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Dynamics of hybrid switching DS-
I-A epidemic model
Songnan Liu1, Daqing Jiang1,2, Xiaojie Xu1, Tasawar Hayat2,3 & Bashir Ahmad2

In this paper, we investigate a stochastic hybrid switching DS-I-A epidemic model. The extinction and 
the prevalence of the disease are discussed, and so, the threshold is given. Furthermore, the sufficient 
conditions for the existence of positive recurrence of the solutions are established by stochastic 
Lyapunov functions. At last, some examples and simulations are provided to illustrate our results.

Human immunodeficiency virus (HIV) infection is characterized by three different phases, namely the primary 
infection, clinically asymptomatic stage (chronic infection), and acquired immunodeficiency syndrome (AIDS) 
or drug therapy. Basic developed techniques for measuring HIV RNA levels are allowing researchers to develop 
a picture of HIV infection patterns. HIV–1 RNA levels in plasma and serum become extremely high during 
the 1–2 weeks of acute primary infection, before there was a detectable immune response1,2. These levels are 
higher than at any other time during infection. Acute primary infection is followed by a chronic phase. During 
the chronic phase, HIV RNA levels drop several orders of magnitude and remain ‘nearly constant’ for years3–5, 
where ‘nearly constant’ includes fluctuations that are less than an order of magnitude up and down for about 90% 
of the cohort and less than a factor of 100 for the remaining4. Fluctuations may be caused by transient illnesses 
and vaccinations. Successful therapy causes a drop in the viral load to a new level that is maintained until viral 
resistance develops6. Viral levels differ by many orders of magnitude between individuals. Those people with high 
viral loads in the chronic phase tend to progress rapidly to AIDS, whereas those with very low loads tend to be 
slow or nonprogressors4,5,7,8. During late chronic infection, there is a small increase in HIV-1 RNA levels, at most 
tenfold, in many individuals3.

Mathematical modeling is useful for understanding the spread of HIV/AIDS. Thus various models have been 
developed to describe the spread of this disease according to its characteristics, see refs9–13. A simple homogene-
ous AIDS model has given by the following system of ODEs13. The model classifies the sexually active population 
into three classes that are: susceptibles, infectives and AIDS cases, with population numbers in each class denoted 
as functions of time by S(t), I(t) and A(t) respectively. Sexually mature susceptibles S(t), contain sexually mature 
people in the population who have had no contact with the virus. This compartment increases through matura-
tion of individuals into sexually mature age group and decreases by contagion going to the next compartment and 
natural death. Sexually mature infectives I(t), contains sexually mature individuals who are infected with the virus 
but have not yet developed AIDS symptoms. The number of people in this group would decrease through natural 
death and development to AIDS after a certain stay in this class (develop symptomatic AIDS). AIDS cases A(t), 
are those individuals who have developed fully symptomatic AIDS and exhibit specific clinical features and this 
class would decrease by natural death and AIDS-related death. The population is assumed to be uniform and 
homogeneously mixing. The total adult population and sexually interacting adult population are denoted by 
N(t) = S(t) + I(t). A recruitment-death demographic structure is assumed. Individuals enter the susceptible class 
at a constant rate μS0 > 0. The natural death rate is assumed to be proportional to the population number in each 
class, with rate constant μ > 0. The model assumes a constant rate γ > 0 of development to AIDS. In addition, 
there is an AIDS-related death in the AIDS class which is assumed to be proportional to the population number 
in that class, with rate constant δ > 0 which is the sum of natural mortality rate and mortality due to illness. In 
most epidemiological models, bilinear incidence rate is frequently used. The incidence implies that the contact 
number between susceptible individuals and infected individuals is proportional to susceptible individuals. But it 
is more realistic that the rate of infection depends on the transmission probability per contact of individuals and 
the proportion of individuals. Thus the model assumes standard incidence of the form βαS t I t

