort was

FIGURE 2
Performance assessment of the 7-gene signature in TCGA-LUAD cohort (A) Riskscore arrangement of LUAD patients; (B) Riskscore chart of
patients in high- and low-risk groups; (C)Distribution of survival status of patients in two risk groups; (D) Survival curves of patients in two risk groups;
(E) ROC curves of 1-, 3- and 5-year survival of LUAD patients predicted by the 7-gene signature.
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computed, and riskscore distribution map was plotted. Patients

were assigned into either high- or low-risk groups (Figure 2A).

On the basis of survival time and riskscore of LUAD patients in

TCGA-LUAD cohort, we drew a scatter plot of patients’

survival time, and the results displayed a negative correlation

of survival time and riskscore (Figure 2B). Meanwhile, we

plotted the expression heat maps of the seven feature genes

in two risk groups. The heat maps showed that risk factors

S100P, S100A16, PGK1 and TNFSF11 expressed highly in high-

risk groups, while protective factors ARRB1, NCR3 and TSLP

expressed highly in low-risk group (Figure 2C). Survival curve

showed that prognoses of patients in low-risk group was

notably better than in high-risk group (Figure 2D).

Subsequently, ROC curves of 1-, 3- and 5-year survival

predicted by the 7-gene signature were plotted. AUC values

of 1-, 3- and 5- survival were 0.73, 0.696 and 0.649, respectively

(Figure 2E), suggesting that this prognostic model could

evaluate the prognoses of LUAD patients well. Overall, the

7-gene signature presented favorable predictive performance in

the training set TCGA-LUAD cohort.

To verify predictive potential of the 7-gene signature,

riskscore of patients in GSE72094 and GSE31210 data sets

was calculated, and samples were assigned into high- or low-

risk groups. Survival analysis results showed poor OS in high-risk

group (Figure 3A). ROC curves of 1-, 3- and 5-year survival

predicted by signature in GSE72094 and GSE31210 data sets were

FIGURE 3
Performance verification of 7-gene signature in GEO cohort. (A) Survival curves of high- and low-risk groups in GSE72094 and
GSE31210 cohort; (B) ROC curves of 1-, 3- and 5-year survival predicted by 7-gene signature in GSE72094 and GSE31210 cohorts.
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plotted. AUC values of 1-, 3- and 5-year survival in

GSE72094 were 0.723, 0.685 and 0.711, respectively, while in

GSE31210 were 0.774, 0.686 and 0.757 (Figure 3B). In addition,

to explore the influence of seven genes on prognoses of LUAD

patients, the survival curve was plotted. The results showed that

S100P, TNFSF11, ARRB1 and NCR3 directly affected the

prognoses of LUAD patients, while S100A16, PGK1 and TSLP

did not (Figures 4A–G). In conclusion, this 7-gene signature

based on immune-hypoxia related genes was able to accurately

predict prognoses of LUAD patients.

FIGURE 4
Influences of the seven genes on prognoses of LUAD patients. (A–G) Survival curves of patients with high and low expression of S100P (A),
ARRB1 (B), S100A16 (C), PGK1 (D), TNFSF11(E), NCR3 (F) and TSLP(G).
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Single-sample gene set enrichment
analysis of high- and low-risk groups

To evaluate the differences in TME immune cell

infiltration between high- and low-risk patients, ssGSEA

was done. Results exhibited that the expression of

immunoreactive gene sets, including APC_co_stimulation,

APC_co_inhibition, CCR, Check-point, HLA,

Cytolytic_activity, Parainflammation, Inflammation-

promoting, T_cell_co-stimulation, T_cell_co-inhibition,

Type_II_IFN_Response and Type_I_IFN_Response in

low-risk group were prominently higher than those in

high-risk group (Figure 5A), and the infiltration levels of

immune cells B_cells, aDCs, DCs, iDCs, CD8+_T_cells,

Mast_cells, Macrophages, Neutrophils, pDC, Tfh,

T_helper_cells, TIL, Th1_cells and Treg were higher

(Figure 5B). Based on the above findings, we noted that

the immune score of patients in high-risk group was

relatively low. Combined with the results of patient

survival analysis, we concluded that patients in high-risk

group may be immunosuppressed.

Gene set variation analysis results of high-
and low-risk groups

Based on enrichment score of each sample, we determined

differences in enrichment pathways between two risk groups

by GSVA (FDR < 0.01, p < 0.01). Heat map indicated that the

pathways related to metabolism and mismatch repair,

inluding KEGG_ONE_CARBON_POOL_BY_FOLATE, KEGG_

GLYOXYLATE_AND _DICARBOXYLATE_METABOLISM,

KEGG_PYRIMIDINE_METABOLISM, KEGG_HOMOLOGOUS_

RECOMBINATION, KEGG_MISMATCH_REPAIR and

KEGG_DNA_REPLICATION, were substantially activated in

high-risk group. In low-risk group, immune-related pathways,

including KEGG_INTESTINAL_IMMUNE _NETWORK_FOR_

IGA_PRODUCTION, KEGG_PRIMARY_IMMUNODEFICIENCY,

KEGG_ALLOGRAFT_REJECTION, KEGG_AUTOIMMUNE_

THYROID_DISEASE and KEGG_GRAFT_VERSUS_ HOST_

DISEASE, were significantly activated (Figure 6). Based on these

results, patients in high-risk group may be immunosuppressed.

Validation of riskscore independence

Finally, in TCGA-LUAD data set, univariate and

multivariate Cox regression analyses were conducted

combining clinical information (gender, age, T, N and

Stage) with riskscore. The forest plots suggested that

riskscore could be an independent factor of LUAD OS

(Figures 7A,B). Then we integrated the clinical

information to generate a nomogram to predict 1-, 3-, and

5-year OS of LUAD patients (Figure 7C). Finally, nomogram

calibration curves presented that the predicted and actual OS

values of LUAD patients were highly consistent (Figures

7D,E). In conclusion, the 7-gene signature could effectively

predict prognoses of LUAD patients.

Discussion

It has been confirmed that immune and hypoxic

microenvironment are key factors in tumorigenesis and

progression. Immunosuppression induced by hypoxia

microenvironment is the key factor of tumor

immunosuppression (Chen and Mellman, 2013; Kim and

Chen, 2016). Therefore, based on hypoxia and immune-

FIGURE 5
ssGSEA in high- and low-risk groups. (A) Immune-related
gene sets in high- and low-risk groups; (B) Boxplot of immune cell
differences in the two risk groups.
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related genes, we explored LUAD hypoxia-immune

microenvironment and established the LUAD prognosis

model with 7-immune-hypoxia related genes, which presented

favorable performance in predicting prognoses.

Herein, seven prognostic biomarkers were identified by Cox

regression analysis of immune-hypoxia related genes in LUAD.

There were 4 risk factors including S100P, S100A16, PGK1 and

TNFSF11, and three protective factors including ARRB1,

NCR3 and TSLP. S100P is highly expressed in many cancer

tissues, including triple negative breast cancer, and it is related to

adverse clinical outcomes such as lymphatic metastasis and

tumor growth (Kikuchi et al., 2019). This is consistent with

the prognostic trend of S100P on LUAD in this study. Li et al.