N t
( ) ( )
( )

 where β > 0 is the 
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probability of being infected from a new sexual partner, α > 0 is the is the susceptibility of susceptible individuals 
and βα > 0 becomes the average number of effective contacts of one infective individual per unit time:
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where the parameters μ, S0, α, γ and δ ∈ +. (1.1) assume a homogeneous susceptible population such that there 
is one group of susceptible individuals, the mean number of contacts, the mean transmission probability, and the 
mean duration of infection can be defined so that the reproductive number can be always given as the product of 
these three means. However genetic evidence now exists that individuals may be exhibiting differential suscepti-
bility to the infection. Host genetic factors play a major role in determining the susceptibility to infectious dis-
eases. Further studies are needed to determine the hosts differential susceptibility to various disease as well as its 
implications to public health. In ref.13, James M. Hyman and Jia Li, formulated compartmental differential suscep-
tibility (DS) susceptible-infective-AIDS (SIA) models by dividing the susceptible population into multiple sub-
groups according to the susceptibility of individuals in each group. They derived an explicit formula for the 
reproductive number of infection for each model. They further proved that the infection-free equilibrium and 
endemic equilibria of each model were globally asymptotically stable. In this paper, we consider a simple differ-
ential susceptibility (DS) model in which the infected population is homogeneous13:
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in which = ∑ +=N t S t I t( ) ( ) ( )k
n

k1 , = …S t i n( ) ( 1, 2, , )i  denote the n individuals susceptible to infection sub-
groups. Hence, the individuals in each group have homogeneous susceptibility, but the susceptibilities of individ-
uals from different groups are distinct. The susceptibles are distributed into n susceptible subgroups based on 
their inherent susceptibilities. This is done in such a way that the input flow into group Sk is μSk

0 (k = 1, 2, …, n); 
αk(k = 1, 2, …, n) the susceptibility of susceptible individuals in subgroup I and βα I t S t

N t
( ) ( )

( )
k k  the standard incidence 

ratio of susceptible subgroups Sk. Since the dynamics of group A has no effect on the disease transmission dynam-
ics, thus we only consider
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The threshold conditions can be calculated which determine whether an infectious disease will spread in suscep-
tible population when the disease is introduced into the crowed, according to research the disease free equilib-
rium …E S S S( , , , , 0)n0 1

0
2
0 0  of system (1.3) in ref.14.

And reproductive number obtained in ref.13
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If R0 < 1, E0 is local asymptotic stabile and disease extinct. When R0 > 1, then E0 is unstable and the disease will 
persistent existence (see ref.13). The effective contact rate of infected individual in subgroup Sk(k = 1, 2, …, n) is 
αkβ(k = 1, 2, …, n). So for initial time =S S( )i i

0 , the average effective contact rate of infected individual in sub-
group Sk(k = 1, 2, …, n) is β α∑

∑
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=
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S
k
n

k k
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. 
μ γ+

1  the average disease period of infected individuals. So R0 is basic repro-

ductive number.
It is well recognized fact that real life is full of randomness and stochasticity. Hence the epidemic models 

are always affected by the environmental noise (in cite refs15–22). In refs23–28, the stochastic models may be more 
convenient epidemic models in many situations29. Have previously used the technique of parameter perturbation 
to examine the effect of environmental stochasticity in a model of AIDS and condom use. They found that the 
introduction of stochastic noise changes the basic reproduction number of the disease and can stabilize an oth-
erwise unstable system. Thus in this paper, we first introduce white noise to consider the small perturbation in 
environment. To establish the stochastic differential equation (SDE) model, we naturally use the equation in the 
form of differential
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Here [t, t + Δt) is a small time interval and d⋅ for the small change. For example dSk(t) = Sk(t + dt) − Sk(t), 
1 ≤ k ≤ n and the change dSk(t) is described by (1.5). Consider the effective contact rate constant of infected 
individual βαk, 1 ≤ k ≤ n in the deterministic model. The total number of newly increased I in the small interval 
[t, t + dt) is
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Now suppose that some stochastic environment factors act simultaneously on each subgroups in the disease. In 
this case, βαk, 1 ≤ k ≤ n changes to a random variable βα∼k, 1 ≤ k ≤ n. More precisely

βα βα σ= + ≤ ≤ .
∼dt dt dB t k n( ) 1k k k k

Here dBk(t) = Bk(t + dt) − Bk(t) (k = 1, 2, …, n) is the increment of a standard Brownian motion. And Bk(t) (k = 1, 
2, …, n) are independent standard Brownian motions with Bk(0) = 0 (k = 1, 2, …, n) and σ > 0k