(2016) manifested that in gallbladder cancer, LASP-1 can arrest

cell cycle in G2/M phase by regulating S100P. S100A16 (Fang

et al., 2021) and ARRB1 (Zhang et al., 2017) are also related to cell

cycle, In this study, high- and low-risk groups differed in degree

of enrichment of cell cycle-related pathways. Tumor metastasis is

one of the reasons that make cancer uncurable. The occurrence of

EMT is accompanied by the occurrence of cancer and reduces

cell adhesion and enhances cell migration (Laubli and Borsig,

2019). TNFSF11, also known as RANKL, has been shown by

Mineon Park et al. (2021) to substantially improve PC3 cell

migration and invasion and enhance EMT after treatment of

PC3 cells with RANKL. Meanwhile, ARRB1, S100P, S100A16,

and TSLP that are in our established model are also associated

with cancer metastasis (Barooei et al., 2015; Zhu et al., 2016; Du

et al., 2020; Xu et al., 2020). This is in line with our study that

high- and low-risk groups differ in degree of enrichment of cell

adhesion-related signaling pathways in GSVA analysis.

NCR3 expression is an immune parameter of immune cells in

advanced NSCLC (Charrier et al., 2019). The RANK/RANKL

signaling in M2 macrophages regulates chemokines production

and promotes Treg lymphocytes proliferation, being conducive

to immunosuppressive environment (Fujimura et al., 2015). This

is also in congruous with our results that the high-and low-risk

groups differ in degree of enrichment with immune-related

diseases, indicating that the signature genes are related to

immunity. Hence, these signature genes are associated with

the malignant progression of LUAD and can be applied as

prognostic markers for LUAD. Hence, it is reasonable to use

the prognostic model constructed by these genes for predicting

prognostic risk of LUAD patients.

Immune system is the “scavenger” in the body. In cancer

patients, impaired cancer immune circulation leads to anti-

tumor immune deficiency, which is also the cause of cancer

occurrence and development (Starzer et al., 2022). We found that

ssGSEA scores of HLA, CD8+ T cells, T helper cells and B cells in

low-risk group were noticeably higher than in high-risk

group. These cytokines and immune cells play important roles

in tumor immunity. For example, HLA can present endogenous

antigens and activate CD8+ T cells. CD8+ T cells recognizes

cancer cells or infected cells, and also activate B cells to produce

different types of antibodies to exert the immune function (Rock

et al., 2016). T helper cells have rich classifications, in which Tfh

cells can help B cells produce antibodies by producing IL-21 and

FIGURE 6
GSVA in high- and low-risk groups.
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expressing Bcl6. Treg cells can modulate the immune

response to maintain immune cell homeostasis (Zhu and

Zhu, 2020). In the present study, patients in low-risk

group had substantially better prognoses than in the other

group, which may be caused by activation of CD8+ T cells in

TME by T helper cells and secretion of large amounts of

cytokines by B cells. The TME of patients in the low-risk

group was in immune activation.

In summary, seven Immune-hypoxia related genes were

screened out in LUAD by bioinformatics methods in this

study, and a LUAD prognostic assessment model was

constructed. Our results showed that this model had good

accuracy and universality, and were able to predict clinical

outcome of LUAD patients and provide treatment reference.

However, deficiencies still exist. Firstly, the data for constructing

and verifying the 7-gene model were all retrospective data from

FIGURE 7
Construction and evaluation of the nomogram. (A,B) Univariate and multivariate Cox regression analyses for riskscore and clinicopathological
features; (C) The nomogram constructed from riskscore and clinicopathological features was used to predict 1-, 3-, and 5-year survival of patients in
the training cohort; (D,E) The calibration curve was used to describe the consistency between nomogram prediction of 3- and 5-year survival and
actual survival.
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TCGA and GEO databases, which may lead to selection bias. In

that case, we need to include more prospective data in subsequent

studies to further confirm the clinical efficacy of the model and

establish our own database for prospective cohort testing, so as to

increase the reliability of prognostic signature genes. Secondly,

the specific mechanism of 7-gene in LUAD is still unclear, and

further experimental exploration is needed. Thirdly, few studies

have demonstrated the relationship between NCR3 and LUAD,

and thus, studies are warranted to clarify its mechanism. At the

same time, we analyzed differential pathways between two LUAD

risk groups, supplying a foundation for further exploring

interaction mechanism between LUAD hypoxia and immune

infiltration.
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