2  = …k n( 1, 2, , ) 
denote the intensities of the white noise. Thus the number of newly increasing I that each subgroups Sk, 1 ≤ k ≤ n 
infected in [t, t + dt] is normally distributed with mean βαkdt and variance σ dtk

2 , where k = 1, 2, …, n.
Therefore we replace βαkdt in equation (1.5) by βα βα σ= +

∼dt dt dB t( )k k k  to get
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Note that βαidt now denotes the mean of the stochastic number of Si infected in the infinitesimally small time 
interval [t, t + dt). Similarly, the first equation of (1.3) becomes another SDE. That is, the deterministic infectious 
diseases model (1.3) becomes the ˆIt o’s SDE
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Other parameters are the same as in system (1.3). Besides white noise, epidemic models may be disturbed by 
telegraph noise which makes population systems switch from one regime to another. Let us now take a further 
step by considering another type of environmental noise, namely, color noise, say telegraph noise (see refs30 
and31). The telegraph noise can be illustrated as a switching between two or more regimes of environment, which 
differs by factors such as nutrition or as rain falls32–35. For example, the growth rate for some fish in dry season will 
be much different from it in rainy season. Telegraph noise can also be illustrated as a switching between different 
environments, which differ by factors such as climatic characteristics or socio-cultural factors. The latter may 
cause the disease to spread faster or slower. Frequently, the switching among different environments is memory-
less and the waiting time for the next switch is exponentially distributed36. Therefore the regime switching can be 
modeled by a continuous time finite-state Markov chain (ξ(t))t≥0 with values in a finite state space 

= … L{1, 2, , } . In this paper, we consider the HIV disease spread between environmental regimes. Because 
the HIV epidemic model may be influenced by different social cultures, we also introduce the telegraph noise to 
consider HIV disease spread between different social cultures that is the large disturbance in environment. That 
is following stochastic DS-I-A model disturbed by white and telephone noises.
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The switching between these L regimes is governed by a Markov chain on the state space  = … L{1, 2, , }. The 
DS-I-A systems under regime switching can therefore be described by the following stochastic model (SDE):
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where ξ(t) is a continuous time Markov chain with values in finite state space  = … L{1, 2, , }, the parameters 
μ l( ), S l( )k

0 , σ l( )k , β l( ), α l( )k , γ l( ), = …k n1, 2, , , are all positive constants for each ∈l . This system is operated 
as follows: If ξ(1) = l1, the system obeys systems (1.7) with l = l1 till time τ1 when the Markov chain jumps to l2 
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from l1; the systems will then obey (1.7) with l = l2 from τ1 till τ2 when the Markov chain jumps to l3 from l2. The 
system will continue to switch as long as the Markov chain jumps. In other words, the SDE (1.6) can be regarded 
as (1.7) switching from one to another according to the law of the Markov Chain. Each of (1.7) ∈l  is hence 
called a subsystem of the SDE (1.6). We aim to investigate the positive recurrence and extinction. Since system 
(1.6) is perturbed by both white and telegraph noises, the existence of positive recurrence of the solutions is an 
important issue. However, to the best of our knowledge, there has been no result related this. In this paper, we 
attempt to do some work in this field to fill the gap. The theory we used is developed by Zhu and Yin ref.37. The key 
difficulty is how to construct a suitable Lyapunov function and a bounded domain. So one of the main aim of this 
paper is to establish sufficient conditions for the existence of positive recurrence of the solutions to system (1.6).

This paper is organized as follows. In Section 2, we present some preliminaries that will be used in our follow-
ing analysis. In Section 3, we show that there exists a unique global positive solution of system (1.8). In Section 4, 
we establish sufficient conditions for extinction of disease. The condition for the disease being persistent is given 
in Sections 5. In Section 6, we show the existence of positive recurrence.

Preliminaries
Throughout this paper, unless otherwise specified, let Ω ≥ P( , , { } , )t t 0   be a complete probability space with a 
filtration  ≥{ }t t 0 satisfying the usual conditions(i.e. it is right continuous and 0  contains all P-null sets). Denote
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In Eq. (2.1), we assume that f(0, t) = 0 and g(0, t) = 0 for all t ≥ t0. So x(t) ≡ 0 is a solution of Eq. (2.1), called the 
trivial solution or equilibrium position.

By the definition of stochastic differential, the equation (2.1) is equivalent to the following stochastic integral 
equation
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where δ > 0, γij ≥ 0 for any i ≠ j is the transition rate from i to j if i ≠ j while γ∑ == 0j
L

ij1 . In this paper, we assume 
γij > 0, for any i ≠ j. Assume further that Markov chain ξ(t) is irreducible and has a unique stationary distribution 
π = {π1, π2, …, πL} which can be determined by equation
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We assume that Brownian motion and Markov chain are independent.
Let (X(t), ξ(t)) be the diffusion process described by the following equation:
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Existence and Uniqueness of Positive Solution
In this section we first show that the solution of system (1.8) is positive and global. To get a unique global (i.e. no 
explosion in a finite time) solution for any initial value, the coefficients of the equation are required to satisfy the 
linear growth condition and the local lipschitz condition. However, the coefficients of system (1.8) do not satisfy 
the linear growth condition, as the item βα S t I t
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k k  is nonlinear. So the solution of system (1.8) may explode to 
infinity in a finite time. In this section, we show that the solution of system (1.8) is positive and global by using the 
Lyapunov analysis method.
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explosion time18. To show the solution is global, we only need to verify that τe = ∞ a.s. Let m0 ≥ 0 be sufficiently 
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n

k k
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1 . Define a C2-function  →+
+
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V S S S I l S S I I( , , , , , ) ( 1 ln ) ( 1 ln )n
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1

The non-negativity of this function can be see from − − ≥u u1 log 0, ∀ >u 0. Let m ≥ m0 and T > 0 be arbi-
trary then by It ô’s formula one obtains
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where M is a positive constant which is independent of S1, S2, …, Sn, I and t. The remainder of the proof follows 
that in ref.38.

Remark 3.1. From Theorem 3.1 there is a unique global solution … ∈ +
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of system (1.8), for any initial value … ∈ +
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is a positively invariant set of system (1.8).

Extinction
The other main concern in epidemiology is how we can regulate the disease dynamics so that the disease will be 
eradicated in a long term. In this section, we shall give a sharp result of the extinction of disease in the stochastic 
model (1.8).

Theorem 4.1. If following conditions satisfied:
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Proof. Making use of the It ô’s formula to ln I(t), one has
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Let = zS
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Case 1: We can obtain:
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where k = 1, 2, …, n.
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As ergodic properties of ξ(t), we can obtain:
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An application of the strong law of large numbers (in ref.18) we can obtain
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Taking the superior limit on both side of (4.4) and combining with (4.5), one arrives at
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, that is σ β α<l l l( ) ( ) ( )k k
2 , then f(zk) ≤ f(1), we obtain:



www.nature.com/scientificreports/

8ScieNtific REPOrTS | 7: 12332  | DOI:10.1038/s41598-017-11901-x

β α
σ

≤ −
.

f z l l l( ) ( ) ( ) ( )
2

, (4 6)k k
k
2

where ∀ = …k n1, 2, , , ∀ ∈l .

∑ ∑

∑

∑

β ξ α ξ μ ξ γ ξ
σ ξ

σ ξ

ξ σ ξ

≤ −





+ +





+

= +
.

= =

=

=

d d t t dt t t t dt

t S
N

dB t

R t dt t S
N

dB t

ln ( ( )) ( ( )) ( ( )) ( ( )) ( ( ))
2

( ( )) ( )

: ( ( )) ( ( )) ( )
(4 7)

k

n

k
k

n
k

k

n

k
k

k

k

n

k
k

k

1 1

2

1

1
1

As ergodic properties of ξ(t), we can obtain:
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An application of the strong law of large numbers (in ref.18) we can obtain Taking the superior limit on both side 
of (4.4) and combining with (4.5), one arrives at
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which implies that =→∞I tlim ( ) 0t  a.s. Thus the disease I(t) will tend to zero exponentially with probability one.
By system (1.8) and (1.2), it is easy to see that when =→∞I tlim ( ) 0t  a.s., then =→∞A tlim ( ) 0t  a.s. This com-

pletes the proof.

Remark 4.1 Sufficient criteria of extinction are established for the HIV infectious disease in the stochastic system. 
Condition (1) of Theorem 4.1 tells us if the noise is strong, then the disease will die out. Condition (2) of Theorem 
4.1 is to say if the noise is weak, then the disease also will die out under specific condition.

Persistence
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where k = 1, 2, …, n.

Proof.
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in which k = 1, 2, …, n.
Using It ô’s formula and Basic inequality ≥+ + abca b c

3
3  one can write
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By ck, ak, k = 1, 2, …, n, we obtain
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in which k = 1, 2, …, n.
As ergodic properties of ξ(t), we can obtain:
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An application of the strong law of large numbers (in ref.18) we can obtain
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Taking the superior limit on both side of (5.4) and combining with (5.5), (5.6) and (5.7) one arrives at
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Therefore, by the condition >R 1s
0 , we have assertion (5.2). This complete the proof of Theorem 5.1.
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Remark 5.1 Theorem 5.1 tells us if the the condition of Theorem 5.1 is satisfied, then the disease will proceed. The 
conditions for the persistence of HIV infectious disease in the stochastic system are sufficient but not necessary.

Positive Recurrence
In this section, we show the persistence of the disease in the population, but from another point of view. Precisely, 
we find a domain ⊂ Γ⁎D  in which the process (S1(t), S2(t), …, Sn(t), I(t)) is positive recurrent. Generally, the 
process Xt

x where X0 = x is recurrent with respect to D, if for any ∉x D,  τ < +∞ =( ) 1D , where τD is the hitting 
time of D for the process Xt

x, that is

τ = > ∈ .t X Dinf{ 0, }D t
x

The process Xt
x is said to be positive recurrent with respect to D if  τ < +∞( )D , for any ∉x D.

Theorem 6.1. Let (S1(t), S2(t), …, Sn(t), I(t), ξ(t)) be the solution of system (1.8) with initial value …S S( (0), (0), ,1 2
ξ ∈ Γ ×⁎S I(0), (0), (0))n . Assume that >R 1s

0  (defined by Section 4), then (S1(t), S2(t), …, Sn(t), I(t), ξ(t)) is 
positive recurrent with respect to the domain ×D , where
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in which ε1,ε2,ε3 are sufficiently small constants.
Proof. Since the coefficients of (1.8) are constants, it is not difficult to show that they satisfy (5.1), (5.2). For all 

initial value ξ… ∈ Γ ×⁎S S S I( (0), (0), , (0), (0), (0))n1 2 , the solution of (1.8) is regular by Theorem (3.1).
Defining a C2–function
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By ck, ak, k = 1, 2, …, n, we obtain
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in which k = 1, 2, …, n. Then we get
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0 is defined in (5.1). And the following condition for M > 0 is satisfied
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In addition, …V S S S I l( , , , , , )n1 2  is a continuous function on Uk. Therefore …V S S S I l(( , , , , , )n1 2  has a minimum 
value point …S S S I l( , , , , , )n1 2  in the interior of Γ ×⁎ . Then we define a nonnegative C2–function V: 

Γ × →⁎   as follows
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Consider the bounded open subset
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and εi > 0 (i = 1, 2, 3) are sufficiently small constants. In the set Γ*\D, we can get εi(i = 1, 2, 3) sufficiently small 
such that the following conditions hold
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For the purpose of convenience, we can divide Γ*\D into the following 2n + 2 domains,
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which is equivalent to show it on the above n + 2 domains.
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In view of (6.3), one has

≤ − … ∈ × = … .V S S S I l D k n1 for any ( , , , , , ) , ( 1, 2, , )n k1 2L M

Case 2. If (S1, S2, …, Sn, I) ∈ Dn+1, then

 ∑

∑

λ
β α α

μ
σ

λ
β α α ε

ε
μ

σ

≤ − + ∑ + ∑
∑ +

+ + +

≤ − + ∑ + ∑ + + + .

= =

= =

= =

=

̆

̆
̆ ̆ ̆ ̆

̆ ̆ ̆ ̆

V M
M c

S I
I n

M
M c

n
n

( ) ( 1)
2

( ) ( 1)
2

k
n

k k k
n

k

k
n

k k

n
k

k
n

k k k
n

k

k

n
k

1 1

1 1

2

1 1 2

1 1

2

According to (6.4) one can see that
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Combining with (6.2) and (6.6), one has for sufficiently small ε1,
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In view of (6.8), one has
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Obviously, from (6.9), (6.10), and (6.11) one can obtain that for a sufficiently small εi(i = 1, 2, 3),
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Now, let (S1(0), S2(0), …, Sn(0), I(0)) ∈ Dc. Thanks to the generalized Itô formula established by Skorokhod39 
(Lemma 3, Pages 104) and using (6.12), we obtain
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Thus, by the positivity of V, one can deduce that
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The proof is complete.

Remark 6.1 Theorem 6.1 tells us if the condition of Theorem 6.1 satisfied, then system (1.8) correspond to the 
boundedness of the disease to corresponding deterministic system. That is to say the disease can not spread to 
whole susceptible population or go to extinct.

Conclusion
In this paper, we extended the classical DS-I-A epidemic model from a deterministic framework to a stochastic 
one by incorporating both white and color environmental noise. we have looked at the long-term behavior of our 
stochastic DS-I-A epidemic model. We established conditions for extinction and persistence of disease which 
both are sufficient but not necessary. We also proved that the DS-I-A model (1.8) is positive recurrent. We first 
discussed the conditions for extinction of disease in Section 4, it means that the disease can not spread or be 
endemic disease. Furthermore, we discussed the condition persistence of disease and if the disease proceed, we 
explore long-term behavior of the disease in Section 5 and Section 6. That is to say the disease is bounded, namely 
the disease will be endemic and can not spread to whole susceptible population or go to extinct.

It is interesting to find that if condition of Theorem 5.1 is satisfied, then the equation in (1.8) which k = 1, 2, is 
stochastically permanent, respectively. Hence Theorem 5.1 tells us that if every individual equation is stochasti-
cally permanent, then as the result of Markovian switching, the overall behavior, i.e. SDE (1.8), remains stochas-
tically permanent. On the other hand, if condition of Theorem 4.1 is satisfied, for some ∈l , then every 
individual in (1.8) is extinctive. Hence Theorem 4.1 tells us that if every individual is extinctive, then as the result 
of Markovian switching, the overall behavior of SDE (1.8) remains extinctive. However, Theorems 4.1 and 5.1 
provide a more interesting result that if some individual equations in (1.8) are stochastically permanent while 
some are extinctive, again as the result of Markovian switching, the overall behavior of SDE (1.8) may be stochas-
tically permanent or extinctive, depending on the sign of the stationary distribution (π1,…,πL) of the Markov 
chain r(t).

Thus the results show that the stationary distribution (π1,…,πL) of the Markov chain r(t) plays a very impor-
tant role in determining extinction or persistence of the epidemic in the population. We derived explicit condi-
tions of extinction or persistence of the epidemic:
	(1)	 If following conditions satisfied:
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That is to say the disease will die out. It means that the disease can not spread or be endemic disease.
	(2)	 Let (S1(t), S2(t), …, Sn(t), I(t), ξ(t)) be the solution of system (1.8) with initial value 
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then (S1(t), S2(t), …, Sn(t), I(t), ξ(t)) is persistence and is positive recurrent with respect to the domain ×D , 
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in which ε1, ε2, ε3 are sufficiently small constants.
That is to say the disease will proceed and can not spread to whole susceptible population or go to extinct.
We have illustrated our theoretical results with computer simulations. Finally, this paper is only a first step in 

introducing switching regime into an epidemic model. In future investigations, we plan to introduce white and 
color noises into more realistic epidemic models.

Some interesting topics deserve further consideration. On the one hand, one may propose some more realistic 
but complex models, such as considering the effects of impulsive perturbations on system (1.8). On the other 
hand, it is necessary to reveal that the methods used in this paper can be also applied to investigate other interest-
ing epidemic models. We leave these as our future work.
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